CN115215802A - Method for purifying vitamin H intermediate cyclic acid - Google Patents

Method for purifying vitamin H intermediate cyclic acid Download PDF

Info

Publication number
CN115215802A
CN115215802A CN202110416118.2A CN202110416118A CN115215802A CN 115215802 A CN115215802 A CN 115215802A CN 202110416118 A CN202110416118 A CN 202110416118A CN 115215802 A CN115215802 A CN 115215802A
Authority
CN
China
Prior art keywords
formula
compound
solution
vitamin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110416118.2A
Other languages
Chinese (zh)
Inventor
陈斌
翟金璐
马康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Acebright Pharmaceuticals Group Co ltd
Dafeng Hegno Pharmaceuticals Co ltd
Original Assignee
Shanghai Acebright Pharmaceuticals Group Co ltd
Dafeng Hegno Pharmaceuticals Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Acebright Pharmaceuticals Group Co ltd, Dafeng Hegno Pharmaceuticals Co ltd filed Critical Shanghai Acebright Pharmaceuticals Group Co ltd
Priority to CN202110416118.2A priority Critical patent/CN115215802A/en
Publication of CN115215802A publication Critical patent/CN115215802A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/32One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention provides a method for purifying a vitamin H intermediate cyclic acid. The method comprises the following steps: (1) Adding triphosgene solution and potassium hydroxide solution dropwise into the compound water solution of the formula 2; (2) After the reaction is finished, adjusting the pH value of the reaction solution to be acidic, and filtering to obtain a crude product of the compound shown in the formula 3; (3) Adding isopropanol and water into the crude product of the compound shown in the formula 3, mixing, heating, dissolving, dripping hydrochloric acid, cooling, filtering, washing and drying to obtain the intermediate cyclic acid of the vitamin H.

Description

Method for purifying vitamin H intermediate cyclic acid
Technical Field
The invention relates to the technical field of production of vitamin H, in particular to a method for purifying a vitamin H intermediate cyclic acid.
Background
Vitamin H, also known as d-biotin, coenzyme R, is a water-soluble vitamin, also belonging to the vitamin B group, B7. It is an indispensable substance for the normal metabolism of fat and protein, and is also a necessary nutrient for maintaining the natural growth and development of human bodies and the normal functional health of human bodies.
To date, several routes for the synthesis of vitamin H have been developed, but the most industrially recognized route currently is that disclosed in the Hoffmann-La Roche (US 2489238):
Figure BDA0003025244610000011
in the route, the compound of formula 2 is subjected to cyclization reaction to the compound of formula 3, the traditional synthesis method is that triphosgene solution and potassium hydroxide solution are dropwise added into potassium hydroxide aqueous solution of the compound of formula 2 in a reaction kettle, after the reaction is finished, the pH of the reaction solution is adjusted to be acidic, and the compound of formula 3 is obtained after filtering, washing and drying, wherein the purity of HPLC is normally 95.5% -96.5%.
The purification method of the patent method comprises the steps of dropwise adding a triphosgene solution and a potassium hydroxide solution into a compound water solution in a formula 2 in a reaction kettle, adjusting the pH of a reaction solution to be acidic after the reaction is finished, filtering to obtain a crude product in a formula 3, adding isopropanol and water, mixing, heating, dissolving to be clear, dropwise adding hydrochloric acid, cooling, filtering, washing and drying to obtain the compound in the formula 3, wherein the purity of HPLC is 98.5-99.5%.
Disclosure of Invention
In order to solve the problems, the invention provides a method for purifying the vitamin H intermediate cyclic acid, which has the advantages of safe process, high reaction yield and low production cost and is suitable for industrial production.
The invention provides a method for purifying a compound of formula 3, which is characterized by comprising the following steps:
1) Adding triphosgene solution and potassium hydroxide solution into potassium hydroxide solution of the compound shown in the formula 2;
2) After the reaction is finished, adjusting the pH value of the reaction solution to be acidic, and filtering to obtain a crude product of the compound shown in the formula 3;
3) Adding isopropanol and water into the crude product of the formula 3, mixing, heating, dissolving, dripping hydrochloric acid, cooling, filtering, washing and drying to obtain the compound of the formula 3.
Figure BDA0003025244610000021
Preferably, the molar ratio of the compound of formula 3 to isopropanol in step (3) is 1.
Preferably, the molar ratio of the compound of formula 3 to water in step (3) is 1.
Preferably, in the dissolving and clearing process in the step (3), the temperature is controlled to be less than or equal to 40 ℃.
Preferably, the stirring time after the solution in the step (3) is controlled to be 10-15 min.
Preferably, the temperature of the hydrochloric acid dropped in the step (3) is controlled to be 20-28 ℃.
Preferably, the amount of the dropwise added hydrochloric acid in the step (3) is controlled to be 1:0.78 to 1:0.87.
preferably, the temperature of the cooling end point in the step (3) is 0-10 ℃.
A compound of formula 3, prepared according to the method of claim 1.
In another aspect of the present invention, there is provided the use of any one of the methods described above for the preparation of vitamin H.
In another aspect of the present invention, there is provided a compound represented by formula 3, wherein the compound is prepared according to the method of claim 1.
Compared with the prior art, the vitamin H prepared by using the compound of the formula 3 purified by the purification method has higher quality. Meanwhile, the process operation is simple, the technical requirement is low, the generation of three wastes is avoided, and the method is easy to apply to industrial production.
Detailed Description
The present invention will be described in detail with reference to examples. It should be noted that the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention; various modifications and improvements can be made to the present invention without departing from the spirit and scope of the invention. The content in the present invention refers to a mass percentage content unless otherwise specified.
The following cases were carried out by a conventional method unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
Example 1
35.0g (0.100 mol) of the compound of formula 2, 20g of potassium hydroxide and 133.3g of water are put into a reaction flask, stirred to be dissolved and clear, and cooled to 10-15 ℃. Simultaneously dropwise adding 40.0g (0.135 mol) of triphosgene into 160.0g of toluene (mass concentration is 20%) to obtain a solution B and a 25% potassium hydroxide aqueous solution C, wherein the pH is controlled to be 8-9 in the process, and the reaction temperature is 10-30 ℃. After about 1 to 1.5 hours of dripping, keeping the temperature and reacting for 0.5 hour. And then adjusting the pH value of the reaction solution to 1-2 by using acid, filtering, adding 16.6g of isopropanol and water into a filter cake, heating to 38 ℃ for clearing, keeping the temperature and stirring for 25min, cooling to 20-28 ℃, dropwise adding 27ml of common hydrochloric acid, cooling to 0-10 ℃, filtering, and washing the filter cake to be nearly neutral. 34.22g of solid is obtained after air-blast drying, the mass yield is 97.8 percent, and the purity of liquid phase analysis is 98.5 percent.
Example 2
35.0g (0.100 mol) of the compound of formula 2, 20g of potassium hydroxide and 133.3g of water are put into a reaction flask, stirred to be dissolved and clear, and cooled to 10-15 ℃. Simultaneously dropwise adding 40.0g (0.135 mol) of triphosgene into 160.0g of toluene (mass concentration is 20%) to obtain a solution B and a 25% potassium hydroxide aqueous solution C, wherein the pH is controlled to be 8-9 in the process, and the reaction temperature is 10-30 ℃. After about 1 to 1.5 hours of dripping, keeping the temperature and reacting for 0.5 hour. And then adjusting the pH value of the reaction solution to 1-2 by using acid, filtering, adding 28ml of isopropanol and 16.6g of water into a filter cake, heating to 37 ℃ for dissolving, keeping the temperature, stirring for 25min, cooling to 20-28 ℃, dropwise adding 27ml of common hydrochloric acid, cooling to 0-10 ℃, filtering, and washing the filter cake to be nearly neutral. 34.13g of solid is obtained after air-blast drying, the mass yield is 97.5 percent, and the liquid phase analysis purity is 98.8 percent.
Example 3
52.5g (0.100 mol) of the compound of formula 2, 30g of potassium hydroxide and 200g of water are put into a reaction flask, stirred to be dissolved and clear, and cooled to 10-15 ℃. Simultaneously dropwise adding 40.0g (0.135 mol) of triphosgene into 160.0g of toluene (mass concentration is 20%) to obtain a solution B and a 25% potassium hydroxide aqueous solution C, wherein the pH is controlled to be 8-9 in the process, and the reaction temperature is 10-30 ℃. After about 1 to 1.5 hours of dripping, keeping the temperature and reacting for 0.5 hour. And then adjusting the pH of the reaction solution to 1-2 by using acid, filtering, adding 39ml of isopropanol and 24.9g of water into a filter cake, heating to 38 ℃ for dissolving, keeping the temperature and stirring for 25min, cooling to 20-28 ℃, dropwise adding 27ml of common hydrochloric acid, cooling to 0-10 ℃, filtering, and washing the filter cake to be nearly neutral. After air-blast drying, 51.39g of solid is obtained, the mass yield is 97.9%, and the liquid phase analysis purity is 98.6%.
Example 4
35.0g (0.100 mol) of the compound of formula 2, 20g of potassium hydroxide and 133.3g of water are put into a reaction flask, stirred to be dissolved and clear, and cooled to 10-15 ℃. Simultaneously dropwise adding 40.0g (0.135 mol) of triphosgene into 160.0g of toluene (mass concentration is 20%) to obtain a solution B and a 25% potassium hydroxide aqueous solution C, wherein the pH is controlled to be 8-9 in the process, and the reaction temperature is 10-30 ℃. After about 1 to 1.5 hours of dripping, keeping the temperature and reacting for 0.5 hour. And then adjusting the pH value of the reaction solution to 1-2 by using acid, filtering, adding 16.6g of isopropanol and water into a filter cake, heating to 38 ℃ for clearing, keeping the temperature and stirring for 10min, cooling to 20-28 ℃, dropwise adding 27ml of common hydrochloric acid, cooling to 0-10 ℃, filtering, and washing the filter cake to be nearly neutral. 34.19g of solid is obtained after air-blast drying, the mass yield is 97.7 percent, and the purity of liquid phase analysis is 98.5 percent.
Example 5
35.0g (0.100 mol) of the compound of formula 2, 20g of potassium hydroxide and 133.3g of water are put into a reaction flask, stirred to dissolve the mixture, and cooled to 10-15 ℃. Simultaneously dropwise adding 40.0g (0.135 mol) of triphosgene into 160.0g of toluene (mass concentration is 20%) to obtain a solution B and a 25% potassium hydroxide aqueous solution C, wherein the pH is controlled to be 8-9 in the process, and the reaction temperature is 10-30 ℃. After about 1 to 1.5 hours of dripping, keeping the temperature and reacting for 0.5 hour. And then adjusting the pH value of the reaction solution to 1-2 by using acid, filtering, adding 31ml of isopropanol and 16.6g of water into a filter cake, heating to 38 ℃ for clearing, keeping the temperature and stirring for 25min, cooling to 20-28 ℃, dropwise adding 27ml of common hydrochloric acid, cooling to 0-10 ℃ for filtering, and washing the filter cake to be nearly neutral. 34.16g of solid is obtained after air blowing and drying, the mass yield is 97.6%, and the liquid phase analysis purity is 99.2%.
Comparative example 1
35.0g (0.100 mol) of the compound of formula 2, 20g of potassium hydroxide and 133.3g of water are put into a reaction flask, stirred to be dissolved and clear, and cooled to 10-15 ℃. Simultaneously dropwise adding 40.0g (0.135 mol) of triphosgene into 160.0g of toluene (mass concentration is 20%) to obtain a solution B and a 25% potassium hydroxide aqueous solution C, wherein the pH is controlled to be 8-9 in the process, and the reaction temperature is 10-30 ℃. After about 1 to 1.5 hours of dripping, keeping the temperature and reacting for 0.5 hour. Then adjusting the pH value of the reaction solution to 1-2 by acid, filtering, and washing a filter cake to be nearly neutral. After air-blast drying, 35.28g of solid is obtained, the mass yield is 100.8%, and the liquid phase analysis purity is 95.9%.
Comparative example 2
52.5g (0.160 mol) of the compound of formula 2, 30g of potassium hydroxide and 200g of water are put into a reaction flask, stirred to be dissolved and clear, and cooled to 10-15 ℃. And simultaneously dropwise adding 60.0g (0.202 mol) of triphosgene into 240.0g of toluene (mass concentration is 20%) to obtain a solution B and a 25% potassium hydroxide aqueous solution C, wherein the pH is controlled to be 8-9 in the process, and the reaction temperature is 10-30 ℃. After about 1 to 1.5 hours of dripping, keeping the temperature and reacting for 0.5 hour. Then adjusting the pH value of the reaction solution to 1-2 by acid, filtering, and washing a filter cake to be nearly neutral. 52.96g of solid is obtained after air-blast drying, the mass yield is 100.9 percent, and the purity of liquid phase analysis is 96.1 percent.
As can be seen from comparison of examples 1-5 with comparative examples 1-2, the compound of formula 3 purified in the examples of the present invention has high purity and small single impurity, and can be used for production of cyclic acid as vitamin H intermediate.

Claims (10)

1. A method for purifying a cyclic acid as a vitamin H intermediate is characterized by comprising the following steps:
1) Mixing the crude compound of formula 3, isopropanol and water produced by the traditional process in proportion respectively;
2) Heating the mixed materials to control the dissolution;
3) Cooling, and beginning to dropwise add hydrochloric acid;
4) Cooling, filtering, washing and drying to obtain the compound shown in the formula 3.
Figure FDA0003025244600000011
2. The method of claim 1,
the molar ratio of the compound of formula 3 to isopropanol is 1.
3. The method of claim 1,
the molar ratio of the compound of formula 3 to water is 1.
4. The method of claim 2,
in the process of dissolving and cleaning, the temperature is controlled to be less than or equal to 40 ℃.
5. The method of claim 2,
the stirring time is controlled to be 10-15 min after the dissolution and the cleaning.
6. The method of claim 3,
the temperature of the hydrochloric acid is reduced and dropped is controlled to be 20-28 ℃.
7. The method of claim 3,
the mass ratio of the compound of formula 3 and the hydrochloric acid is controlled to be 1:0.78 to 1:0.87.
8. the method of claim 4,
the temperature of the cooling end point is 0-10 ℃.
9. Use of a process according to any one of claims 1 to 8 for the preparation of vitamin H.
10. A compound of formula 3, prepared according to the method of claim 1.
CN202110416118.2A 2021-04-16 2021-04-16 Method for purifying vitamin H intermediate cyclic acid Pending CN115215802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110416118.2A CN115215802A (en) 2021-04-16 2021-04-16 Method for purifying vitamin H intermediate cyclic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110416118.2A CN115215802A (en) 2021-04-16 2021-04-16 Method for purifying vitamin H intermediate cyclic acid

Publications (1)

Publication Number Publication Date
CN115215802A true CN115215802A (en) 2022-10-21

Family

ID=83604259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110416118.2A Pending CN115215802A (en) 2021-04-16 2021-04-16 Method for purifying vitamin H intermediate cyclic acid

Country Status (1)

Country Link
CN (1) CN115215802A (en)

Similar Documents

Publication Publication Date Title
JP3854765B2 (en) Method for purifying long-chain dicarboxylic acids
CN101489970B (en) Method for producing succinic acid
CN107556207B (en) Synthesis method of m-aminoacetanilide hydrochloride
CN110590635A (en) Preparation method of levetiracetam and intermediate thereof
US8680329B2 (en) Process for preparation of α-ketoglutaric acid
CN114573560A (en) Preparation method of Voranolan fumarate
CN112479938B (en) Preparation method of N-cyclohexyl-2-aminoethanesulfonic acid
US8754256B2 (en) Process for preparation of L-Arginine α-ketoglutarate 1:1 and 2:1
CN112592296B (en) Method for producing sodium isethionate by continuous reaction
CN115215802A (en) Method for purifying vitamin H intermediate cyclic acid
CN111440171A (en) Method for synthesizing guanine by hydrolysis of guanosine
CN108726569B (en) Preparation method of silver hexafluoroantimonate
CN112812059A (en) Preparation method of 2-aminosulfonyl-N, N-dimethylnicotinamide
CN111592553B (en) Method for preparing moxidectin
CN110903211B (en) Preparation method of L-theanine
CN113480413A (en) Preparation method of phloroglucinol
JP3003287B2 (en) Method for producing sodium N-alkylaminoethanesulfonate
CN111303045A (en) Production process of 2-ethoxy-4, 6-difluoropyrimidine
CN114315627B (en) Method for synthesizing doxycycline dehydrate by catalyzing with normal-temperature ionic liquid and zeolite
CN114195761B (en) Preparation method of high-purity sitafloxacin hydrate 3/2
CN112094198A (en) Synthesis method of N-nitroso-N-methyl-4-aminobutyric acid
CN116410138A (en) Synthesis method of topiramate intermediate
CN106117190B (en) A kind of synthetic method of times of good fortune Pulan
CN112830894A (en) Preparation method of chloroquine phosphate
CN112341406A (en) Synthesis method of trans-4- [4- (3-methoxy-4-nitrophenyl) -1-piperazinyl ] adamantane-1-ol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication