CN115210907A - 用于可再充电的电池组中的热失控减轻的溶液沉积的电极涂层 - Google Patents

用于可再充电的电池组中的热失控减轻的溶液沉积的电极涂层 Download PDF

Info

Publication number
CN115210907A
CN115210907A CN202080092933.1A CN202080092933A CN115210907A CN 115210907 A CN115210907 A CN 115210907A CN 202080092933 A CN202080092933 A CN 202080092933A CN 115210907 A CN115210907 A CN 115210907A
Authority
CN
China
Prior art keywords
cathode
anode
battery cell
battery
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080092933.1A
Other languages
English (en)
Inventor
S·R·巴苏
J·谭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Shell Technology Co
Original Assignee
Core Shell Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Core Shell Technology Co filed Critical Core Shell Technology Co
Publication of CN115210907A publication Critical patent/CN115210907A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本文提供了包含用作电极上的保护涂层的人工固体‑电解质界面(SEI)层的电池组电池。所述SEI层通过液相沉积(LDP)生产。所述电池组电池可以包含阳极、阴极、设置在所述阳极和所述阴极之间的电解质、设置在所述阳极和所述阴极之间的聚合物隔板以及含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述阳极或阴极中的至少一个包含通过LDP方法生产的SEI层。

Description

用于可再充电的电池组中的热失控减轻的溶液沉积的电极 涂层
相关申请的交叉引用
本申请要求2019年11月13日提交的美国临时申请号62/934,522的权益,其通过引用并入本文用于所有的目的。
技术领域
本公开的实施方案一般涉及用于将保护性薄膜涂布到电池组电极的表面上,产生证明改进的安全性和热稳定性的电池组的方法、系统和材料。
背景技术
由于一系列内部化学反应的不受控的自加热(通常称为“热失控”),可再充电的电池组常常经历灾难性故障。例如,在锂离子电池组的情况下,在60-300℃的范围内发生一系列自催化放热反应,这最终导致机械电池故障、阳极到阴极的短路和可燃电解质的燃烧。
然而,为了引发这些反应,锂离子电池组必须首先被加热到>60℃的温度,并且其完成包含热失控的完整反应链的倾向也可以取决于其充电状态。热失控开始时的温度通常通过在绝热室内对锂离子电池组进行量热法来观察。当电池组的温度升高时,热的净正测量值指示电池内的放热过程。在没有任何进一步的热量加入绝热室的情况下,从电池观察到的单调增加的热量产生指示热失控。
可能发生热失控的情形的一个实例是当高度充电的锂离子电池组的阳极和阴极由于聚合物隔板的机械故障而彼此电接触时。在这种情况下,当电池放电时,大电流通过接触点。该电流导致周围材料的焦耳加热,将电池组的内部温度升高到高于60℃(并且局部地,潜在地高得多),从而引发热失控反应链,最终导致灾难性故障,例如火灾。
然而,还已经显示,电短路对于引发热失控不是必需的。还观察到锂离子电池组在环境温度简单地升高至60℃或更高的条件下经历热失控。在这些条件下,即使没有电短路,锂离子电池组也可能由于足够高的温度而经历热失控,引发第一个放热反应。
最近的许多文献致力于理解导致锂离子电池组中的热失控的关键反应,并且已经确定电极表面降解产物(通常称为“SEI”或固体-电解质-界面)的分解,是在60-90℃温度窗中发生的第一个放热反应。SEI通常在锂离子电池组的循环寿命开始时形成,并且是典型的锂离子电池组电解质在满充电状态或接近满充电状态时在阳极和阴极表面两者上电化学不稳定的事实的结果。在这些条件下,电解质还原和氧化产物(分别在阳极和阴极上)将与可用的锂组合以在所有电化学活性表面上沉淀固体层。然后,该层用作进一步电解质分解的动力学屏障。
例如,对于用石墨阳极、LiNixMnyCozO2阴极和包含LiPF6盐和碳酸亚乙酯/碳酸甲乙酯溶剂共混物的电解质制造的现有技术锂离子电池组,在阳极上形成的大部分SEI通常由LiF、Li2CO3、LiEDC ((CH2OCO2Li)2)和碳酸烷基锂(ROCO2Li,其中R可以包含各种烷基)组成。文献已经指示,在低至55℃的温度下,LiEDC和碳酸烷基锂两者可以与剩余的电解质反应,以产生多种反应产物,包括CO2气体、LiF、HF、醚、磷酸盐和氟磷酸盐。这些反应中的许多也是放热的。此外,现有的SEI的分解可以导致新SEI的产生,已知这也是放热的。如果由这样的反应的组合产生的热能够将局部电池温度提高到100℃或更高,则存在聚合物阳极-阴极隔板的机械完整性将受损的高可能性。在这样的条件下,阳极和阴极之间的电短路也可能发生,导致进一步的温度升高和进一步的有害反应。
对于许多锂离子阴极材料,超过约160℃的温度可能引起氧从主晶格快速释放。例如,对于普通的商业阴极材料LiCoO2,超过180℃的温度引起氧损失。氧气与热和可燃电解质组合提供燃烧的必要条件,导致灾难性故障。
结果是,能够防止SEI分解或电极材料本身分解的任何技术都可以大大改进锂离子电池组的抗热失控性。
最近的研究试图通过应用由原子层沉积(ALD)沉积在阳极和阴极表面上的薄膜涂层来改进锂离子电池组的热稳定性。这样的涂层常常称为“人工SEI”。经由ALD施加在阳极上的涂层已经产生了指示热失控的自加热特性的起始温度的增加,并且还已经证明阴极材料的降解减少。
不幸的是,主要由于ALD是缓慢的、资本密集型的真空方法的事实,将“卷对卷”(R2R) ALD方法引入到传统的高容量锂离子生产线中是不能维持的。
因此,工业上需要将薄膜涂层施加到锂离子电池组电极上,以生产具有改进的热稳定性的电池组,同时以也可扩展到R2R大容量制造的方式这样做。
几十年来,氧化物和硫属化物的高品质保形薄膜已经通过ALD以外的技术(例如化学浴沉积(CBD)、连续离子层吸附和反应(SILAR)和逐层溶胶-凝胶)沉积。在CBD技术中,(通常)将络合的金属前体的水性溶液与硫属化物或氧化物离子源混合。这样的技术也已经广泛地以连续R2R形式实施。这些方法的温度通常是适中的,远低于电池组电极材料、粘结剂或隔板的分解温度。众所周知,CBD用于在CdTe或CIGS薄膜太阳能电池上沉积高品质CdS或ZnS作为n型结配偶子(partner)。该技术已经使用了多年,创造了这些类型的太阳能电池效率的世界记录。它们生产了高开路电压、高二极管理想度和高分流电阻,指示优异的膜品质和保形性。CBD方法也已经商业化到高容量薄膜太阳能电池生产线中。
CBD技术的一种有用的变体是SILAR。在这种情况下,基材交替地暴露于阳离子和阴离子反应物溶液,其间有漂洗步骤。虽然该技术导致较慢的膜生长,该技术的益处是从两种反应物的混杂消除了均匀成核(沉淀),这显著地改进材料利用率。考虑到良好电介质的隧穿极限在1-2 nm的量级的事实,SILAR技术对于在电池组电极表面上沉积钝化层是可行的。SILAR方法中的厚度控制也比CBD方法中的更好;例如,电池组电极上的钝化层的厚度控制对于防止对锂扩散的不期望的屏障同时维持电子隧穿屏障是关键的。
还存在基于溶液的技术,其使用气相ALD中使用的相同种类的金属有机物来证明逐层溶胶-凝胶涂布。例如,Al2O3单层可以通过将基材浸入合适的铝醇盐溶液中来生长。金属有机前体的吸附随后是氧化步骤(例如水解)可以产生一个氧化物单层。重复这些步骤,其间有漂洗步骤,以产生单层-单层涂层。金属醇盐前体通常在标准有机溶剂(如2-丙醇)中可溶至非常高的摩尔浓度。近年来,使用该技术在TiO2染料敏化的太阳能电池上均生长了高品质的Al2O3、SiO2和ZrO2复合阻挡层。
U.S. PGPUB 2016/0090652提出类似于上述方法的液相ALD方法,其中离散的晶片基材连续地暴露于金属有机前体的溶液、用于去除过量的金属有机物的漂洗溶剂、氧化溶液和另一次漂洗。重复这四个步骤以产生任何期望厚度的膜。将晶片附着于旋涂设备;在每一步骤之后,立即旋转晶片以去除过量的流体。虽然这种技术对于类似于晶片的基材可以很好地工作,该方法不能用于涂布连续基材,例如箔卷。
因此,需要ALD和其它常规方法的替代沉积方法,其更快、更有效、更安全且更成本有效的,用于在电池组电极的表面上产生保形涂层以便减轻热失控。迄今为止,还没有证明在商业规模下在电池组电极的卷上保形沉积生长的薄膜的溶液沉积装置。尚待解决的关键困难的实例包括在膜生长期间的均相成核、前体溶液的交叉污染和膜中所有位置处的膜厚度均匀性。
发明内容
在某些方面,本公开提供了电池组电池,其包含:阳极;阴极;设置在所述阳极和所述阴极之间的电解质;设置在所述阳极和所述阴极之间的聚合物隔板;和含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述壳体允许与所述阳极和所述阴极的电接触,和其中所述阳极或阴极中的至少一个包含通过液相沉积方法生产的人工固相电解质界面(SEI)层。
在一些实施方案中,所述阳极具有所述人工SEI层。在一些实施方案中,所述阴极具有所述人工SEI层。在一些实施方案中,所述阳极和所述阴极两者具有人工SEI层。在一些实施方案中,所述电池组电池是可再充电的。
在一些实施方案中,所述人工SEI通过液相沉积方法生产,所述方法包括:将电池组电极(例如阳极或阴极)提供到传送设备上;通过所述传送设备将所述电极转移至含有第一液体溶液的第一反应室,所述第一液体溶液包含至少第一试剂;通过所述传送设备将所述电极暴露于所述第一反应室中的所述第一液体溶液,以产生用化学键合到所述电池组电极的表面上的所述至少第一试剂部分涂布的所述人工SEI的层;在所述第一反应室中用包含第一溶剂的第一漂洗溶液漂洗所述层以去除未反应的第一试剂;通过所述传送设备将所述电极转移至含有第二液体溶液的第二反应室,所述第二液体溶液包含至少第二试剂;通过所述传送设备将所述电极暴露于所述第二反应室中的所述第二液体溶液,其中所述至少第二试剂与化学键合到所述电极的表面上的所述至少第一试剂反应,以在所述电极的表面上生产包含单层的所述人工SEI,所述单层包含由所述至少第二试剂与所述第一试剂的反应产生的化合物;和在所述第二反应室中用包含第二溶剂的第二漂洗溶液漂洗所述涂层以去除未反应的第二试剂。在一些实施方案中,重复前述步骤,以产生多个堆叠的单层的连续生长,从而产生总厚度在0.5纳米(nm)至100微米(µm)之间的薄膜涂层。
在一些实施方案中,在涂布所述人工SEI之前,所述阳极和/或阴极的厚度为100nm至1,000 µm。在一些实施方案中,(a)中所述阳极和/或阴极具有大小范围为0.1 nm至100µm的孔隙。在一些实施方案中,(a)中阳极和/或阴极的膜孔隙率为1-99%。
在一些实施方案中,将所述人工SEI工程化为经受住暴露于高达100℃、200℃或300℃的温度而不放热分解。在一些实施方案中,将所述人工SEI工程化为经受住暴露于高达100℃、200℃或300℃的温度,而不与任何物理上相邻的电解质、隔板或其它电池组部件放热反应。
在一些实施方案中,所述阳极由石墨、Si、Sn、Si-石墨复合物、Sn-石墨复合物或锂金属组成。在一些实施方案中,所述阴极由LiNixMnyCozO2、LiNixCoyAlzO2、LiMnxNiyOz、LiMnO2、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、LiV2O5、硫或LiCoO2组成,其中x、y和z为化学计量系数。
在一些实施方案中,用于所述液相沉积方法的所述传送设备包含一系列辊,用于将所述电池组阳极或阴极和部分涂布的电池组阳极或阴极分别指引至所述第一和第二反应室。在一些实施方案中,通过选自浸没、喷涂、狭缝模头涂布和凹版辊涂布的方法,将所述阳极、阴极、部分涂布的阳极和/或部分涂布的阴极暴露于所述第一和第二液体溶液。在一些实施方案中,用于所述液相沉积方法的所述第一和第二液体溶液是非离子的。
在一些实施方案中,所述液相沉积方法进一步包括用包含第一溶剂的第一漂洗溶液漂洗所述部分涂布的电池组阳极或阴极,以在所述部分涂布的电池组阳极或阴极上生产饱和的第一层,以及包含所述第一溶剂和未反应的第一试剂的第一残余溶液。在一些实施方案中,所述液相沉积方法进一步包括将所述第一残余溶液通到第一过滤步骤,以将未反应的第一试剂与所述第一溶剂分离。在一些实施方案中,所述液相沉积方法进一步包括:用包含第二溶剂的第二漂洗溶液漂洗所述完全涂布的电池组阳极或阴极,以在所述完全涂布的电池组阳极或阴极上生产饱和的单层薄膜,以及包含所述第二溶剂和未反应的第二试剂的第二残余溶液。在一些实施方案中,所述液相沉积方法进一步包括将第二残余漂洗溶液通到第二过滤步骤,以将所述未反应的第二试剂与所述第二溶剂分离。在一些实施方案中,所述液相沉积方法进一步包括将回收的未反应的第一或第二试剂分别再循环回到所述第一或第二液体溶液;和将回收的第一或第二溶剂分别再循环回到所述第一或第二漂洗溶液。
在一些实施方案中,所述液相沉积方法的所述过滤步骤使用膜分离、化学沉淀、离子交换、电化学去除、物理吸附、流动过滤色谱法或这些的组合来进行。在一些实施方案中,所述液相沉积方法的所述第一液体溶液包含多于一种试剂。在一些实施方案中,所述第二液体溶液包含多于一种试剂。在一些实施方案中,所述第一和第二试剂是金属有机前体。在一些实施方案中,所述第一和第二试剂是阳离子或阴离子的。在一些实施方案中,所述第一和第二液体溶液进一步包含有机溶剂、水或两者的混合物。
在一些实施方案中,通过所述液相沉积方法产生的所述化合物选自以下中的一种:AxOy型二元氧化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;AxByOz型三元氧化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;AwBxCyOz型四元氧化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;AxBy型二元卤化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为卤素,并且x和y为化学计量系数;AxByCz型三元卤化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,C为卤素,并且x、y和z为化学计量系数;AwBxCyDz型四元卤化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,D为卤素,并且w、x、y和z为化学计量系数;AxNy型二元氮化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;AxByNz型三元氮化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;AwBxCyNz型四元氮化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;AxBy型二元硫属化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为硫属元素,并且x和y为化学计量系数;AxByCz型三元硫属化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,C为硫属元素,并且x、y和z为化学计量系数;AwBxCyDz型四元硫属化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,D为硫属元素,并且w、x、y和z为化学计量系数;AxCy型二元碳化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;AxByOz型二元卤氧化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为卤素,并且x、y和z为化学计量系数;AxAsy型二元砷化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;AxByAsz型三元砷化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;AwBxCyAsz型四元砷化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;Ax(PO4)y型二元磷酸盐,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;AxBy(PO4)z型三元磷酸盐,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;和AwBxCy(PO4)z型四元磷酸盐,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数。
在一些实施方案中,所述电池组电池的所述阳极或阴极进一步包含基材。在一些实施方案中,所述基材为箔、片材或膜的形式。
在一些实施方案中,通过所述液相沉积方法生产的所述单层由至少一种或多种metalcone组成。在一些实施方案中,所述一种或多种metalcone由包含金属有机物的第一试剂与包含有机分子的第二试剂之间的反应产生。在一些实施方案中,所述第一试剂是包含有机部分和包含Al、Zn、Si、Ti、Zr、Hf、Mn和/或V的金属的金属有机物,并且所述第二试剂是包含乙二醇、甘油、赤藓醇、木糖醇、山梨糖醇、甘露糖醇、丁二醇、戊二醇、氢醌、己二醇、乳酸、三乙醇胺、对苯二胺、缩水甘油、己内酯、富马酸、氨基苯酚和/或二氨基二苯醚的有机分子。
在一些实施方案中,通过所述液相沉积方法生产的所述单层由一种或多种有机材料组成。在一些实施方案中,所述一种或多种有机材料是包含聚酰胺、聚酰亚胺、聚脲、聚甲亚胺、含氟弹性体或这些的任意组合的聚合物。
在一些实施方案中,所述电池组电池在高于在阳极和/或阴极上不具有人工SEI的相应的电池组电池中所观察到的温度的温度下经历自加热。在一些实施方案中,所述电池组电池在高于在阳极或阴极上不具有人工SEI的相应的电池组电池中所观察到的温度的温度下放出CO2、O2、H2或任何其它气体。
在一些实施方案中,所述阳极和/或阴极包含以下的一种或多种:石墨、Si、Sn、Ge、Al、P、Zn、Ga、As、Cd、In、Sb、Pb、Bi、SiO、SnO2、Si、Sn、锂金属、LiNixMnyCozO2、LiNixCoyAlzO2、LiMnxNiyOz、LiMnO2、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、LiV2O5、硫或LiCoO2,其中x、y和z为化学计量系数。
在一些实施方案中,所述电解质包含盐和溶剂。在一些实施方案中,所述盐是LiPF6、LiClO4、LiTFSI或LiNO3。在一些实施方案中,所述溶剂包含以下的一种或多种:碳酸亚乙酯、碳酸甲乙酯、碳酸二甲酯、氟化碳酸亚乙酯、碳酸亚丙酯。
在某些方面,本公开提供了电池组电池,其包含:阳极;阴极;设置在所述阳极和所述阴极之间的电解质;设置在所述阳极和所述阴极之间的聚合物隔板;和含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述壳体提供与所述阳极和所述阴极的电接触,其中所述阳极、阴极和/或两者包含人工SEI涂层,其中所述电池组电池在高于在阳极或阴极上不具有人工SEI的相应的电池组电池中所观察到的温度的温度下放出CO2、O2、H2或任何其它气体。
在某些方面,本公开提供了电池组电池,其包含:阳极;阴极;设置在所述阳极和所述阴极之间的电解质;设置在所述阳极和所述阴极之间的聚合物隔板;和含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述壳体提供与所述阳极和所述阴极的电接触;其中所述阳极、所述阴极和/或两者包含人工SEI涂层,其中所述电池组电池在高于在阳极或阴极上不具有人工SEI的相应的电池组电池中的温度的温度下经历自加热。
附图说明
图1是根据本公开的方法的实施方案的一般流程图。所述方法包括漂洗/清洗步骤以及过滤步骤。
图2是根据本公开用于将薄膜涂布到电池组电极的表面上的系统的一个实施方案的示意图。
图3A-3B是石墨电极表面放大到60kX的图像,显示原始的未涂布的石墨(图3A)和用根据本公开的方法涂布的石墨(图3B)之间的表面形态的差异。
图4是显示涂布的电极与未涂布的电极的单向第一循环损失的散点图。
图5是t-检验图,显示由于涂层的存在,涂布的与未涂布的阳极之间的第一循环容量损失的显著差异达到95%的置信度。
图6是显示未涂布的石墨阳极(600)与涂布的石墨阳极(601)的电荷差/电压差(dQ/dV)对电压的变化的图。
图7是在箔基材的顶部上涂布有根据本公开的人工SEI的电池组电极的说明。
图8是包含涂布有根据本公开的人工SEI层的电极的电池组电池的说明。
具体实施方式
本公开提供了包含人工SEI层作为电极上的保护涂层的电池组电池。这些薄膜通过两种或更多种试剂在液相沉积方法期间的反应而生产。人工SEI层充当电极组成颗粒上的保护涂层,同时允许颗粒保持颗粒与颗粒的电和物理接触,从而保持电池组功率容量。此外,保护性涂层降低电池组经历通常描述为“热失控”的放热反应的顺序级联的倾向。
迄今为止,用于在具有包含高孔隙度、曲折度和/或大量高纵横比特征的微结构(即,“非平面”微结构)的基材上形成薄膜(<10微米(μm)厚度)的保形涂层的技术是无效的(物理气相沉积的“视线(line of sight)”限制)或者是昂贵且耗时的(传统原子层沉积(ALD))。因此,本公开提供了用于实现在非平面微结构上形成均匀的保形层的成本有效的手段的方法和系统。具体地,本公开集中于在非平面电池组电极的表面上形成均匀的保形层。
在图8中显示根据本公开的包含通过液相沉积方法形成的人工SEI层的电池组电池的实施方案的实例。电池组电池800包含含有电极804 (阳极)和806 (阴极)的壳体802。电极各自具有延伸出壳体802的电接触814a-b。电解质808位于两个电极之间并由隔板810隔开。人工SEI层812a-b涂布在每个电极的表面上。
电极包含在基材(例如箔或片材)的顶部上的多孔涂层。电极是完全形成的。完全形成电极是指电极形成方法的标准顺序,包括但不限于将活性和非活性材料组分的浆料浇铸到箔基材上以形成电极,随后干燥电极,随后压延电极。在一些实施方案中,电极的完全形成不包括压延。在一些实施方案中,电池组电极包含石墨、Si、Sn、硅-石墨复合物、Sn-石墨复合物或锂金属。在一些情况下,电池组电极包含LiNixMnyCozO2、LiNixCoyAlzO2、LiMnxNiyOz、LiMnO2、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、LiV2O5、硫或LiCoO2,其中x、y和z为化学计量系数。在一些实施方案中,阳极和/或阴极包含以下的一种或多种:石墨、Si、Sn、Ge、Al、P、Zn、Ga、As、Cd、In、Sb、Pb、Bi、SiO、SnO2、Si、Sn、锂金属。
在某些实施方案中,基材可以是连续基材,通常为箔或片材的形式。本文所用的“连续基材”是指在其两个最大尺寸之间具有至少10:1的纵横比的基材,并且其足够柔韧以便以卷的形式卷绕到其自身上。它可以由各种材料制成,包括但不限于金属,例如铜、铝或不锈钢,或者有机材料,例如聚酰亚胺、聚乙烯、聚醚醚酮(PEEK)或聚酯、聚萘二甲酸乙二醇酯(PEN)。
电池组电池还包含设置在电极之间的电解质。电解质通常由有机溶剂和盐组成。在一些实施方案中,溶剂由以下的一种或多种组成:碳酸亚乙酯、碳酸甲乙酯、碳酸二甲酯、三甘醇二甲醚、四甘醇二甲醚、γ-丁内酯、乙酸乙酯、氟化碳酸亚乙酯、碳酸亚丙酯或本领域通常已知的作为合适的电池组溶剂的任何其它有机化学物质。在一些实施方案中,盐由以下的一种或多种组成:LiPF6、LiTFSI、LiFSI、LiClO4、LiNO3或本领域通常已知的作为合适的电池组盐的任何其它锂盐。
隔板(例如聚合物隔板)通常位于电极之间。聚合物隔板由以下任何组合的单层或多层堆叠组成:聚乙烯、聚丙烯、聚偏二氟乙烯、聚乳酸、聚酰亚胺、聚酰胺、聚环氧乙烷或本领域已知的作为合适的电池组隔板的任何其它聚合物。在一些实施方案中,玻璃纤维用作隔板代替聚合物隔板或作为聚合物隔板的补充。在一些实施方案中,聚合物隔板还可以涂布有其它聚合物或氧化物的薄膜,包括但不限于:纤维素、聚环氧乙烷、芳族聚酰胺、聚甲基丙烯酸甲酯、聚酰胺、聚芳基醚酮、聚偏二氟乙烯、聚酰亚胺、氧化铝或氧化硅。
电池组电池进一步包含含有电极、隔板和电解质的壳体或外壳。电池组壳体通常由304或316级不锈钢构成。在一些实施方案中,电池组壳体可以由铝构成。对于硬币、圆柱形和棱柱形电池形式,壳体通常由金属构成,所述金属包括但不限于304不锈钢、316不锈钢或铝。对于软包电池形式,壳体通常由聚合物构成,所述聚合物包括但不限于聚乙烯、聚酰亚胺和聚酰胺。在一些实施方案中,软包电池壳体与金属(例如铝)的薄片材层压。
在图7中显示根据本公开的涂布的电池组电极的实施方案的实例。涂布的电池组电极700包含电极组成颗粒(即,活性层) 702,其涂布有通过如本文所述的液相沉积方法生产的人工SEI 703。人工SEI 703的厚度可以在0.5 nm至100 μm之间。电极组成颗粒702位于箔基材701的顶部。
在某些方面,本公开提供了用于在电池组中产生人工SEI层的方法和系统,所述SEI层比当前的SEI更耐溶解,对待涂布的材料或部件具有足够的粘附力而具有足够的机械稳定性,具有适当的电阻以防止电解质分解,同时传导离子(如在电池组的情况下,例如锂离子),并且基本上没有任何颗粒间内阻。此外,人工SEI单独或联合执行以下任一操作:减少由电池组内的放热反应放出的热,减少随着电池组温度升高从阳极和/或阴极放出的气体,减少活性材料的溶解,和/或增加热失控的起始温度。
本文所述的用于产生人工SEI的方法是液相沉积方法。人工SEI用于涂布电化学仪器(例如电池组)的部件的表面。特别地,对于电池组,例如锂离子电池组,可以受益于本文所述的涂层的应用可以包括高电压阴极、快速充电、含硅阳极、较便宜的电解质和纳米结构电极。因此,在一些实施方案中,可以将薄膜涂布在电池组的电极(例如阴极或阳极)上。
在图1中显示根据本公开的方法的实施方案的简单流程图。尽管图1的实施方案涉及用于将人工SEI涂布到电池组电极的表面上的方法,本描述仅代表使用本文提供的方法和系统沉积的部件,并且不应解释为以任何方式受到限制。
参考图1,例如,电池组电极可以在100中暴露于第一反应室中的包含一种或多种第一试剂的第一液体溶液,以在电极的表面上生产包含吸附的一种或多种第一试剂的层。
第一液体溶液包含至少第一试剂。第一试剂可以是能够与电极(即,待涂布的部件)的材料反应以形成自限制层的任何化合物。在某些实施方案中,第一试剂是金属有机化合物。这样的金属有机物的实例包括但不限于三仲丁醇铝、乙醇钛、乙醇铌、三甲基铝和叔丁醇锆。在另一个实施方案中,第一试剂包含含离子化合物的水性溶液。实例包括但不限于乙酸锌、氯化镉、氯化锌、氯化锆和硫酸锌。在一些实施方案中,第一溶液的pH可以变化。在一些实施方案中,第一液体溶液可以是包括反应以形成固体膜的阳离子和阴离子前体两者的离子化合物的溶液;在这种情况下,膜生长受到成膜反应动力学的限制。在一些实施方案中,第一液体溶液可以是包括反应以形成固体膜的金属有机物和氧化前体两者的溶液;在这种情况下,膜生长受到成膜反应动力学的限制。
在第一试剂是金属有机物的实施方案中,第一液体溶液还可以包含用于溶解或络合第一试剂的溶剂。优选的溶剂包括有机溶剂,例如醇(例如异丙醇或乙醇),醇衍生物(例如2-甲氧基乙醇),极性稍弱的有机溶剂(例如吡啶或四氢呋喃(THF))或非极性有机溶剂(例如己烷和甲苯)。
在一个实施方案中,第一液体溶液包含在第一反应室内。反应室必须是足够大的仪器,以容纳接收电极并含有用于生产自限制层的反应的液体溶液的量。可以用作反应室的这样的仪器包括但不限于槽、浴、盘、烧杯等。
电极可以通过传送设备转移至第一反应室。如下面更详细描述的,传送设备可以适于并以这样的方式定位,以将电极指引或引导进出第一室。
在某些实施方案中,电极可以完全或部分地分别浸没在第一和第二反应室的第一和第二液体溶液中。在其它实施方案中,可以分别在第一和第二反应室中用第一和第二液体溶液喷涂电极。
在另一个实施方案中,电极可以在狭缝模头涂布机下方传送,第一液体溶液从狭缝模头涂布机连续分配以产生二维液体膜。电极传送的速度和流体通过模头的流速决定了液体膜的厚度。然后,溶剂可以简单地蒸发以形成溶解的组分的固体膜,或者液体膜可以具有反应以在电极表面上沉淀薄膜的反应物。所得固体膜可以薄至一个原子单层或厚至100微米。反应可以在溶剂仍然存在时或在溶剂已蒸发后进行。如果残余溶剂保留直到涂布过程结束之后,则可以通过各种技术(例如刮片、气刀、计量刀或类似技术)将其去除。然后可以重复整个狭缝模头涂布过程以产生不同化学组成的新膜或简单地产生相同化学组成的较厚涂层。在这种情况下,反应室简单地包含狭缝模头涂布器所位于的区域,并且不一定类似于术语“室”所暗示的封闭空间。
在另一个实施方案中,可以将电极传送通过含有涂布溶液的槽和凹版辊。在该实施方案中,由于基料和辊通过涂布溶液的优先表面张力(润湿)使凹版辊将流体从浸渍槽连续转移至相邻的基料。如在狭缝模头涂布中,结果是最初是电极表面上的二维液体膜。例如,特定的溶液、基料和辊的组成可能影响基料和辊两者上的流体的表面张力,从而影响该方法的涂布效率。然后,溶剂可以简单地蒸发以形成溶解的组分的固体膜,或者液体膜可以具有反应以在电极表面上沉淀薄膜的反应物。所得固体膜可以薄至一个原子单层或厚至100微米。反应可以在溶剂仍然存在时或在溶剂已蒸发后进行。如果残余溶剂保留直到涂布过程结束之后,则可以通过各种技术(例如刮片、气刀、计量刀或类似技术)将其去除。然后可以重复整个凹版涂布方法以产生不同化学组成的新膜或简单地产生相同化学组成的较厚涂层。
可以用相同或不同的溶液进行相同方法(即,狭缝模头或凹版涂布)的多个顺序、重复的步骤。可以分离溶液(如在第一溶液、第二溶液等中)以避免交叉污染,例如,或者当优选非均相成膜反应时防止均相成核。
将电极暴露于第一液体溶液足够长的时间(“停留时间”),以便允许一种或多种第一试剂吸附到电极表面上并产生连续层(即,自限制层)。可以影响该步骤的方法变量的实例包括溶液和电极温度、停留时间和试剂浓度。
本方法和系统的优点是所用溶剂的比热容不同,并且还可以用作热传递和前体传递两者的介质,产生更快、更有效的电极加热。与其纯的类似物相比,溶解在溶液中的前体在空气环境暴露方面也稳定得多,产生改进的安全性和更容易的处理。
任选地,电极可以经历第一漂洗/清洗步骤102,由此用溶剂去除来自步骤100的过量的第一试剂。这里,在将电极移动到下一个方法步骤之前,将从电极表面去除大部分或全部未吸附的第一试剂。关键的方法变量包括溶剂温度、电极温度和停留时间。102在图1中显示为单个步骤,然而,在某些实施方案中,可以重复该步骤或可以具有另外的漂洗/清洗步骤以改进第一试剂的去除。
漂洗步骤在电极上留下恰好一个饱和的(即,纯化的)第一层,并且在反应室中留下包含第一溶剂、未反应的一种或多种第一试剂和其它反应副产物的残余溶液。
作为另外的任选的步骤,为了回收在漂洗步骤中使用的溶剂和任何未反应的试剂,可以将残余溶液通到过滤步骤103。过滤步骤将溶剂与未反应的试剂(和任何反应副产物)分离。过滤步骤还防止室之间的交叉污染,并避免在操作过程中试剂对漂洗溶液的缓慢污染。连续过滤漂洗浴不仅可以保持漂洗溶剂的纯度,而且可以用作材料回收系统,从而提高该方法的材料利用效率。可以使用本领域已知的任何过滤技术。优选的技术包括但不限于膜分离、化学沉淀、离子交换、电化学去除、物理吸附和流动过滤色谱法。
可以将分离的溶剂再循环回到漂洗步骤102,以便再利用。同样,也可以将过滤的未反应的一种或多种第一试剂再循环回到100以进一步用于该方法(未显示)。
然后,在104中,具有包含吸附的第一试剂的层(即,自限制层)的部分涂布的电池组电极可以暴露于第二反应室中的包含第二试剂的第二液体溶液。
在一些实施方案中,第二液体溶液可以包含氧化剂,例如氧化物或硫属化物源,其实例包括但不限于水、硫代乙酰胺和硫化钠。也可以存在溶剂,其可以包含极性或非极性有机溶剂或可以仅是水。在其它实施方案中,第二液体溶液也可以含有含氮试剂,例如氨或肼。在一些实施方案中,第二溶液的pH也可以变化。
与第一试剂相比,第二试剂具有不同且独特的组成。选择第二试剂以能够与吸附的第一试剂反应,以生产涂布在电极上的薄膜化合物的完整单层。
在一些实施方案中,整个膜可以仅通过从第一液体溶液暴露给电极的试剂形成。在这种情况下,可以完全跳过第二溶液。
在一些实施方式中,形成的化合物可以包含金属氧化物,例如Al2O3和TiO2
在其它实施方案中,形成的化合物可以包含过渡金属二硫属化物(TMD)。这类材料的典型实例遵循化学通式MX2,其中M为过渡金属,例如Mo、W、Ti等,并且X为S或Se。
在一些实施方案中,化合物由以下聚合物的任意组合组成:聚环氧乙烷(PEO)、聚乙烯醇(PVA)、聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)、聚乙烯基吡咯烷酮(PVP)。当与锂盐(例如尤其是LiClO4、LiPF6或LiNO3)组合时,这样的聚合物可以产生固体聚合物电解质薄膜。
在一些实施方案中,化合物可以包含例如Mo、Ti或W的硫化物或硒化物。这些材料在它们的电子性质(例如带隙)上宽泛变化,并因此可以用于形成定制的半导体异质结,所述半导体异质结例如将阻断锂离子电池组操作中的降解反应所必需的电子转移。具体地,可以利用这样的机制阻断阳极和阴极表面两者上的降解反应。
在一些实施方案中,形成的化合物可以选自:
(a) AxOy型二元氧化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(b) AxByOz型三元氧化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;
(c) AwBxCyOz型四元氧化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;
(d) AxBy型二元卤化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为卤素,并且x和y为化学计量系数;
(e) AxByCz型三元卤化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,C为卤素,并且x、y和z为化学计量系数;
(f) AwBxCyDz型四元卤化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,D为卤素,并且w、x、y和z为化学计量系数;
(g) AxNy型二元氮化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(h) AxByNz型三元氮化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;
(i) AwBxCyNz型四元氮化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;
(j) AxBy型二元硫属化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为硫属元素,并且x和y为化学计量系数;
(k) AxByCz型三元硫属化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,C为硫属元素,并且x、y和z为化学计量系数;
(l) AwBxCyDz型四元硫属化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,D为硫属元素,并且w、x、y和z为化学计量系数;
(m) AxCy型二元碳化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(n) AxByOz型二元卤氧化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为卤素,并且x、y和z为化学计量系数;
(o) AxAsy型二元砷化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(p) AxByAsz型三元砷化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;
(q) AwBxCyAsz型四元砷化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;
(r) Ax(PO4)y型二元磷酸盐,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(s) AxBy(PO4)z型三元磷酸盐,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;和
(t) AwBxCy(PO4)z型四元磷酸盐,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数。
在反应是在非离子前体(例如金属有机物)与氧化剂之间的情况下,如在三甲基铝的水解中,将有机部分去除并被金属-氧-金属键取代,直到所有的键都完全饱和。在反应是在两种离子溶液之间的情况下,如在Cd2+和S2-离子的溶液之间的反应中,反应的高溶度积常数促进离子化合物(在这种情况下为CdS)的沉淀,其中电极通过最小化表面能促进非均相膜形成。
与102类似,来自104的电极然后被引导至第二漂洗/清洗步骤106,以去除未吸附/未反应的第二试剂。
在某些实施方案中,薄膜的厚度可以是约0.5 nm至100 µm。例如,薄膜的厚度可以在0.5 nm-10 nm、10 nm-50 nm、50 nm-100 nm、100 nm-500 nm、500 nm-1 µm、1 µm-10 µm、10 µm-50 µm或50 µm-100 µm的范围内。
在一些实施方案中,可以重复100到106任意次,直到在电极上形成期望厚度的薄膜涂层。该方案由108表示,其中将涂布有薄膜的电极引导回到步骤100用于进一步处理(形成环)。在一些实施方案中,将用不同的前体重复这些步骤,从而产生包含含各种化合物的薄膜的堆叠的涂层。
另外,在102和106期间,可以连续或周期性地过滤漂洗或清洗溶剂,使得未反应的一种或多种试剂可以从溶剂中分离和回收。该过滤步骤分别在步骤103和105中指示。然后,前体和溶剂两者可以潜在地再循环回到方法中。这里,溶剂的再循环由返回箭头显示。这些过滤步骤将在设备的寿命期间节省显著的材料成本。对于每个洗涤和漂洗步骤,可以将过滤步骤并入设计中。过滤技术优选调整到步骤100和104中使用的试剂类型。例如,水性离子溶液可能需要在去离子器中使用的过滤柱的类型被充分过滤。然而,有机金属化合物可以通过切向流过滤系统更好地去除,例如,该系统通过分子量排除。
在图2中显示用于将薄膜涂布到电极表面上的系统的实施方案的示意图。在图2中,反应室显示为含有反应溶液的顺序的槽或浴;电极在传送设备的帮助下被传送到反应室中。虽然图2的实施方案涉及用于将薄膜涂布到电池组电极的表面上的方法,该描述仅代表使用本文提供的方法和系统涂布的部件,并且不应被解释为以任何方式受限。
图2的传送设备特别适合和适于以这样的方式指引或引导电池组电极以顺序的方式进出第一和第二反应室。
优选自动化的传送设备包含一系列辊,例如张紧辊,其以这样的方式定位以指引或引导电极进出第一和第二反应室。这样,该系统可以提供用于将薄膜涂布到电极表面上的连续液体沉积方法。一系列辊202a-i由传送马达(未显示)驱动。辊202a-i以这样的方式操作和定向,使得电极201能够被传送通过系统,如以下更详细地讨论的。系统200还包含一系列室205、207、215和217。
在某些实施方案中,第一和第二反应室可以包括用于确定或测量各自反应室中的第一或第二液体溶液的体积或每个各自反应室中的前体浓度的传感器。另外,第一和第二反应室还可以包含由传感器电传动的调节阀。当传感器(例如浮动开关)确定液体溶液太低时,将阀打开,允许更多的液体溶液从另一来源流入反应室。在一些情况下,使用泵(例如蠕动泵)将液体溶液驱动到反应室中。当传感器确定液体溶液处于期望的水平时,将阀关闭,防止过量的液体溶液流入反应室。在一些情况下,如果传感器确定反应室中液体溶液太高,则将阀打开,允许过量的液体流出反应室。在传感器检测到前体浓度的情况下,在检测到槽前体溶液浓度低的情况下,阀可以将槽暴露于高前体浓度的储备溶液,并且反之亦然。这样的传感器的实例是离子选择性电极。
在进一步的实施方案中,系统包含位于第一和第二反应室之间的第一漂洗室。第一漂洗室含有包含第一溶剂的第一漂洗溶液,用于漂洗由传送设备传送到第一漂洗室的电极,以在电极上生产饱和的第一层,以及包含第一溶剂和未反应的第一试剂的第一残余溶液。
同样,系统还可以包含位于第二反应室之后的第二漂洗室。第二漂洗室含有包含第二溶剂的第二漂洗溶液,用于漂洗由传送设备传送到第二漂洗室的电极,以生产涂布在电极上的薄膜。
室205是含有包含第一试剂和溶剂的第一液体溶液的第一反应室。
室207是位于第一反应室205之后的第一漂洗室,含有包含第一溶剂的第一漂洗溶液。第一过滤设备209连接到第一漂洗室207。第一过滤设备209具有连接到第一漂洗室207的残余物管213和渗透物收集管211。
另一个室215是位于第一漂洗室207之后的第二反应室,并且含有包含第二试剂和溶剂的第二液体溶液。
室217是位于第二漂洗室215之后的第二漂洗室。第二漂洗室217含有包含溶剂的第二漂洗溶液。第二过滤设备219连接到第二漂洗室217。第二过滤设备219具有连接到第二漂洗室217的残余物管223和渗透物收集管221。
系统200进一步包含分别位于每个室205、207、215和217的阀225a-d。阀225a-d连接到补充源(未显示),当需要时,补充源分别如在第一室215和第二室215的情况下提供另外的第一液体溶液、第二液体溶液、第一试剂、第二试剂或溶剂,或者分别如在第一漂洗室207和第二漂洗室217的情况下提供更多的第一漂洗溶液或第二漂洗溶液。阀225a-d可以是电传动的,并通过传感器(未显示)的触发而打开,该传感器适于监测或测量室中液体溶液的体积或浓度。传感器可以浸入每个室的液体溶液中。
在操作中,电极203的第一部分首先放置在第一辊202a上,该第一辊是传送设备201的一部分。通常,第一部分例如通过胶或胶带附着到串过辊202b-i的其余部分的导引器材料。以此方式,导引器材料可以在方法期间指引电极通过传送设备201。一旦将放置在辊202a上的电极的部分传送到辊202i或当整个电极的涂布完成时,然后可以将导引器材料从电极去除。这样的导引器材料的实例可以来自先前的电极卷。在涂布特定电极之前,电极的先前的卷可能已经具有长的尾部长度而没有活性材料(仅有箔)。一旦已经处理了先前的卷,则该残余物被留下而串在传送设备上,并且活性材料可以被切开并去除。然后,剩余部分将用作导引器,以指引电极的下一卷通过传送设备。
因此,电极203的第一部分通过位于第一反应室205内的第二辊202b的移动也被传送到第一反应室205中。电极203的第一部分在第一反应室205内暴露于第一液体溶液,以在电极的第一部分的表面上生产包含吸附的第一试剂的自限制层。电极203的第一部分在第一反应室205中停留一定的停留时间,以便发生反应。一旦反应基本完成,通过向上移动到第三辊202c,将电极203的第一部分从第一反应室205中取出。
当这发生时,将电极203的第二部分传送到第一反应室205中。传送设备以连续方式操作,直到所需量的电极涂布有薄膜。
返回到电极203的第一部分,然后通过位于第一漂洗室207内的第四辊202d的移动也将第一部分传送到第一漂洗室207。第一漂洗室207含有包含第一溶剂的第一漂洗溶液用于漂洗电极203,以在电极上生产饱和的第一层,以及包含第一溶剂和未反应的第一试剂的第一残余溶液。
系统还可以包含过滤设备,用于将未反应的试剂与第一和第二漂洗溶液中的溶剂分离。过滤设备可以是能够进行这样的分离的任何仪器。优选地,过滤设备选自下列之一:膜、过滤柱或色谱柱、化学或电化学分离槽或吸附柱。
当需要时,将第一漂洗溶液通到第一过滤设备209,以将未反应的第一试剂与第一溶剂分离。与第一漂洗溶液相比,第一过滤设备209生产富含未反应的第一试剂且贫含第一溶剂的渗透物流和富含第一溶剂且贫含未反应的第一试剂的残余物流。将渗透物流收集在渗透物收集管211中,其可以被再循环或送回到第一反应室205。残余物流经由残余物管道213再循环回到第一漂洗室207。过滤设备209可以周期性地或连续地操作。从第一漂洗室207,通过向上移动到第五辊202e,然后将电极203的第一部分从第一漂洗室207取出。
通过向下移动到位于第二反应室215内的第六辊202f,然后将电极203的第一部分也传送到第二反应室215中。第二反应室215包含含至少第二试剂的第二液体溶液。在第二反应室215内,电极203暴露于第二液体溶液,其与第一吸附的试剂反应以生产涂布在电极表面上的单层薄膜。在反应基本完成之后,通过向上移动到第七辊202g,然后将电极203的第一部分从第二反应室215取出。
接下来,通过向下移动到位于第二漂洗室217内的第八辊202h,将电极203的第一部分也传送到第二漂洗室217。第二漂洗室217含有包含第二溶剂的第二漂洗溶液用于漂洗电极,以生产涂布在电极203的表面上的纯化的单层薄膜,以及包含第二溶剂和未反应的第二试剂的第二残余溶液。
与第一漂洗溶液类似,可以将第二漂洗溶液送至第二过滤设备219。与第二漂洗溶液相比,第二过滤设备219生产富含未反应的第二试剂且贫含第二溶剂的渗透物流和富含第二溶剂且贫含未反应的第二试剂的残余物流。将渗透物流收集在渗透物收集管221中,可以将其再循环或送回到第二反应室215。残余物流经由残余物管道223再循环回到第二漂洗室217。过滤设备219可以周期性地或连续地操作。
最后,将电极203的第一部分从向上传送到第九辊202i的第二漂洗室217取出。从这里,可以收集或卷起第一部分,直到电极的其余的期望部分涂布有薄膜。
与图2中描述的本公开的实施方案类似的实施方案可以包括用狭缝模头或凹版涂布反应室(未显示)代替浴-沉积反应室205和215。在这样的实施方案中,根据漂洗步骤的需要,漂洗室207和217可以存在或可以不存在。在这样的实施方案中,或者甚至在图2中描述的实施方案中,可以使用过量溶液去除技术(例如气刀、刮片、计量刀或类似技术)代替漂洗步骤。在另一个类似的实施方案中,215可以完全不存在,因为整个沉积反应可以在205中进行。因此,本公开的设备在沉积装置和传送装置两方面都可以被认为是模块化的,并且以任何特定的方式组装,以便促进特定的溶液沉积方法。
本公开的方法可以使用计算机系统或借助于计算机系统来实施。计算机系统可以涉及本方法的操作的许多不同方面,包括但不限于调节传送设备的各个方面,例如通过移动待涂布的部件进出反应室来引导传送设备的移动;通过控制阀的打开和关闭的时间;经由传感器读数检测液体体积,引导液体(例如试剂和缓冲液)流入反应室;和调节泵。在一些方面,实施计算机系统以使本文公开的方法和系统自动化。
现在通过以下实施例进一步描述以上提供的方法和系统,这些实施例旨在是说明性的而不旨在以任何方式限制范围或基本原理。
实施例
实施例1:TiO2的沉积
首先将异丙醇钛溶解在适当的无水溶剂(例如干燥异丙醇)中,吸附到电极表面上。然后使用漂洗溶剂将待涂布的部件(例如电极)清除过量的未吸附的异丙醇钛。接着,将电极引入到溶解在适当溶剂(例如异丙醇)中的氧化剂(例如水)的溶液中。水解导致醇盐配体损失成2-丙醇,留下具有加入的羟基的吸附的部分。在第四步骤中,通过漂洗溶剂去除过量的水和溶剂的溶液。生产氧化钛的单个单层。可以重复该过程以产生增加的厚度。
实施例2:CdS的沉积
硫酸镉(CdSO4)首先溶解在水性溶液中,产生吸附在电极表面上的Cd2+离子。清除电极过量的未吸附的Cd2+。然后将电极引入到含有阴离子硫前体(例如硫脲或Na2S)的水性溶液中。前体溶液的pH可以变化以控制反应速率。CdS在该反应中的高溶度积常数导致CdS的单个单层沉淀在电极表面上,其中表面能最小化促进成核。
实施例3:TiN的沉积
将电极(或其它待涂布的部件)浸没或暴露于溶解乙醇钛的无水乙醇溶液。清除电极过量的前体。将电极暴露于含有氮前体的溶液,例如在吡啶中的氨或在THF中的肼。前体与吸附的乙醇钛的反应产生TiN的单个单层。
实施例4:在石墨阳极上涂布薄膜
在石墨阳极上进行涂布方法。采用具有能量色散X射线光谱(SEM-EDX)的扫描电子显微镜来证明涂层的存在。SEM图像显示,从涂布前到涂布后,石墨阳极表面的形态发生明显变化(图3A-3B)。然后,局部Al和O信号的EDX测量证实涂层材料实际上是Al2O3。经由EDX测量约0.9原子%的Al是在文献中证明的在约1 nm ALD涂布的石墨阳极中观察到的Al的EDX信号的范围内。因此,在文献中可以得出结论,溶液涂布的Al2O3在经由ALD沉积的涂层厚度范围内。
实施例5:产生石墨-锂半电池
将涂布的石墨阳极与锂箔配对以产生石墨-Li半电池。半电池对于产生关于在石墨上形成SEI的不可逆容量损失的精确数据是理想的。考虑到测量第一循环容量损失仅需要一个充电-放电循环,也可实现快速学习循环。从图4-5和表1可以看出,当比较Al2O3涂布的阳极与对照时,平均第一循环损失实现1.37%的统计显著(至95%置信度)差异。
表1
Figure DEST_PATH_IMAGE002
通过绘制电荷差/电压差(dQ/dV)相对于半电池电压,可以精确地识别在接近0.6-0.8V的典型SEI形成电压期间转移的电荷的量。从图6可以看出,与未涂布的半电池(600)相比,涂布的半电池(601)的SEI产生的电荷差较低,这清楚地指示SEI产生受到涂层的抑制。
从前述应当理解,虽然已经说明和描述了特定实施,可以对其进行各种修改并且是本文预期的。本公开也不旨在由说明书内提供的具体示例来限制。虽然已经参考上述说明书描述了某些实施方案,本文对优选实施方案的描述和说明不意味着以限制的意义来解释。此外,应当理解,本公开的所有方面不限于本文所述的具体描述、配置或相对比例,其取决于多种条件和变量。实施方案的形式和细节上的各种修改对于本领域技术人员将是显而易见的。因此预期本公开还将覆盖任何这样的修改、变化和等效物。

Claims (51)

1.电池组电池,其包含:
阳极;
阴极;
设置在所述阳极和所述阴极之间的电解质;
设置在所述阳极和所述阴极之间的聚合物隔板;和
含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述壳体提供与所述阳极和所述阴极的电接触,和
其中所述阳极或阴极中的至少一个包含通过液相沉积方法生产的人工固体-电解质界面(SEI)层。
2.权利要求1所述的电池组电池,其中所述阳极具有所述人工SEI层。
3.权利要求1所述的电池组电池,其中所述阴极具有所述人工SEI层。
4.权利要求1所述的电池组电池,其中所述阳极和所述阴极两者均具有人工SEI层。
5.权利要求1-4中任一项所述的电池组电池,其中所述液相沉积方法包括:
(a)将电池组阳极和/或阴极提供到传送设备上;
(b)通过所述传送设备将所述电池组阳极或阴极转移至含有第一液体溶液的第一反应室,所述第一液体溶液包含至少第一试剂;
(c)通过所述传送设备将所述电池组阳极和/或阴极暴露于所述第一反应室中的所述第一液体溶液,以产生用化学键合到所述电池组阳极或阴极的表面上的所述至少第一试剂部分涂布的所述人工SEI的层;
(d)在所述第一反应室中用包含第一溶剂的第一漂洗溶液漂洗所述层以去除未反应的第一试剂;
(e)通过所述传送设备将来自(d)的所述电池组阳极或阴极转移至含有第二液体溶液的第二反应室,所述第二液体溶液包含至少第二试剂;
(f)通过所述传送设备将所述电池组阳极和/或阴极暴露于所述第二反应室中的所述第二液体溶液,其中所述至少第二试剂与化学键合到所述电池组阳极和/或阴极的表面上的所述至少第一试剂反应,以在所述电池组阳极或阴极的表面上生产包含单层的所述人工SEI,所述单层包含由所述至少第二试剂与所述第一试剂的反应产生的化合物;和
(g)在所述第二反应室中用包含第二溶剂的第二漂洗溶液漂洗所述涂层以去除未反应的第二试剂。
6.权利要求1-5中任一项所述的电池组电池,其中重复所述方法的步骤(a)-(g),以产生多个堆叠的单层的连续生长,从而产生总厚度在0.5纳米(nm)至100微米(µm)之间的薄膜涂层。
7.权利要求1-6中任一项所述的电池组电池,其中(a)中所述电池组阳极或阴极的厚度为100 nm至1,000 µm。
8.权利要求1-7中任一项所述的电池组电池,其中(a)中所述电池组阳极或阴极具有大小范围为0.1 nm至100 µm的孔隙。
9.权利要求1-8中任一项所述的电池组电池,其中(a)中所述电池组阳极或阴极的膜孔隙率为1-99%。
10.权利要求1-9中任一项所述的电池组电池,其中(a)中所述电池组阳极由石墨、Si、Sn、Si-石墨复合物、Sn-石墨复合物或锂金属组成。
11.权利要求1-10中任一项所述的电池组电池,其中(a)中所述电池组阴极由LiNixMnyCozO2、LiNixCoyAlzO2、LiMnxNiyOz、LiMnO2、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、LiV2O5、硫或LiCoO2组成,其中x、y和z为化学计量系数。
12.权利要求1-11中任一项所述的电池组电池,其中所述传送设备包含一系列辊,用于将所述电池组阳极或阴极和部分涂布的电池组阳极或阴极分别指引至所述第一和第二反应室。
13.权利要求5-12中任一项所述的电池组电池,其中通过选自浸没、喷涂、狭缝模头涂布和凹版辊涂布的方法,将所述阳极、阴极、部分涂布的阳极和/或部分涂布的阴极暴露于所述第一和第二液体溶液。
14.权利要求5所述的电池组电池,其中所述第一和第二液体溶液是非离子的。
15.权利要求5所述的电池组电池,其中所述方法进一步包括:
用包含第一溶剂的第一漂洗溶液漂洗所述部分涂布的电池组阳极或阴极,以在所述部分涂布的电池组阳极或阴极上生产饱和的第一层,以及包含所述第一溶剂和未反应的第一试剂的第一残余溶液。
16.权利要求15所述的电池组电池,其中所述液相沉积方法进一步包括:
将所述第一残余溶液通到第一过滤步骤,以将未反应的第一试剂与所述第一溶剂分离。
17.权利要求5所述的电池组电池,其中所述液相沉积方法进一步包括:
用包含第二溶剂的第二漂洗溶液漂洗所述完全涂布的电池组阳极或阴极,以在所述完全涂布的电池组阳极或阴极上生产饱和的单层薄膜,以及包含所述第二溶剂和未反应的第二试剂的第二残余溶液。
18.权利要求17所述的电池组电池,其中所述液相沉积方法进一步包括:
将第二残余漂洗溶液通到第二过滤步骤,以将所述未反应的第二试剂与所述第二溶剂分离。
19.权利要求16或权利要求18所述的电池组电池,其中所述液相沉积方法进一步包括:
将回收的未反应的第一或第二试剂分别再循环回到所述第一或第二液体溶液;和
将回收的第一或第二溶剂分别再循环回到所述第一或第二漂洗溶液。
20.权利要求16或权利要求18所述的电池组电池,其中所述液相沉积方法的所述过滤步骤使用膜分离、化学沉淀、离子交换、电化学去除、物理吸附、流动过滤色谱法或这些的组合来进行。
21.权利要求5所述的电池组电池,其中所述液相沉积方法的所述第一液体溶液包含多于一种试剂。
22.权利要求5所述的电池组电池,其中所述第二液体溶液包含多于一种试剂。
23.权利要求5所述的电池组电池,其中所述第一和第二试剂是金属有机前体。
24.权利要求5所述的电池组电池,其中所述第一和第二试剂是阳离子或阴离子的。
25.权利要求5所述的电池组电池,其中所述第一和第二液体溶液进一步包含有机溶剂、水或两者的混合物。
26.权利要求5所述的电池组电池,其中产生的所述化合物选自以下中的一种:
(a) AxOy型二元氧化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(b) AxByOz型三元氧化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;
(c) AwBxCyOz型四元氧化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;
(d) AxBy型二元卤化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为卤素,并且x和y为化学计量系数;
(e) AxByCz型三元卤化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,C为卤素,并且x、y和z为化学计量系数;
(f) AwBxCyDz型四元卤化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,D为卤素,并且w、x、y和z为化学计量系数;
(g) AxNy型二元氮化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(h) AxByNz型三元氮化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;
(i) AwBxCyNz型四元氮化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;
(j) AxBy型二元硫属化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为硫属元素,并且x和y为化学计量系数;
(k) AxByCz型三元硫属化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,C为硫属元素,并且x、y和z为化学计量系数;
(l) AwBxCyDz型四元硫属化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,D为硫属元素,并且w、x、y和z为化学计量系数;
(m) AxCy型二元碳化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(n) AxByOz型二元卤氧化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,B为卤素,并且x、y和z为化学计量系数;
(o) AxAsy型二元砷化物,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(p) AxByAsz型三元砷化物,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;
(q) AwBxCyAsz型四元砷化物,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数;
(r) Ax(PO4)y型二元磷酸盐,其中A为碱金属、碱土金属、过渡金属、半金属或类金属,并且x和y为化学计量系数;
(s) AxBy(PO4)z型三元磷酸盐,其中A和B为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且x、y和z为化学计量系数;和
(t) AwBxCy(PO4)z型四元磷酸盐,其中A、B和C为碱金属、碱土金属、过渡金属、半金属或类金属的任意组合,并且w、x、y和z为化学计量系数。
27.权利要求5所述的电池组电池,其中所述阳极或阴极进一步包含基材。
28.权利要求27所述的电池组电池,其中所述基材为箔、片材或膜的形式。
29.权利要求5所述的电池组电池,其中所述单层由至少一种或多种metalcone组成。
30.权利要求29所述的电池组电池,其中所述一种或多种metalcone由包含金属有机物的第一试剂与包含有机分子的第二试剂之间的反应产生。
31.权利要求30所述的电池组电池,其中所述第一试剂是包含有机部分和包含Al、Zn、Si、Ti、Zr、Hf、Mn和/或V的金属的金属有机物,并且所述第二试剂是包含乙二醇、甘油、赤藓醇、木糖醇、山梨糖醇、甘露糖醇、丁二醇、戊二醇、氢醌、己二醇、乳酸、三乙醇胺、对苯二胺、缩水甘油、己内酯、富马酸、氨基苯酚和/或二氨基二苯醚的有机分子。
32.权利要求5所述的电池组电池,其中所述单层由一种或多种有机材料组成。
33.权利要求32所述的电池组电池,其中所述一种或多种有机材料是包含聚酰胺、聚酰亚胺、聚脲、聚甲亚胺、含氟弹性体或这些的任意组合的聚合物。
34.权利要求1-33中任一项所述的电池组电池,其中所述电池组电池在高于在阳极和/或阴极上不具有人工SEI的电池组电池中的温度的温度下经历自加热。
35.权利要求1-34中任一项所述的电池组电池,其中所述电池组电池在高于在阳极或阴极上不具有人工SEI的相应的电池组电池中所观察到的温度的温度下放出CO2、O2、H2或任何其它气体。
36.权利要求1-35中任一项所述的电池组电池,其中所述阳极和/或阴极包含以下的一种或多种:石墨、Si、Sn、Ge、Al、P、Zn、Ga、As、Cd、In、Sb、Pb、Bi、SiO、SnO2、Si、Sn、锂金属、LiNixMnyCozO2、LiNixCoyAlzO2、LiMnxNiyOz、LiMnO2、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、LiV2O5、硫或LiCoO2,其中x、y和z为化学计量系数。
37.权利要求1-36中任一项所述的电池组电池,其中所述电解质包含盐和溶剂。
38.权利要求37所述的电池组电池,其中所述盐是LiPF6、LiClO4、LiTFSI或LiNO3
39.权利要求37或权利要求38所述的电池组电池,其中所述溶剂包含以下的一种或多种:碳酸亚乙酯、碳酸甲乙酯、碳酸二甲酯、氟化碳酸亚乙酯、碳酸亚丙酯。
40.电池组电池,其包含:
阳极;
阴极;
设置在所述阳极和所述阴极之间的电解质;
设置在所述阳极和所述阴极之间的聚合物隔板;和
含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述壳体提供与所述阳极和所述阴极的电接触,
其中所述阳极、阴极和/或两者均包含人工SEI涂层,和
其中所述电池组电池在高于在阳极或阴极上不具有人工SEI的相应的电池组电池中所观察到的温度的温度下放出CO2、O2、H2或任何其它气体。
41.电池组电池,其包含:
阳极;
阴极;
设置在所述阳极和所述阴极之间的电解质;
设置在所述阳极和所述阴极之间的聚合物隔板;和
含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述壳体提供与所述阳极和所述阴极的电接触;
其中所述阳极、所述阴极和/或两者均包含人工SEI涂层,和
其中所述电池组电池在高于在阳极或阴极上不具有人工SEI的相应的电池组电池中的温度的温度下经历自加热。
42.权利要求40或权利要求41所述的电池组电池,其中所述阳极或阴极中的至少一个包含通过液相沉积方法生产的人工SEI层。
43.电池组,其包含:
阳极;和
阴极;
其中所述阳极或阴极中的至少一个包含通过液相沉积方法生产的人工SEI层。
44.权利要求43所述的电池组,其中所述液相沉积方法包括:
(a)将电池组阳极和/或阴极提供到传送设备上;
(b)通过所述传送设备将所述电池组阳极或阴极转移至含有第一液体溶液的第一反应室,所述第一液体溶液包含至少第一试剂;
(c)通过所述传送设备将所述阳极和/或阴极暴露于所述第一反应室中的所述第一液体溶液,以产生用化学键合到所述电池组阳极或阴极的表面上的所述至少第一试剂部分涂布的所述人工SEI的层;
(d)在所述第一反应室中用包含第一溶剂的第一漂洗溶液漂洗所述层以去除未反应的第一试剂;
(e)通过所述传送设备将来自(d)的所述电池组阳极或阴极转移至含有第二液体溶液的第二反应室,所述第二液体溶液包含至少第二试剂;
(f)通过所述传送设备将所述电池组阳极和/或阴极暴露于所述第二反应室中的所述第二液体溶液,其中所述至少第二试剂与化学键合到所述电池组阳极和/或阴极的表面上的所述至少第一试剂反应,以在所述电池组阳极或阴极的表面上生产包含单层的所述人工SEI,所述单层包含由所述至少第二试剂与所述第一试剂的反应产生的化合物;和
(g)在所述第二反应室中用包含第二溶剂的第二漂洗溶液漂洗所述涂层以去除未反应的第二试剂。
45.权利要求1-42中任一项所述的电池组电池,其中所述电池组电池是可再充电的。
46.权利要求43或权利要求44所述的电池组,其中所述电池组是可再充电的。
47.电池组电池,其包含:
阳极;
阴极;
设置在所述阳极和所述阴极之间的电解质;
设置在所述阳极和所述阴极之间的聚合物隔板;和
含有所述阳极、所述阴极、所述电解质和所述聚合物隔板的壳体,其中所述壳体提供与所述阳极和所述阴极的电接触,和
其中所述阳极或阴极中的至少一个包含人工固体-电解质界面(SEI)层,其中所述人工SEI能够经受住暴露于高达300℃的温度而不放热分解。
48.权利要求47所述的电池组电池,其中所述人工SEI能够经受住暴露于高达200℃的温度而不放热分解。
49.权利要求47所述的电池组电池,其中所述人工SEI能够经受住暴露于高达100℃的温度而不放热分解。
50.权利要求47-49中任一项所述的电池组电池,其中所述人工SEI不与任何物理上相邻的电解质、聚合物隔板或其它电池组电池部件放热反应。
51.权利要求47-50中任一项所述的电池组电池,其中所述人工SEI层通过液相沉积方法生产。
CN202080092933.1A 2019-11-13 2020-11-08 用于可再充电的电池组中的热失控减轻的溶液沉积的电极涂层 Pending CN115210907A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962934522P 2019-11-13 2019-11-13
US62/934522 2019-11-13
PCT/US2020/059590 WO2021096786A1 (en) 2019-11-13 2020-11-08 Solution-deposited electrode coatings for thermal runaway mitigation in rechargeable batteries

Publications (1)

Publication Number Publication Date
CN115210907A true CN115210907A (zh) 2022-10-18

Family

ID=75912552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080092933.1A Pending CN115210907A (zh) 2019-11-13 2020-11-08 用于可再充电的电池组中的热失控减轻的溶液沉积的电极涂层

Country Status (3)

Country Link
EP (1) EP4059071A1 (zh)
CN (1) CN115210907A (zh)
WO (1) WO2021096786A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961991B2 (en) 2017-06-20 2024-04-16 Coreshell Technologies, Incorporated Solution-phase deposition of thin films on solid-state electrolytes
WO2018237083A1 (en) 2017-06-20 2018-12-27 Coreshell Technologies, Inc. METHODS, SYSTEMS, AND COMPOSITIONS FOR THE LIQUID PHASE DEPOSITION OF THIN FILMS ON THE SURFACE OF BATTERY ELECTRODES

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
US20120295038A1 (en) * 2005-04-29 2012-11-22 Ce Ma Method and apparatus for using solution based precursors for atomic layer deposition
US9376455B2 (en) * 2013-11-27 2016-06-28 Veeco Ald Inc. Molecular layer deposition using reduction process
US10253414B2 (en) * 2014-09-30 2019-04-09 Tokyo Electron Limited Liquid phase atomic layer deposition
US20160351973A1 (en) * 2015-06-01 2016-12-01 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings

Also Published As

Publication number Publication date
WO2021096786A1 (en) 2021-05-20
EP4059071A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
KR102501600B1 (ko) 배터리 전극들의 표면 상에의 박막들의 액상 퇴적을 위한 방법들, 시스템들, 및 조성물들
US11961991B2 (en) Solution-phase deposition of thin films on solid-state electrolytes
US20220328812A1 (en) Solution-deposited electrode coatings for thermal runaway mitigation in rechargeable batteries
CN102082249B (zh) 隔膜及其制造方法、电池、微孔膜及其制造方法
CN113169371A (zh) 用于锂电池的部件的材料和方法
CN115210916A (zh) 在固态电解质上溶液相沉积薄膜
US11597988B2 (en) Apparatus and methods for depositing molten metal onto a foil substrate
KR102272871B1 (ko) 낮은 용융 온도 금속 정제 및 증착
CN115210907A (zh) 用于可再充电的电池组中的热失控减轻的溶液沉积的电极涂层
US20230216061A1 (en) Anodes for lithium-based energy storage devices
US20220190311A1 (en) Solution-phase electrodeposition of artificial solid electrolyte interphase (sei) layers on battery electrodes
US20220149342A1 (en) Solution-phase deposition of thin films on conversion anodes in lithium-ion batteries
US20220376226A1 (en) High volume manufacturing of alloy anodes for li-ion battery
WO2024073518A1 (en) Liquid-phase deposition of thin films
US20190181498A1 (en) Process for preparing thin films of solid electrolytes comprising lithium and sulfur
Khan Atomic Layer Deposition (ALD) for Lithium-ion Battery Components

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination