CN115216702A - 一种冷冲压用高强油箱托架用钢及其制造方法 - Google Patents

一种冷冲压用高强油箱托架用钢及其制造方法 Download PDF

Info

Publication number
CN115216702A
CN115216702A CN202210925801.3A CN202210925801A CN115216702A CN 115216702 A CN115216702 A CN 115216702A CN 202210925801 A CN202210925801 A CN 202210925801A CN 115216702 A CN115216702 A CN 115216702A
Authority
CN
China
Prior art keywords
steel
equal
less
cooling
oil tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210925801.3A
Other languages
English (en)
Inventor
刘广超
万国喜
张大江
黄重
欧阳瑜
郑飞
何晓波
刘鹏
刘艳玲
张振申
曹巍
王翠娜
刘艳红
姜来远
蔺学浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Iron and Steel Co Ltd
Original Assignee
Anyang Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Iron and Steel Co Ltd filed Critical Anyang Iron and Steel Co Ltd
Publication of CN115216702A publication Critical patent/CN115216702A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种冷冲压用高强油箱托架用钢及其制造方法。所述油箱托架用钢化学成分按质量百分比配比为:C:0.04~0.07%,Mn:1.45~1.55%,Si:≤0.2%,S:≤0.005%,P≤0.015%,Nb:0.035~0.045%,Cr:0.3~0.5%,Ti:0.06~0.075%,Alt:0.02~0.06%,N≤0.0060%,其余为Fe和不可避免的杂质元素。生产方法包括:铁水预脱硫,转炉冶炼,LF精炼,板坯连铸,加热,轧制,层流冷却,卷曲,缓冷厢缓冷;通过严格控制层流两端冷却模式的温度和冷却速率,并采用轧后缓冷的工艺,最终得到屈服强度≥600MPa,抗拉强度≥700MPa,延伸率≥22%的冷冲压用高强油箱托架用钢,该油箱托架用钢强度高,塑形好,可广泛应用于商用车油箱领域,填补了国内冷冲压用高强油箱托架用钢的空白。

Description

一种冷冲压用高强油箱托架用钢及其制造方法
技术领域
本发明属于钢铁材料技术领域,尤其涉及一种冷冲压用高强油箱托架用钢及其制造方法,该方法适合生产冷冲压成型用高强油箱托架的钢材,主要应用在商用车油箱领域。
背景技术
油箱托架是油箱的主要支撑件,制作工艺复杂,变形量大,对材料的塑性要求较高,长期以来一直使用低强度级别的普通钢材进行冲压加工。随着商用车轻量化的发展,逐步用薄规格的高强钢代替厚规格的低强度级别的普通钢材进行冲压制作油箱托架,从而减轻油箱托架的重量,以实现商业汽车的轻量化。
目前国内冷冲压用高强油箱托架用钢属于空白,没有专用的钢种和标准,托架加工厂家只有使用一些替代材料,如700L,700BL、QStE650TM等,这些都属于大梁用钢,700L现行国家标准GB/T3273-2015要求断后伸长率≥14%,对塑性要求较低,导致大梁钢高强度低塑性不能满足油箱托架复杂的变形要求,造成在托架冲压过程中,开裂率较高。因此,油箱托架加工厂家急需要求研发冷冲压用高强油箱托架用钢材料,以满足轻量化油箱托架在冲压过程对复杂变形的要求。
冷冲压用高强油箱托架用钢主要采用2.0~6.0mm厚度的热轧钢板进行冷冲压成型,众所周知,随着材料强度的提高,其塑性会随着下降,导致在冲压过程中由于塑性不足引起开裂,因此冷冲压用高强油箱托架用钢不仅具有高强度而且还要具有高塑性。冷冲压用高强油箱托架用钢的具体性能要求为:抗拉强度≥700MPa,屈服强度≥600MPa,延伸率≥22%。
发明内容
本发明的目的在于提供一个冷冲压用高强油箱托架用钢的钢种,该钢种可以应用在商用车油箱领域,使商用车油箱托架实现轻量化。
本发明的另一目的在于提供一种冷冲压用高强油箱托架用钢的制造方法,通过该制造方法,最终得到均匀的多边形铁素体和珠光体混合物,达到抗拉强度≥700MPa,屈服强度≥600MPa,延伸率≥22%的性能指标。
为实现上述目的,本发明采用的技术方案为:
一种冷冲压用高强油箱托架用钢,按以下质量百分比配比:C:0.04~0.07%,Mn:1.45~1.55%,Si:≤0.2%,S:≤0.005%,P≤0.015%,Nb:0.035~0.045%,Cr:0.3~0.5%,Ti:0.06~0.075%,Alt:0.02~0.06%,N≤0.0060%,其余为Fe和不可避免的杂质元素。
其中,C:碳在钢中起到间隙固溶强化,提高强化效果和珠光体含量,提高强度和硬度。增加碳含量虽然能显著提高钢的强度,但对钢的塑性不利。综合考虑,本发明的冷冲压用高强油箱托架用钢的碳含量控制在0.04~0.07%。
Mn:锰元素在钢中主要起到固溶强化,还可以细化晶粒,提高强度,增加韧性;但是Mn含量不能过高,过高对铸坯中心偏析和钢板带状组织不利,容易造成冲压开裂。综合考虑,本发明的冷冲压用高强油箱托架用钢的锰含量控制在1.45~1.55%。
铌钛合金化:Nb、Ti是比较常用的微合金强化元素,Nb、Ti可以通过碳、氮化物的弥散析出及固溶作用,细化晶粒,提高强度和韧性,提高奥氏体再结晶温度,改善钢的焊接性能。但是Ti相对于Nb来说,化学性质较活泼,冶炼过程中易与氧、硫、氮、碳等元素形成化合物,不易控制,容易造成强度波动较大,性能稳定性差。此外,轧制工艺应要考虑Nb和Ti碳化物的固溶和析出方式,采用合适的轧制工艺。综合考虑,本发明的冷冲压用高强油箱托架用钢的Nb控制在0.035~0.045%,Ti控制在0.06~0.075%。
Cr:铬元素能增加钢的淬透性,而且加入Cr后钢材的力学性能也会大幅提升。综合考虑,本发明的冷冲压用高强油箱托架用钢的Cr控制在0.3~0.5%。
进一步,所述冷冲压用高强油箱托架用钢的厚度为2.0~6.0mm,抗拉强度≥700MPa,屈服强度≥600MPa,延伸率≥22%。
一种冷冲压用高强油箱托架用钢的制造方法,包括以下工序:铁水预脱硫,转炉冶炼,LF精炼,板坯连铸,轧制,层流冷却,卷曲,缓冷厢缓冷;其中,
所述铁水预脱硫采用石灰和镁粉脱硫,使[S]≤0.003%,铁水脱硫扒渣干净,保证扒渣亮面≥95%;
所述转炉冶炼采用洁净废钢和优质冶金石灰进行冶炼,终点[C]≤0.05%,[P]≤0.015%,[S]≤0.020%,终点温度1630-1670℃,出钢过程中严禁下渣;
所述LF精炼全程控铝控氮,白渣保持时间不小于15min,软搅拌时间不低于8min,上钢成分严格控制在C:0.04~0.07%,Mn:1.45~1.55%,Si:≤0.2%,S:≤0.005%,P≤0.015%,Nb:0.035~0.045%,Cr:0.3~0.5%,Ti:0.06~0.075%,Alt:0.02~0.06%,N≤0.0060%,上钢温度控制在1565-1580℃;
所述连铸过程全程采用保护浇注,结晶器液面波动±3mm,钢水过热度控制在10~20℃,拉速稳定在0.8m/min~1.2m/min。
进一步,所述轧制过程如下:
将厚230mm的铸坯装入加热炉加热到1190℃~1230℃,并保温140~180分钟,加热温度的选择一方面保证Nb、Ti、Cr的充分固溶,另一方面防止钢坯过热、过烧;
粗轧,经过5道次粗轧后,终轧温度≤1050℃,中间坯厚度在34mm~40mm;需要说明的是,粗轧过程主要是使高温奥氏体重新再结晶,细化奥氏体晶粒,一定要保证道次压下量≥15%;
精轧,为提高表面质量,降精轧氧化铁皮厚度,精轧穿带速度为410-630m/min,精轧机入口温度≤980℃,出口温度≤880℃,精轧温度的选择是保证在再结晶温度以下进行轧制,保证钢材晶粒细小均匀,防止混晶。
进一步,所述层流冷却采用两端冷却模式进行,开始采用前端集中冷却到720℃~740℃,冷却速率为10-23℃/S,然后空冷3~4秒,后端采用集中冷却,冷却速率为11-16℃/S,最终卷曲温度为620℃~640℃。层流冷却采用的是两端水冷和中间空冷的冷却模式,温度的确定是保证前端的水冷阶段,材料处于奥氏体转变为铁素体之前;后端的水冷阶段保证在材料处于奥氏体转变为铁素体的相变之后,保证相变过程处于空冷阶段。
进一步,所述卷曲后采用缓冷厢中缓冷,将卷曲后的钢卷立即放入缓冷厢中大于48h。通过保温一是可以释放钢材自身内应力,减少位错强化;二是使均匀卷曲后冷却速率,增加通卷性能稳定性。
与现有技术相比,本发明的有益效果为:
1、本发明通过对钢材中合金元素的优化,通过采用低碳,中锰,少量铬,铌钛微合金化的窄成分控制体系,不仅保证了钢材的高强度和高塑性,而且还保证了钢材的性能均匀性。
2、本发明通过采用纯净钢冶炼技术,从铁水预处理,转炉冶炼,LF炉精炼到连铸整个冶炼工序,保证了钢水的纯净度,从而减少了钢材在冲压过程中的开裂倾向。
3、本发明通过采用严格控制两端冷却的温度,前端冷却通过增加过冷度提高相变驱动力促进铁素体形核,空冷是促使铁素体大量析出、增加铁素体含量,后端冷却是抑制铁素体长大并促进高碳浓度奥氏体向珠光体转变,获得弥散分布的高强度珠光体组织。通过两端冷却可以提高材料的均匀延伸率,进而减少了钢材在冲压过程中的开裂率。
4、通过采取卷曲后缓冷的工艺,释放了钢材自身的内应力,减少位错强化,提高了材料的塑性。
附图说明
图1为本发明生产过程中冷冲压用高强油箱托架用钢的金相结构图。
具体实施方式
下面结合附图和具体的实施例对本发明的技术方案及效果做进一步描述,但本发明的保护范围并不限于此。
以下用热连轧生产线生产不同规格的冷冲压用高强油箱托架用钢,对本发明做进一步的说明。
本实施例1、实施例2和实施例3的冷冲压用高强油箱托架用钢按重量百分比配比,其中,组成成分如表1,其余为Fe和不可避免的杂质元素。
表1实施例1-3的成分组成(wt%)
成分 C Si Mn P S Alt Nb Ti Cr N
实施例1 0.05 0.12 1.49 0.012 0.003 0.032 0.037 0.065 0.35 0.0051
实施例2 0.06 0.10 1.52 0.010 0.001 0.041 0.039 0.070 0.37 0.0060
实施例3 0.04 0.13 1.53 0.008 0.001 0.029 0.041 0.068 0.34 0.0048
本实施例的冷冲压用高强油箱托架用钢生产工艺包括铁水预处理,顶底复吹转炉,LF精炼,双流板坯连铸,步进式加热炉,粗轧机,精轧机,层流冷却,卷曲后缓冷。
所述铁水预脱硫采用石灰和镁粉脱硫,使[S]≤0.003%,铁水脱硫扒渣干净,保证扒渣亮面≥95%;
所述转炉冶炼采用洁净废钢和优质冶金石灰进行冶炼,终点[C]≤0.05%,[P]≤0.015%,[S]≤0.020%,终点温度1630-1670℃,出钢过程中严禁下渣;
所述LF精炼全程控铝控氮,白渣保持时间不小于15min,软搅拌时间不低于8min,上钢温度控制在1565-1580℃;
所述连铸过程全程采用保护浇注,结晶器液面波动±3mm,钢水过热度控制在10~20℃,拉速稳定在0.8m/min~1.2m/min。
本发明冶炼采用纯净钢冶炼技术,从铁水预处理,转炉冶炼,LF炉精炼到连铸整个冶炼工序,保证了钢水的纯净度,从而减少了钢材在冲压过程中的开裂倾向。
其中,轧制工艺制度见表2。
表2实施例1-3轧制工艺制度
Figure BDA0003779517340000061
本发明通过采用严格控制两端冷却的温度,前端冷却通过增加过冷度提高相变驱动力促进铁素体形核,空冷是促使铁素体大量析出、增加铁素体含量,后端冷却是抑制铁素体长大并促进高碳浓度奥氏体向珠光体转变,获得弥散分布的高强度珠光体组织。通过两端冷却可以提高材料的均匀延伸率,进而减少了钢材在冲压过程中的开裂率。通过采取卷曲后缓冷的工艺,释放了钢材自身的内应力,减少位错强化,提高了材料的塑性。
本发明实施例制造的钢板包括多边形铁素体、珠光体和极少量贝氏体,两种组织占比分别为:90-95%铁素体+6-8%的珠光体。
按照本实施例的步骤生产的钢板,其性能指标见表3。
表3实施例1-3的冷冲压用高强油箱托架用钢的性能
规格/mm 成分体系 Rel/MPa Rm/MPa A/% 180°冷弯试验d/弯心直径a/试样厚度
3.80 实施例1 649 738 26 d=a合格
4.20 实施例2 642 743 26.5 d=a合格
2.50 实施例3 665 759 25 d=a合格
由表3可知,本实施例生产出来的3.80mm,4.20mm和2.50mm规格的冷冲压用高强油箱托架用钢在满足高强度的同时,可满足等比例标距下的延伸率≥22%。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种冷冲压用高强油箱托架用钢,其特征在于,按以下质量百分比配比:C:0.04~0.07%,Mn:1.45~1.55%,Si:≤0.2%,S:≤0.005%,P≤0.015%,Nb:0.035~0.045%,Cr:0.3~0.5%,Ti:0.06~0.075%,Alt:0.02~0.06%,N≤0.0060%,其余为Fe和不可避免的杂质元素。
2.如权利要求1所述的冷冲压用高强油箱托架用钢,其特征在于,所述冷冲压用高强油箱托架用钢的厚度为2.0~6.0mm,抗拉强度≥700MPa,屈服强度≥600MPa,延伸率≥22%。
3.一种冷冲压用高强油箱托架用钢的制造方法,包括以下工序:铁水预脱硫,转炉冶炼,LF精炼,板坯连铸,加热,轧制,层流冷却,卷曲,缓冷厢缓冷;其中,
所述铁水预脱硫采用石灰和镁粉脱硫,使[S]≤0.003%,铁水脱硫扒渣干净,保证扒渣亮面≥95%;
所述转炉冶炼采用洁净废钢和优质冶金石灰进行冶炼,终点[C]≤0.05%,[P]≤0.015%,[S]≤0.020%,终点温度1630-1670℃,出钢过程中严禁下渣;
所述LF精炼全程控铝控氮,白渣保持时间不小于15min,软搅拌时间不低于8min,上钢成分严格控制在C:0.04~0.07%,Mn:1.45~1.55%,Si:≤0.2%,S:≤0.005%,P≤0.015%,Nb:0.035~0.045%,Cr:0.3~0.5%,Ti:0.06~0.075%,Alt:0.02~0.06%,N≤0.0060%,上钢温度控制在1565-1580℃;
所述连铸过程全程采用保护浇注,结晶器液面波动≤±3mm,钢水过热度控制在10~20℃,拉速稳定在0.8m/min~1.2m/min。
4.如权利要求3所述的冷冲压用高强油箱托架用钢的制造方法,其特征在于,所述轧制过程如下:
将厚230mm的铸坯装入加热炉加热到1190℃~1230℃,并保温140~180分钟,加热温度的选择一方面保证Nb、Ti、Cr的充分固溶,另一方面防止钢坯过热、过烧;
粗轧,经过5道次粗轧后,终轧温度≤1050℃,中间坯厚度在34mm~40mm;需要说明的是,粗轧过程主要是使高温奥氏体重新再结晶,细化奥氏体晶粒,一定要保证道次压下量≥15%;
精轧,为提高表面质量,降低精轧氧化铁皮厚度,精轧穿带速度为410-630m/min,精轧机入口温度≤980℃,出口温度≤880℃,精轧温度的选择是保证在再结晶温度以下进行轧制,保证钢材晶粒细小均匀,防止混晶。
5.如权利要求3所述的冷冲压用高强油箱托架用钢的制造方法,所述层流冷却采用两端冷却模式进行,开始采用前端集中冷却到720℃~740℃,冷却速率为10-23℃/S,然后空冷3~4秒,后端采用集中冷却,冷却速率为11-16℃/S,最终卷曲温度为620℃~640℃。层流冷却采用的是两端水冷和中间空冷的冷却模式,温度的确定是保证前端的水冷阶段,材料处于奥氏体转变为铁素体之前;后端的水冷阶段保证在材料处于奥氏体转变为铁素体的相变之后,保证相变过程处于空冷阶段。
6.如权利要求3所述的冷冲压用高强油箱托架用钢的制造方法,所述卷曲后采用缓冷厢中缓冷,将卷曲后的钢卷立即放入缓冷厢中,缓冷时间大于48h。通过保温一是可以释放钢材自身内应力,减少位错强化;二是使均匀卷曲后冷却速率,增加通卷性能稳定性。
CN202210925801.3A 2022-04-25 2022-08-03 一种冷冲压用高强油箱托架用钢及其制造方法 Pending CN115216702A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210439175 2022-04-25
CN2022104391757 2022-04-25

Publications (1)

Publication Number Publication Date
CN115216702A true CN115216702A (zh) 2022-10-21

Family

ID=83616656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210925801.3A Pending CN115216702A (zh) 2022-04-25 2022-08-03 一种冷冲压用高强油箱托架用钢及其制造方法

Country Status (1)

Country Link
CN (1) CN115216702A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200678A (zh) * 2022-12-15 2023-06-02 本钢板材股份有限公司 一种700MPa级高强轻型光伏支架用热轧卷板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018087A (zh) * 2014-04-04 2014-09-03 首钢总公司 屈服强度700MPa以上汽车大梁用钢及其制造方法
US20170137911A1 (en) * 2014-03-25 2017-05-18 Thyssenkrupp Steel Europe Ag Method for producing a high-strength flat steel product
CN109182922A (zh) * 2018-10-30 2019-01-11 攀钢集团攀枝花钢铁研究院有限公司 高韧性铁素体型油气管线用热连轧钢带及其生产方法
CN109355484A (zh) * 2018-09-30 2019-02-19 唐山不锈钢有限责任公司 薄规格700MPa级超高强热轧黑皮钢带的生产工艺
CN112176256A (zh) * 2020-09-27 2021-01-05 邯郸钢铁集团有限责任公司 一种高冲击韧性汽车大梁钢带及其生产方法
WO2022022692A1 (zh) * 2020-07-31 2022-02-03 宝山钢铁股份有限公司 一种扭力梁用钢板及其制造方法、扭力梁及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170137911A1 (en) * 2014-03-25 2017-05-18 Thyssenkrupp Steel Europe Ag Method for producing a high-strength flat steel product
CN104018087A (zh) * 2014-04-04 2014-09-03 首钢总公司 屈服强度700MPa以上汽车大梁用钢及其制造方法
CN109355484A (zh) * 2018-09-30 2019-02-19 唐山不锈钢有限责任公司 薄规格700MPa级超高强热轧黑皮钢带的生产工艺
CN109182922A (zh) * 2018-10-30 2019-01-11 攀钢集团攀枝花钢铁研究院有限公司 高韧性铁素体型油气管线用热连轧钢带及其生产方法
WO2022022692A1 (zh) * 2020-07-31 2022-02-03 宝山钢铁股份有限公司 一种扭力梁用钢板及其制造方法、扭力梁及其制造方法
CN112176256A (zh) * 2020-09-27 2021-01-05 邯郸钢铁集团有限责任公司 一种高冲击韧性汽车大梁钢带及其生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200678A (zh) * 2022-12-15 2023-06-02 本钢板材股份有限公司 一种700MPa级高强轻型光伏支架用热轧卷板及其制造方法

Similar Documents

Publication Publication Date Title
CN108504958B (zh) 一种690MPa级热轧厚规格低屈强比汽车轮辐用钢及其制备方法
CN110295320B (zh) 一种lf-rh精炼工艺生产的大壁厚x52ms抗酸管线钢板及其制造方法
JP4650006B2 (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
CN109136738B (zh) 一种高强度耐低温船体结构钢板及其制备方法
CN110777296B (zh) 一种超厚规格x52管线钢热轧卷板及其生产方法
CN102618790B (zh) 一种高强度低铬铁素体不锈钢及其制造方法
CN109957712A (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN113528944B (zh) 一种1000MPa易成形耐磨钢板及其制备方法
CN112831731A (zh) 在线淬火复相组织热轧耐磨钢及制备方法
CN112680655B (zh) 700MPa级汽车用低合金高强冷轧钢板及制备方法
CN108396253A (zh) 一种折弯性能优异的高强度镀锌双相带钢及其生产方法
CN111996461A (zh) 一种微合金化电阻焊管用x70管线卷板及其生产方法
CN110747405B (zh) 适用于辊压的一千兆帕级冷轧贝氏体钢板及其制备方法
CN113862446B (zh) 一种高加热温度的x70管线钢的生产方法
CN115216702A (zh) 一种冷冲压用高强油箱托架用钢及其制造方法
CN112410671A (zh) 一种采用复相组织生产轮辋用钢的生产方法
CN102953001B (zh) 一种抗拉强度900MPa以上冷轧钢板及制造方法
CN109136761B (zh) 一种980MPa级高延性低密度汽车用奥氏体钢及其制备方法
CN110129672A (zh) 一种低成本750MPa强度级别碳素结构钢及生产方法
CN108359893B (zh) 一种高硅低锰管线钢热轧卷板及其生产方法
CN110983197A (zh) 800MPa级高冷弯冷轧双相钢板及其制备方法
CN112126853B (zh) 一种纵向变厚度高强船板及生产方法
CN114807780A (zh) 一种热冲压用600MPa级汽车桥壳用钢及其生产方法
CN114836696A (zh) 一种热冲压用390MPa级汽车桥壳用钢及其生产方法
CN116497268A (zh) 一种免退火高淬透性高强度紧固件用盘条及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination