CN115223057B - 多模态遥感图像联合学习的目标检测统一模型 - Google Patents
多模态遥感图像联合学习的目标检测统一模型 Download PDFInfo
- Publication number
- CN115223057B CN115223057B CN202210920610.8A CN202210920610A CN115223057B CN 115223057 B CN115223057 B CN 115223057B CN 202210920610 A CN202210920610 A CN 202210920610A CN 115223057 B CN115223057 B CN 115223057B
- Authority
- CN
- China
- Prior art keywords
- target
- target detection
- image
- network
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 44
- 238000012549 training Methods 0.000 claims abstract description 26
- 230000000694 effects Effects 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 claims description 11
- 239000013598 vector Substances 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 9
- 230000010365 information processing Effects 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 238000013136 deep learning model Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000023004 detection of visible light Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/761—Proximity, similarity or dissimilarity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Remote Sensing (AREA)
- Astronomy & Astrophysics (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210920610.8A CN115223057B (zh) | 2022-08-02 | 2022-08-02 | 多模态遥感图像联合学习的目标检测统一模型 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210920610.8A CN115223057B (zh) | 2022-08-02 | 2022-08-02 | 多模态遥感图像联合学习的目标检测统一模型 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115223057A CN115223057A (zh) | 2022-10-21 |
CN115223057B true CN115223057B (zh) | 2023-04-07 |
Family
ID=83615507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210920610.8A Active CN115223057B (zh) | 2022-08-02 | 2022-08-02 | 多模态遥感图像联合学习的目标检测统一模型 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115223057B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116012679B (zh) * | 2022-12-19 | 2023-06-16 | 中国科学院空天信息创新研究院 | 一种基于多层级跨模态交互的自监督遥感表示学习方法 |
CN115880266B (zh) * | 2022-12-27 | 2023-08-01 | 深圳市大数据研究院 | 一种基于深度学习的肠道息肉检测系统和方法 |
CN116434024B (zh) * | 2023-04-21 | 2023-09-12 | 大连理工大学 | 目标特征嵌入的红外与可见光图像融合方法 |
CN116310656B (zh) * | 2023-05-11 | 2023-08-15 | 福瑞泰克智能系统有限公司 | 训练样本确定方法、装置和计算机设备 |
CN117320238B (zh) * | 2023-11-06 | 2024-08-20 | 天成高科(深圳)有限公司 | Led节能灯的智能控制方法、装置和led节能灯 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113095249A (zh) * | 2021-04-19 | 2021-07-09 | 大连理工大学 | 鲁棒的多模态遥感图像目标检测方法 |
CN113657232B (zh) * | 2021-08-10 | 2024-09-27 | 大连理工大学 | 基于风格内容解耦的跨域遥感图像目标检测方法 |
CN113850176A (zh) * | 2021-09-22 | 2021-12-28 | 北京航空航天大学 | 一种基于多模态遥感图像细粒度弱特征目标涌现检测方法 |
-
2022
- 2022-08-02 CN CN202210920610.8A patent/CN115223057B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN115223057A (zh) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115223057B (zh) | 多模态遥感图像联合学习的目标检测统一模型 | |
CN112257569B (zh) | 一种基于实时视频流的目标检测和识别方法 | |
CN112116593B (zh) | 一种基于基尼指数的领域自适应语义分割方法 | |
CN113095249A (zh) | 鲁棒的多模态遥感图像目标检测方法 | |
CN111898685B (zh) | 一种基于长尾分布数据集的目标检测方法 | |
CN111898663B (zh) | 一种基于迁移学习的跨模态遥感图像的匹配方法 | |
CN115187786A (zh) | 一种基于旋转的CenterNet2目标检测方法 | |
CN111444865B (zh) | 一种基于逐步求精的多尺度目标检测方法 | |
CN114677602A (zh) | 一种基于YOLOv5的前视声呐图像目标检测方法和系统 | |
CN112733942A (zh) | 一种基于多级特征自适应融合的变尺度目标检测方法 | |
CN110991500A (zh) | 一种基于嵌套式集成深度支持向量机的小样本多分类方法 | |
CN116452818A (zh) | 一种基于特征增强的小样本遥感图像目标检测方法 | |
Fu et al. | A case study of utilizing YOLOT based quantitative detection algorithm for marine benthos | |
CN117611963A (zh) | 基于多尺度扩展残差网络的小目标检测方法及系统 | |
CN112861871A (zh) | 一种基于目标边界定位的红外目标检测方法 | |
CN113780462B (zh) | 基于无人机航拍图像的车辆检测网络建立方法及其应用 | |
Da et al. | Remote sensing image ship detection based on improved YOLOv3 | |
CN113779287A (zh) | 基于多阶段分类器网络的跨域多视角目标检索方法及装置 | |
Liu et al. | Text detection based on bidirectional feature fusion and sa attention mechanism | |
Chen et al. | Target Detection for Mine Remote Sensing Using Deep Learning | |
Jiang et al. | Face detection based on improved YOLOv5 algorithm | |
CN115661207B (zh) | 基于空间一致性匹配与权重学习的目标跟踪方法与系统 | |
CN114511504B (zh) | 一种视频sar动目标阴影检测方法 | |
Yu et al. | Pedestrian detection in crowded scenes based on Cascade R-CNN | |
Liu et al. | Research on an improved fish recognition algorithm based on YOLOX |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhao Wenda Inventor after: Xie Shigeng Inventor after: Zhao Fan Inventor after: Liu Xinghui Inventor after: Huang Youpeng Inventor after: Li Zhili Inventor before: Zhao Wenda Inventor before: Xie Shigeng Inventor before: Wang Haipeng Inventor before: Zhao Fan Inventor before: Liu Xinghui Inventor before: Huang Youpeng Inventor before: Li Zhili |
|
GR01 | Patent grant | ||
GR01 | Patent grant |