CN115211966A - 一种骨科机器人定位方法、系统、设备及介质 - Google Patents

一种骨科机器人定位方法、系统、设备及介质 Download PDF

Info

Publication number
CN115211966A
CN115211966A CN202210893890.8A CN202210893890A CN115211966A CN 115211966 A CN115211966 A CN 115211966A CN 202210893890 A CN202210893890 A CN 202210893890A CN 115211966 A CN115211966 A CN 115211966A
Authority
CN
China
Prior art keywords
spine
image
point cloud
surface point
orthopedic robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210893890.8A
Other languages
English (en)
Inventor
袁宁
张勇
陈睿
田伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jishuitan Hospital
Original Assignee
Beijing Jishuitan Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jishuitan Hospital filed Critical Beijing Jishuitan Hospital
Priority to CN202210893890.8A priority Critical patent/CN115211966A/zh
Publication of CN115211966A publication Critical patent/CN115211966A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明属于医疗手术用品技术领域,具体公开了一种骨科机器人定位方法、系统、设备及介质。一种骨科机器人定位方法,包括以下步骤:将示踪器固定在预设位置,并获取脊椎CT图像上传到骨科机器人主机;骨科机器人主机根据脊椎CT图像控制结构光平台移动到待工作位置;通过结构光平台扫描脊椎获取第一表面点云,并上传到骨科机器人主机;骨科机器人主机根据第一表面点云-脊椎CT图像进行点云粗‑精配准,得到脊柱3D图像;骨科机器人主机根据脊柱3D图像进行定位。本发明通过对第一表面点云和脊椎CT图像进行点云粗-精片配准,先确定大概,再进行具体配准,提高了配准精度,精简了配准过程。

Description

一种骨科机器人定位方法、系统、设备及介质
技术领域
本发明属于医疗手术用品技术领域,具体涉及一种骨科机器人定位方法、系统、设备及介质。
背景技术
脊柱为人体内最为重要的骨组织结构,承担支撑躯干、保护内脏及脊髓和驱动身体运动的功能。脊柱疾病种类众多,主要包括脊柱退行性病变、脊柱创伤、脊柱畸形、脊柱肿瘤,以及脊柱感染等疾病,给病患带来巨大的痛苦和负担。手术治疗是脊柱疾病最重要的治疗手段之一。脊柱外科手术的核心外科动作包括植入物骨性通道建立和内固定、脊髓/神经减压,以及截骨等操作。脊柱(尤其颈椎)周围毗邻重要的血管、神经和脊髓等结构,均为危险区域,术中如果发生内植物置入偏差,可能会造成血管神经的副损伤以及内固定失效,致使手术失败;另外,在祛除骨赘、减压或截骨等操作时如出现过失,轻者导致患者症状不缓解,重者可致瘫痪,甚至危及生命。
由于临床环境(尤其颈椎)的高度复杂性,骨科机器人实际临床应用中暴露了诸多问题,其主要问题包括骨科机器人临床精度不足。在骨科机器人术中操作过程中,由于操作应力使脊椎之间发生相对位移,从而发生图像漂移现象,距离骨科机器人患者示踪器越远,漂移就越大,会影响骨科机器人的定位精准性。
发明内容
本发明的目的是提高骨科机器人辅助脊椎手术精准性,为了达到上述目的,本发明采用如下技术方案:
第一方面,一种骨科机器人定位装置,包括示踪器、3D C型臂、结构光平台和骨科机器人主机;
所述示踪器用于提供原点坐标;
所述3D C型臂:用于在示踪器固定在预设位置后,获取脊椎CT图像上传到骨科机器人主机;
所述结构光平台:用于扫描脊椎获取第一表面点云,并上传到骨科机器人主机;
所述骨科机器人主机中还包括脊柱3D图像生成模块和定位模块;
所述脊柱3D图像生成模块:用于根据第一表面点云和脊椎CT图像进行点云粗-精配准,得到脊柱3D图像;
所述定位模块:用于并根据脊柱3D图像进行定位。
本发明的进一步改进在于:所述结构光平台包括工业相机、投影仪、补光灯和移动平台,所述投影仪和工业相机配合用于进行结构光扫描,补光灯用于在进行结构光扫描过程中补光,移动平台用于调整结构光平台位置。
第二方面,一种骨科机器人定位方法,包括以下步骤:
将示踪器固定在预设位置,并获取脊椎CT图像上传到骨科机器人主机;
骨科机器人主机根据脊椎CT图像控制结构光平台移动到待工作位置;
通过结构光平台扫描脊椎获取第一表面点云,并上传到骨科机器人主机;
骨科机器人主机根据第一表面点云和脊椎CT图像进行点云粗-精配准,得到脊柱3D图像;
骨科机器人主机根据脊柱3D图像进行定位。
本发明的进一步改进在于:所述通过结构光平台扫描脊椎获取第一表面点云,具体包括以下步骤:
通过投影仪投照结构光图案;
通过工业相机采集结构光图案,并上传到骨科机器人主机;
骨科机器人主机根据三角原理确定三维坐标得到第一表面点云。
本发明的进一步改进在于:所述根据第一表面点云和脊椎CT图像进行点云粗-精配准得到脊柱3D图像,具体包括以下步骤:
对第一表面点云和脊椎CT图像进行点云粗配准,得到粗配准脊椎CT图像和粗配准第一表面点云;
根据粗配准脊椎CT图像和粗配准第一表面点云进行点云精配准得到旋转向量、平移向量和最优漂移参数;
根据旋转向量、平移向量和最优漂移参数调节调整粗配准脊椎CT图像和粗配准第一表面点云得到CT完整点云。
本发明的进一步改进在于:所述点云粗配准具体包括以下步骤:
在骨科机器人坐标系下,利用骨科机器人红外定位以示踪器为基准点,计算出第一表面点云和脊椎CT图像间的旋转向量和平移向量;
将脊椎CT图像叠加到第一表面点云上,使二者都处于同一坐标系下,得到粗配准脊椎CT图像和粗配准第一表面点云。
本发明的进一步改进在于:所述点云精配准具体包括以下步骤:
根据粗配准脊椎CT图像和粗配准第一表面点云,建立脊椎漂移数学模型;
对粗配准脊椎CT图像和粗配准第一表面点云构建K-D树;
使用K-D树进行双向距离搜索,计算各个点对的欧氏距离;
根据欧氏距离和漂移数学模型采用加权最小二乘法进行联合优化,得到最优漂移参数和刚性变换矩阵;
判断最优漂移参数和刚性变换矩阵是否收敛,若不收敛则迭代至收敛,若收敛则输出此时的旋转向量、平移向量、最优漂移参数和最优漂移参数。
本发明的进一步改进在于:所述获取脊椎CT图像时通过3D C型臂匀速扫描。
第三方面,一种计算机设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的一种骨科机器人定位方法。
第四方面,一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现上述的一种骨科机器人定位方法。
与现有技术相比,本发明至少包括以下有益效果:
1、本发明通过对第一表面点云和脊椎CT图像进行点云粗-精片配准,先确定大概位姿,再进行具体配准,提高了配准精度,精简了配准过程;
2、本发明通过骨科机器人自带的红外定位进行粗配准,相较于其他粗配准方式提高了准确性且更加便捷;
3、本发明通过点云精配准获得准确的旋转向量、平移向量和最优漂移参数调整粗配准脊椎CT图像和粗配准第一表面点云,得到CT完整点云,定位准确且计算量小。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
图1为本发明一种骨科机器人定位方法的流程图;
图2为本发明一种骨科机器人定位方法中获取第一表面点云的的流程图;
图3为本发明一种骨科机器人定位方法中点云精配准的流程图。
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本发明所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。
实施例1
一种骨科机器人定位方法,如图1所示,具体包括以下步骤:
S1、将示踪器固定在预设位置,并获取脊椎CT图像上传到骨科机器人主机;
通过示踪器进行原点定位。
通过3D C型臂扫描,获得脊椎CT图像。
S2、骨科机器人主机根据脊椎CT图像控制结构光平台移动到待工作位置;
结构光平台包括工业相机、投影仪、补光灯和移动平台,通过投影仪和工业相机进行后续结构光扫描,补光灯用于在进行结构光扫描过程中补光,移动平台用于调整结构光扫描位置,扫描后的结构上传到骨科机器人主机。
S3、通过结构光扫描脊椎获取第一表面点云,并上传到骨科机器人主机;
如图2所示,在S3中的结构光扫描脊椎获取第一表面点云时,具体包括以下步骤:
通过投影仪投照结构光图案;
通过相机采集结构光图案,并上传到骨科机器人主机;
骨科机器人主机根据三角原理确定三维坐标得到第一表面点云。
S4、骨科机器人主机根据第一表面点云和脊椎CT图像进行点云粗-精配准,得到脊柱3D图像;
在S4中第一表面点云和脊椎CT图像进行点云粗配准时,具体包括以下步骤:
在骨科机器人坐标系下,利用骨科机器人红外定位,以示踪器为基准点,计算出第一表面点云和脊椎CT图像间的旋转向量和平移向量;
将脊椎CT图像叠加到第一表面点云上,使二者都处于同一坐标系下,对二者进行粗配准,得到粗配准脊椎CT图像和粗配准第一表面点云;这时由于应力造成椎间活动,离示踪器越远的脊椎,其移位越大,所以第一表面点云和脊椎CT图像的两组点云没有完全重叠。但这时两组点云的方向和姿态相近,有利于进行后面的精配准。
如图3所示,在S4中进行点云精配准时,具体包括以下步骤:
根据粗配准脊椎CT图像和粗配准第一表面点云,建立脊椎漂移数学模型:
Qj′=RjQj+tj
式中,j为距离基准脊椎的水平数,Qj为第j个脊椎点云中任一点坐标,Qj′为术中发生图像漂移后对应点的坐标,Rj和tj分别为旋转参数和平移参数;
对粗配准脊椎CT图像和粗配准第一表面点云构建K-D树;
使用K-D树进行双向距离搜索,计算各个点对的欧氏距离||Pi-Qi||,其中:Pi和Qi是粗配准脊椎CT图像和粗配准第一表面点云中一组对应点对;
利用加权最小二乘法对脊椎漂移数学模型中未知参数以及刚性变换未知参数进行联合优化,计算最优漂移参数以及刚性变换矩阵。
最优漂移参数表达式:
Figure BDA0003768639220000061
刚性变换矩阵:
Figure BDA0003768639220000062
式中,n为粗配准脊椎CT图像中点的数量,m为目标脊椎个数,Qi为点Pi在粗配准第一表面点云中的最近点,Dj为距离平方平均值,Wj为各脊椎对应的权重,[R,T]为旋转向量和平移向量,Rj和tj为漂移参数;
判断最优漂移参数以及刚性变换矩阵是否收敛,如果不收敛,则使最优漂移参数以及刚性变换矩阵重复迭代直至收敛,当最优漂移参数以及刚性变换矩阵收敛,两组点云数据配准,并输出最终结果,得到精确配准的两组点云间的旋转向量、平移向量[R,T]以及最优漂移参数Rj和tj
根据得到的最终旋转向量、平移向量[R,T]和最优漂移参数Rj和tj,调整粗配准脊椎CT图像和粗配准第一表面点云,得到CT完整点云,完成两组点云的精确重叠,在结构光坐标系下直观显示完整的脊柱3D图像。
S5、骨科机器人主机根据脊柱3D图像进行定位。
实施例2
一种骨科机器人定位系统,包括:
包括示踪器、3D C型臂、结构光平台和骨科机器人主机;
示踪器用于提供原点坐标;
3D C型臂:用于在示踪器固定在预设位置后,获取脊椎CT图像上传到骨科机器人主机;
结构光平台:用于扫描脊椎获取第一表面点云,并上传到骨科机器人主机;
骨科机器人主机中还包括脊柱3D图像生成模块和定位模块;
脊柱3D图像生成模块:用于根据第一表面点云和脊椎CT图像进行点云粗-精配准,得到脊柱3D图像;
定位模块:用于并根据脊柱3D图像进行定位。
结构光平台包括工业相机、投影仪、补光灯和移动平台,通过投影仪和工业相机进行后续结构光扫描,补光灯用于在进行结构光扫描过程中补光,移动平台用于调整结构光扫描位置,扫描后的结构上传到骨科机器人主机。
实施例3
一种计算机设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的一种骨科机器人定位方法。
实施例4
一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现上述的一种骨科机器人定位方法。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的系统。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令系统的制造品,该指令系统实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种骨科机器人定位装置,其特征在于,包括示踪器、3D C型臂、结构光平台和骨科机器人主机;
所述示踪器用于提供原点坐标;
所述3D C型臂:用于在示踪器固定在预设位置后,获取脊椎CT图像上传到骨科机器人主机;
所述结构光平台:用于扫描脊椎获取第一表面点云,并上传到骨科机器人主机;
所述骨科机器人主机中还包括脊柱3D图像生成模块和定位模块;
所述脊柱3D图像生成模块:用于根据第一表面点云和脊椎CT图像进行点云粗-精配准,得到脊柱3D图像;
所述定位模块:用于并根据脊柱3D图像进行定位。
2.根据权利要求1所述的一种骨科机器人定位系统,其特征在于,所述结构光平台包括工业相机、投影仪、补光灯和移动平台,所述投影仪和工业相机配合用于进行结构光扫描,补光灯用于在进行结构光扫描过程中补光,移动平台用于调整结构光平台位置。
3.一种骨科机器人定位方法,基于权利要求1-2中任一项所述的一种骨科机器人定位装置,其特征在于,包括以下步骤:
将示踪器固定在预设位置,并获取脊椎CT图像上传到骨科机器人主机;
骨科机器人主机根据脊椎CT图像控制结构光平台移动到待工作位置;
通过结构光平台扫描脊椎获取第一表面点云,并上传到骨科机器人主机;
骨科机器人主机根据第一表面点云和脊椎CT图像进行点云粗-精配准,得到脊柱3D图像;
骨科机器人主机根据脊柱3D图像进行定位。
4.根据权利要求3所述的一种骨科机器人定位方法,其特征在于,所述通过结构光平台扫描脊椎获取第一表面点云,具体包括以下步骤:
通过投影仪投照结构光图案;
通过工业相机采集结构光图案,并上传到骨科机器人主机;
骨科机器人主机根据三角原理确定三维坐标得到第一表面点云。
5.根据权利要求3所述的一种骨科机器人定位方法,其特征在于,所述根据第一表面点云和脊椎CT图像进行点云粗-精配准得到脊柱3D图像,具体包括以下步骤:
对第一表面点云和脊椎CT图像进行点云粗配准,得到粗配准脊椎CT图像和粗配准第一表面点云;
根据粗配准脊椎CT图像和粗配准第一表面点云进行点云精配准得到旋转向量、平移向量和最优漂移参数;
根据旋转向量、平移向量和最优漂移参数调节调整粗配准脊椎CT图像和粗配准第一表面点云得到CT完整点云。
6.根据权利要求5所述的一种骨科机器人定位方法,其特征在于,所述点云粗配准具体包括以下步骤:
在骨科机器人坐标系下,利用骨科机器人红外定位以示踪器为基准点,计算出第一表面点云和脊椎CT图像间的旋转向量和平移向量;
将脊椎CT图像叠加到第一表面点云上,使二者都处于同一坐标系下,得到粗配准脊椎CT图像和粗配准第一表面点云。
7.根据权利要求5所述的一种骨科机器人定位方法,其特征在于,所述点云精配准具体包括以下步骤:
根据粗配准脊椎CT图像和粗配准第一表面点云,建立脊椎漂移数学模型;
对粗配准脊椎CT图像和粗配准第一表面点云构建K-D树;
使用K-D树进行双向距离搜索,计算各个点对的欧氏距离;
根据欧氏距离和漂移数学模型采用加权最小二乘法进行联合优化,得到最优漂移参数和刚性变换矩阵;
判断最优漂移参数和刚性变换矩阵是否收敛,若不收敛则迭代至收敛,若收敛则输出此时的旋转向量、平移向量、最优漂移参数和最优漂移参数。
8.根据权利要求3所述的一种骨科机器人定位方法,其特征在于,所述获取脊椎CT图像时通过3D C型臂匀速扫描。
9.一种计算机设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,其特征在于,处理器执行计算机程序时实现权利要求3-8中任一项所述的一种骨科机器人定位方法。
10.一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,其特征在于,计算机程序被处理器执行时实现权利要求3-8中任一项所述的一种骨科机器人定位方法。
CN202210893890.8A 2022-07-27 2022-07-27 一种骨科机器人定位方法、系统、设备及介质 Pending CN115211966A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210893890.8A CN115211966A (zh) 2022-07-27 2022-07-27 一种骨科机器人定位方法、系统、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210893890.8A CN115211966A (zh) 2022-07-27 2022-07-27 一种骨科机器人定位方法、系统、设备及介质

Publications (1)

Publication Number Publication Date
CN115211966A true CN115211966A (zh) 2022-10-21

Family

ID=83614574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210893890.8A Pending CN115211966A (zh) 2022-07-27 2022-07-27 一种骨科机器人定位方法、系统、设备及介质

Country Status (1)

Country Link
CN (1) CN115211966A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117017487A (zh) * 2023-10-09 2023-11-10 杭州键嘉医疗科技股份有限公司 一种脊柱配准方法、装置、设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117017487A (zh) * 2023-10-09 2023-11-10 杭州键嘉医疗科技股份有限公司 一种脊柱配准方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN112641510B (zh) 关节置换手术机器人导航定位系统及方法
JP7204663B2 (ja) 慣性計測装置を使用して手術の正確度を向上させるためのシステム、装置、及び方法
US11672613B2 (en) Robotized system for femoroacetabular impingement resurfacing
CN112641511B (zh) 关节置换手术导航系统及方法
EP3954316A1 (en) Robot-assisted system for total knee arthroplasty, control method, and electronic device
JP2022133440A (ja) ナビゲーション手術における拡張現実ディスプレイのためのシステム及び方法
CN113842214B (zh) 手术机器人导航定位系统及方法
US20150305828A1 (en) Apparatus for adjusting a robotic surgery plan
CN103037797B (zh) 测定空间坐标的方法
KR20210084556A (ko) 치과 임플란트 네비게이션 수술의 교정, 추적 방법 및 장치
Ma et al. Autonomous surgical robot with camera-based markerless navigation for oral and maxillofacial surgery
US11523868B2 (en) Bone registration methods for robotic surgical procedures
CN115211966A (zh) 一种骨科机器人定位方法、系统、设备及介质
CN114404047A (zh) 定位方法、系统、装置、计算机设备和存储介质
Fu et al. Indirect visual guided fracture reduction robot based on external markers
CN113876430B (zh) 用于置钉操作的脊柱手术机器人系统
US20230263541A1 (en) Robotic spine surgery system
CN219579025U (zh) 全功能骨科手术控制系统
US20200069372A1 (en) Method and system for navigating a bone model in computer-assisted surgery
Sinh et al. Integration of computer-assisted fracture reduction system and a hybrid 3-DOF-RPS mechanism for assisting the orthopedic surgery
Zhang et al. Robotic Positioning in Percutaneous Transforaminal Endoscopic Discectomy Based on X-ray Image and DLT Algorithm
CN114612536B (zh) 对象三维模型的识别方法、装置、设备及可读存储介质
CN117159158A (zh) 一种医用手术机器人系统
CN117814913A (zh) 全功能骨科手术控制系统
CN114418960A (zh) 图像处理方法、系统、计算机设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination