CN115202189A - Variable-structure finite-time vibration suppression method for fractional-order manipulator model - Google Patents
Variable-structure finite-time vibration suppression method for fractional-order manipulator model Download PDFInfo
- Publication number
- CN115202189A CN115202189A CN202210831612.XA CN202210831612A CN115202189A CN 115202189 A CN115202189 A CN 115202189A CN 202210831612 A CN202210831612 A CN 202210831612A CN 115202189 A CN115202189 A CN 115202189A
- Authority
- CN
- China
- Prior art keywords
- fractional
- order
- model
- manipulator
- sliding mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000001629 suppression Effects 0.000 title claims abstract description 29
- 238000005516 engineering process Methods 0.000 claims abstract description 12
- 238000013461 design Methods 0.000 claims abstract description 7
- 230000003044 adaptive effect Effects 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 7
- 230000009699 differential effect Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 description 10
- 238000011160 research Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/13—Differential equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- General Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Automation & Control Theory (AREA)
- Computing Systems (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及机械臂模型控制的技术领域,具体地,涉及一种分数阶机械臂模型的变结构有限时间振动抑制方法。The invention relates to the technical field of manipulator model control, in particular to a variable-structure finite-time vibration suppression method of a fractional-order manipulator model.
背景技术Background technique
机械臂系统因可以执行重复性任务及在危险区域有较高精确度,应用非常广泛,如,在医学领域,机械臂被用于微创干预,对神经外科、骨科和泌尿外科等病人的治疗有非常好的治疗效果;目前,一种增强型机器臂设备已被用于肢体康复,它可以取代物理治疗师;在航空航天领域,机械臂在空间站的建设及太空科学实验中发挥了重要作用;在工业生产领域,机械臂可以胜任人工无法完成的任务,对特种作业下的人员来说,机械臂的使用极大的保障了安全生产和人民生命安全。因此,设计合适的控制律实现机械臂系统的轨迹规划具有重要的实际意义。Robotic arm systems are widely used because they can perform repetitive tasks and have high precision in hazardous areas. For example, in the medical field, robotic arms are used for minimally invasive interventions, neurosurgery, orthopedics, and urology patients. It has a very good therapeutic effect; at present, an enhanced robotic arm device has been used for limb rehabilitation, which can replace physical therapists; in the field of aerospace, the robotic arm has played an important role in the construction of the space station and space science experiments ; In the field of industrial production, the robotic arm can be competent for tasks that cannot be accomplished by humans. For personnel in special operations, the use of the robotic arm greatly ensures the safety of production and people's lives. Therefore, it is of great practical significance to design an appropriate control law to realize the trajectory planning of the robotic arm system.
发明内容SUMMARY OF THE INVENTION
鉴于此,本发明提供了一种分数阶机械臂模型的变结构有限时间振动抑制方法,将分数阶微积分理论引用到滑模面的构建中,建立的P(ID)α终端滑模面可以很好地解决分数阶机械臂系统的有限时间振动抑制问题,填补了分数阶机械臂系统这方面研究成果上的空白。In view of this, the present invention provides a variable-structure finite-time vibration suppression method for a fractional-order manipulator model. The fractional-order calculus theory is introduced into the construction of the sliding mode surface, and the established P(ID) α terminal sliding mode surface can be The finite-time vibration suppression problem of fractional manipulator system is well solved, which fills the gap in the research results of fractional manipulator system.
为实现上述技术目的,本发明通过以下技术方案实现:一种分数阶机械臂模型的变结构有限时间振动抑制方法,包含以下步骤:In order to realize the above-mentioned technical purpose, the present invention is realized through the following technical solutions: a variable structure finite-time vibration suppression method of a fractional-order mechanical arm model, comprising the following steps:
步骤1、选择二自由度机械臂结构中的状态变量,将机械臂结构模型的动力学方程转变为机械臂结构模型的整数阶状态空间模型,结合分数阶微积分理论,确定分数阶机械臂模型;Step 1. Select the state variables in the two-degree-of-freedom manipulator structure, transform the dynamic equation of the manipulator structure model into an integer-order state space model of the manipulator structure model, and combine the fractional calculus theory to determine the fractional-order manipulator model. ;
步骤2、利用PID控制技术和滑模控制理论,结合步骤1中的状态变量,建立分数阶P(ID)α终端滑模面,当步骤1中分数阶机械臂模型的状态轨迹到达分数阶P(ID)α终端滑模面时,对分数阶P(ID)α终端滑模面求分数阶导数,得出期望滑模态方程;Step 2. Using PID control technology and sliding mode control theory, combined with the state variables in step 1, establish a terminal sliding mode surface of fractional order P(ID) α . When the state trajectory of the fractional manipulator model in step 1 reaches fractional order P (ID) α terminal sliding mode surface, the fractional derivative is obtained for the fractional P(ID) α terminal sliding mode surface, and the desired sliding mode equation is obtained;
步骤3、考虑分数阶机械臂模型集总参数的不确定性影响,根据分数阶P(ID)α终端滑模面,建立分数阶机械臂模型未知参数的自适应估计律;Step 3. Considering the influence of the uncertainty of the lumped parameters of the fractional manipulator model, establish an adaptive estimation law for the unknown parameters of the fractional manipulator model according to the fractional P(ID) α terminal sliding surface;
步骤4、考虑扇形非线性输入影响并结合分数阶机械臂模型未知参数的自适应估计律,设计有限时间控制器;Step 4. Design a finite-time controller by considering the influence of the fan-shaped nonlinear input and combining with the adaptive estimation law of the unknown parameters of the fractional-order manipulator model;
步骤5、将建立的分数阶机械臂模型未知参数的自适应估计律以及设计的有限时间控制器应用于分数阶机械臂模型中,实现有限时间振动抑制。Step 5: Apply the adaptive estimation law of the unknown parameters of the established fractional-order manipulator model and the designed finite-time controller to the fractional-order manipulator model to realize finite-time vibration suppression.
进一步地,步骤1包括如下子步骤:Further, step 1 includes the following sub-steps:
步骤11、从二自由度机械臂结构中获取由编码器测量的实际关节位置θ、执行器的转动惯量J、执行机构的粘性摩擦系数B、变速箱的效率η、齿轮齿数比υ、转矩常数Kt、反电动势常数Ke、电阻R、控制机械手关节上的力矩τ、电枢电压输入u,建立机械臂结构模型的动力学方程:Step 11. Obtain the actual joint position θ measured by the encoder, the rotational inertia J of the actuator, the viscous friction coefficient B of the actuator, the efficiency η of the gearbox, the gear ratio υ, and the torque from the structure of the two-degree-of-freedom manipulator. Constant K t , back electromotive force constant Ke , resistance R, torque τ on the control manipulator joint, armature voltage input u, establish the dynamic equation of the manipulator structure model:
其中,为θ的一阶导数,为θ的二阶导数;in, is the first derivative of θ, is the second derivative of θ;
步骤12、将θ作为第一状态变量x1,作为第二状态变量x2,将机械臂结构模型的动力学方程转变为机械臂结构模型的整数阶状态空间模型:Step 12, take θ as the first state variable x 1 , As the second state variable x 2 , the dynamic equation of the manipulator structure model is transformed into an integer-order state space model of the manipulator structure model:
步骤13、将步骤12的机械臂结构模型的整数阶状态空间模型采用Caputo型分数阶微积分算子Dα进行描述,同时考虑扇形非线性输入φ(u)的影响和与时间t有关的分数阶机械臂模型集总参数不确定性ΔL(X,t)的影响,确定分数阶机械臂模型:Step 13. Use the Caputo fractional calculus operator D α to describe the integer-order state space model of the manipulator structure model in step 12, and consider the influence of the fan-shaped nonlinear input φ(u) and the fraction related to time t. The influence of the lumped parameter uncertainty ΔL(X,t) of the first-order manipulator model to determine the fractional-order manipulator model:
其中,α∈(0,1)为分数阶阶次,X=[x1,x2]T为分数阶机械臂模型的状态矢量。Among them, α∈(0,1) is the fractional order, and X=[x 1 ,x 2 ] T is the state vector of the fractional manipulator model.
进一步地,所述与时间t有关的分数阶机械臂模型集总参数不确定性ΔL(X,t)包括:模型误差、参数波动、未建模动态以及外部干扰,所述ΔL(X,t)满足:Further, the fractional-order manipulator model lumped parameter uncertainty ΔL(X, t) related to time t includes: model error, parameter fluctuation, unmodeled dynamics and external disturbance, the ΔL(X, t )Satisfy:
|ΔL(X,t)|≤γ||X||+λ (4)|ΔL(X,t)|≤γ||X||+λ (4)
其中,γ为第一未知参数,λ为第二未知参数。Among them, γ is the first unknown parameter, and λ is the second unknown parameter.
进一步地,所述扇形非线性输入φ(u)在区间[δ1,δ2]连续,且满足:Further, the sector-shaped nonlinear input φ(u) is continuous in the interval [δ 1 ,δ 2 ] and satisfies:
δ1u2≤uφ(u)≤δ2u2 (5)δ 1 u 2 ≤uφ(u)≤δ 2 u 2 (5)
其中,δ1为第一斜率,δ2为第二斜率,u为有限时间控制器。Among them, δ 1 is the first slope, δ 2 is the second slope, and u is the finite-time controller.
进一步地,步骤2包括如下子步骤:Further, step 2 includes the following substeps:
步骤21、利用PID控制技术和滑模控制理论,结合步骤12中的状态变量,建立分数阶P(ID)α终端滑模面:Step 21. Using PID control technology and sliding mode control theory, combined with the state variables in step 12, establish a fractional order P(ID) α terminal sliding mode surface:
q1s+q2Dαs+q3Iα[(|s|+|Dαs|σ)sgn(Dαs)]=kpx1+kdDαx1+kiIα[(|x1|+|Dαx1|ρ)sgn(Dαx1)] (6)q 1 s+q 2 D α s+q 3 Iα[(|s|+|D α s| σ )sgn(D α s)]=k p x 1 +k d D α x 1 +k i I α [(|x 1 |+|D α x 1 | ρ )sgn(D α x 1 )] (6)
其中,s为滑模面变量,Iα为分数阶积分算子,sgn()为符号函数,q1为第三正实数,q2为第四正实数,q3为第五正实数,σ∈(0,1)为第一固定值,ρ∈(0,1)为第二固定值,kp>0为分数阶P(ID)α终端滑模面的比例系数,kd为分数阶P(ID)α终端滑模面的微分系数,ki>0为分数阶P(ID)α终端滑模面的积分系数;Among them, s is the sliding mode surface variable, I α is the fractional integral operator, sgn() is the sign function, q 1 is the third positive real number, q 2 is the fourth positive real number, q 3 is the fifth positive real number, σ ∈(0,1) is the first fixed value, ρ∈(0,1) is the second fixed value, k p > 0 is the fractional order P(ID) α terminal sliding mode scale coefficient, k d is the fractional order Differential coefficient of P(ID) α terminal sliding mode surface, k i > 0 is the integral coefficient of fractional P(ID) α terminal sliding mode surface;
步骤22、当分数阶机械臂模型的状态轨迹到达滑模面,有s=Dαs=D2αs=0,对分数阶P(ID)α终端滑模面求α阶分数阶导数:Step 22. When the state trajectory of the fractional manipulator model reaches the sliding mode surface, there is s=D α s=D 2α s=0, and calculate the α-order fractional derivative for the fractional-order P(ID) α terminal sliding mode surface:
kpDαx1+kdD2αx1+ki(|x1|+|Dαx1|ρ)sgn(Dαx1)=0 (7)k p D α x 1 +k d D 2α x 1 +k i (|x 1 |+|D α x 1 | ρ )sgn(D α x 1 )=0 (7)
步骤23、结合分数阶微分性质D2αx1=Dα(Dαx1)=Dαx2,得出期望滑模态方程:Step 23. Combining the fractional differential property D 2α x 1 =D α (D α x 1 )=D α x 2 , the expected sliding mode equation is obtained:
进一步地,所述分数阶机械臂模型未知参数的自适应估计律的建立过程为:Further, the establishment process of the adaptive estimation law of the unknown parameters of the fractional-order manipulator model is as follows:
其中,Dα为Caputo型分数阶微积分算子,为第一未知参数γ的估计值,为第二未知参数λ的估计值,X=[x1,x2]T为分数阶机械臂模型的状态矢量,m>0为第一估计律增益,n>0为第二估计律增益,kd为分数阶P(ID)α终端滑模面的微分系数,s为滑模面变量。where D α is the Caputo-type fractional calculus operator, is the estimated value of the first unknown parameter γ, is the estimated value of the second unknown parameter λ, X=[x 1 , x 2 ] T is the state vector of the fractional-order manipulator model, m>0 is the gain of the first estimation law, n>0 is the gain of the second estimation law, k d is the differential coefficient of the fractional order P(ID) α terminal sliding mode surface, and s is the sliding mode surface variable.
进一步地,所述有限时间控制器为:Further, the limited time controller is:
其中,J为执行器的转动惯量,R为电阻,η为变速箱的效率,υ为齿轮齿数比,Kt为转矩常数,为有限时间控制器系数,ε(t)有限时间控制器结构变量,s为滑模面变量,sgn(Dαs)为符号函数,kd为分数阶P(ID)α终端滑模面的微分系数,q1为第三正实数,q2为第四正实数,Dα为Caputo型分数阶微积分算子,q3为第五正实数,B为执行机构的粘性摩擦系数,Ke为反电动势常数,x2为第二状态变量,J为执行器的转动惯量,τ为控制机械手关节上的力矩,为第一未知参数γ的估计值,X=[x1,x2]T为分数阶机械臂模型的状态矢量,为第二未知参数λ的估计值,ki为分数阶P(ID)α终端滑模面的积分系数,x1为第一状态变量,ρ∈(0,1)为第二固定值。Among them, J is the moment of inertia of the actuator, R is the resistance, η is the efficiency of the gearbox, υ is the gear ratio, K t is the torque constant, is the finite-time controller coefficient, ε(t) is the finite-time controller structural variable, s is the sliding mode surface variable, sgn(D α s) is the sign function, and k d is the fractional order P(ID) α terminal sliding mode surface Differential coefficient, q 1 is the third positive real number, q 2 is the fourth positive real number, D α is the Caputo fractional calculus operator, q 3 is the fifth positive real number, B is the viscous friction coefficient of the actuator, K e is the back electromotive force constant, x 2 is the second state variable, J is the moment of inertia of the actuator, τ is the torque on the control manipulator joint, is the estimated value of the first unknown parameter γ, X=[x 1 ,x 2 ] T is the state vector of the fractional manipulator model, is the estimated value of the second unknown parameter λ, ki is the integral coefficient of the fractional P(ID) α terminal sliding mode surface, x 1 is the first state variable, and ρ∈(0,1) is the second fixed value.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明分数阶机械臂模型的变结构有限时间振动抑制方法结合传统PID技术和滑模控制技术设计出的终端滑模面,包含有传统PID控制鲁棒性强、适应性强等优点,又包含有滑模控制收敛速度快等优点,同时,构建的分数阶P(ID)α终端滑模面含有分数阶微积分算子,通过调节微积分阶次可以有效的调节收敛时间,控制效果好;(1) The variable-structure finite-time vibration suppression method of the fractional-order manipulator model of the present invention combines the terminal sliding mode surface designed by traditional PID technology and sliding mode control technology, which includes the advantages of strong robustness and adaptability of traditional PID control. , and also has the advantages of fast convergence speed of sliding mode control. At the same time, the constructed fractional P(ID) α terminal sliding mode surface contains fractional calculus operators. By adjusting the calculus order, the convergence time can be effectively adjusted, and the control good effect;
(2)本发明分数阶机械臂模型的变结构有限时间振动抑制方法通过分数阶机械臂模型实现有限时间控制,首次对机械臂结构的分数阶模型进行研究,研究过程充分考虑分数阶机械臂模型中集总参数不确定性影响,并对集总参数不确定性的未知上界设计合适的自适应估计律,大大提高了未知参数的辨识效果;(2) The variable-structure finite-time vibration suppression method of the fractional-order manipulator model of the present invention realizes finite-time control through the fractional-order manipulator model. The fractional-order model of the manipulator structure is studied for the first time, and the fractional manipulator model is fully considered in the research process. The uncertainty of lumped parameters is affected, and an appropriate adaptive estimation law is designed for the unknown upper bound of the uncertainty of lumped parameters, which greatly improves the identification effect of unknown parameters;
(3)本发明分数阶机械臂模型的变结构有限时间振动抑制方法,通过选择合适形式的Lyapunov函数验证了趋近阶段和滑模阶段的有限时间稳定性,即趋近阶段和滑模阶段均为有限时间收敛;(3) The variable-structure finite-time vibration suppression method of the fractional-order manipulator model of the present invention verifies the finite-time stability of the approaching stage and the sliding-mode stage by selecting a suitable form of Lyapunov function, that is, the approaching stage and the sliding-mode stage are both to converge in finite time;
(4)本发明分数阶机械臂模型的变结构有限时间振动抑制方法充分考虑了扇形非线性输入对分数阶机械臂模型的影响,设计有限时间控制器,可以很好地克服非线性输入、集总参数不确定性带来的不利影响,提高被控系统鲁棒性;(4) The variable structure finite-time vibration suppression method of the fractional-order manipulator model of the present invention fully considers the influence of sector nonlinear input on the fractional-order manipulator model, and the finite-time controller is designed, which can well overcome the nonlinear input, set The adverse effects brought by the uncertainty of the total parameters improve the robustness of the controlled system;
(5)本发明分数阶机械臂模型的变结构有限时间振动抑制方法可以在给定时间内对分数阶机械臂模型内部出现的振动现象进行有效抑制,得到期望的输出和性能指标,节省控制成本,提高经济效益。(5) The variable-structure finite-time vibration suppression method of the fractional-order manipulator model of the present invention can effectively suppress the vibration phenomenon that occurs inside the fractional-order manipulator model within a given time, obtain the desired output and performance indicators, and save control costs ,Improve economic efficiency.
附图说明Description of drawings
图1为本发明分数阶机械臂模型的变结构有限时间振动抑制方法的流程图;Fig. 1 is the flow chart of the variable-structure finite-time vibration suppression method of the fractional-order manipulator model of the present invention;
图2为扇形非线性输入函数的结构图。Figure 2 is a structural diagram of a sector nonlinear input function.
具体实施方式Detailed ways
为更清楚地说明本发明的目的和优点,下面结合附图对本发明的应用原理作详细地说明。In order to illustrate the purpose and advantages of the present invention more clearly, the following describes the application principle of the present invention in detail with reference to the accompanying drawings.
如图1为本发明分数阶机械臂模型的变结构有限时间振动抑制方法的流程图,该变结构有限时间振动抑制方法具体包括以下步骤:Figure 1 is a flowchart of the variable structure finite time vibration suppression method of the fractional-order manipulator model of the present invention, and the variable structure finite time vibration suppression method specifically includes the following steps:
步骤1、选择二自由度机械臂结构中的状态变量,将机械臂结构模型的动力学方程转变为机械臂结构模型的整数阶状态空间模型,结合分数阶微积分理论,确定分数阶机械臂模型,分数阶算子特别适合描述具有记忆特性的系统,机械臂运动过程涉及大量记忆特性环节,因此采用分数阶微积分对机械臂模型进行数学建模能得到更精确的效果;具体包括如下子步骤:Step 1. Select the state variables in the two-degree-of-freedom manipulator structure, transform the dynamic equation of the manipulator structure model into an integer-order state space model of the manipulator structure model, and combine the fractional calculus theory to determine the fractional-order manipulator model. , the fractional operator is especially suitable for describing the system with memory characteristics. The movement process of the manipulator involves a large number of memory characteristics. Therefore, the mathematical modeling of the manipulator model by fractional calculus can obtain more accurate results; the specific steps include the following sub-steps :
步骤11、从二自由度机械臂结构中获取由编码器测量的实际关节位置θ、执行器的转动惯量J、执行机构的粘性摩擦系数B、变速箱的效率η、齿轮齿数比υ、转矩常数Kt、反电动势常数Ke、电阻R、控制机械手关节上的力矩τ、电枢电压输入u,建立机械臂结构模型的动力学方程:Step 11. Obtain the actual joint position θ measured by the encoder, the rotational inertia J of the actuator, the viscous friction coefficient B of the actuator, the efficiency η of the gearbox, the gear ratio υ, and the torque from the structure of the two-degree-of-freedom manipulator. Constant K t , back electromotive force constant Ke , resistance R, torque τ on the control manipulator joint, armature voltage input u, establish the dynamic equation of the manipulator structure model:
其中,为θ的一阶导数,为θ的二阶导数;in, is the first derivative of θ, is the second derivative of θ;
步骤12、将θ作为第一状态变量x1,作为第二状态变量x2,将机械臂结构模型的动力学方程转变为机械臂结构模型的整数阶状态空间模型:Step 12, take θ as the first state variable x 1 , As the second state variable x 2 , the dynamic equation of the manipulator structure model is transformed into an integer-order state space model of the manipulator structure model:
步骤13、将步骤12的机械臂结构模型的整数阶状态空间模型采用Caputo型分数阶微积分算子Dα进行描述,同时考虑扇形非线性输入φ(u)的影响和与时间t有关的分数阶机械臂模型集总参数不确定性ΔL(X,t)的影响,确定分数阶机械臂模型:Step 13. Use the Caputo fractional calculus operator D α to describe the integer-order state space model of the manipulator structure model in step 12, and consider the influence of the fan-shaped nonlinear input φ(u) and the fraction related to time t. The influence of the lumped parameter uncertainty ΔL(X,t) of the first-order manipulator model to determine the fractional-order manipulator model:
其中,α∈(0,1)为分数阶阶次,X=[x1,x2]T为分数阶机械臂模型的状态矢量。Among them, α∈(0,1) is the fractional order, and X=[x 1 ,x 2 ] T is the state vector of the fractional manipulator model.
本发明中与时间t有关的分数阶机械臂模型集总参数不确定性ΔL(X,t)包括:模型误差、参数波动、未建模动态以及外部干扰,为方便控制器设计推导,假设ΔL(X,t)有界且满足:In the present invention, the fractional order manipulator model lumped parameter uncertainty ΔL(X, t) related to time t includes: model error, parameter fluctuation, unmodeled dynamics and external disturbance. For the convenience of controller design and derivation, it is assumed that ΔL (X,t) is bounded and satisfies:
|ΔL(X,t)|≤γ||X||+λ (4)|ΔL(X,t)|≤γ||X||+λ (4)
其中,γ为第一未知参数,λ为第二未知参数。Among them, γ is the first unknown parameter, and λ is the second unknown parameter.
如图2,本发明中扇形非线性输入φ(u)在第一斜率δ1和第二斜率δ2围成的扇形区域内呈非线性特性且连续,是目前控制器执行过程中常遇到的典型非线性特性之一,这类非线性特性会严重影响被控系统性能,甚至导致机械臂结构模型的不稳定,因此,在控制器设计时必须予以考虑。本发明中扇形非线性输入φ(u)满足:As shown in Fig. 2, the fan-shaped nonlinear input φ(u) in the present invention is nonlinear and continuous in the fan-shaped region enclosed by the first slope δ 1 and the second slope δ 2 , which is often encountered in the current controller execution process. One of the typical nonlinear characteristics, such nonlinear characteristics will seriously affect the performance of the controlled system, and even lead to the instability of the mechanical arm structure model. Therefore, it must be considered in the controller design. In the present invention, the fan-shaped nonlinear input φ(u) satisfies:
δ1u2≤uφ(u)<δ2u2 (5)δ 1 u 2 ≤uφ(u)<δ 2 u 2 (5)
其中,u为有限时间控制器。Among them, u is a finite-time controller.
步骤2、利用PID控制技术和滑模控制理论,结合步骤1中的状态变量,建立分数阶P(ID)α终端滑模面,当步骤1中分数阶机械臂模型的状态轨迹到达分数阶P(ID)α终端滑模面,对分数阶P(ID)α终端滑模面求分数阶导数,得出期望滑模态方程,所设计的分数阶P(ID)α终端滑模面结合了传统PID技术和滑模控制技术,具有收敛速度快、鲁棒性强等优点;具体包括如下子步骤:Step 2. Using PID control technology and sliding mode control theory, combined with the state variables in step 1, establish a terminal sliding mode surface of fractional order P(ID) α . When the state trajectory of the fractional manipulator model in step 1 reaches fractional order P (ID) α terminal sliding mode surface, the fractional derivative of the fractional P(ID) α terminal sliding mode surface is obtained, and the desired sliding mode equation is obtained. The designed fractional P(ID) α terminal sliding mode surface combines the Traditional PID technology and sliding mode control technology have the advantages of fast convergence speed and strong robustness; it includes the following sub-steps:
步骤21、利用PID控制技术和滑模控制理论,结合步骤12中的状态变量,建立分数阶P(ID)α终端滑模面:Step 21. Using PID control technology and sliding mode control theory, combined with the state variables in step 12, establish a fractional order P(ID) α terminal sliding mode surface:
q1s+q2Dαs+q3Iα[(|s|+|Dαs|σ)sgn(Dαs)]=kpx1+kdDαx1+kiIα[(|x1|+|Dαx1|ρ)sgn(Dαx1)] (6)q 1 s+q 2 D α s+q 3 I α [(|s|+|D α s| σ )sgn(D α s)]=k p x 1 +k d D α x 1 +k i I α [(|x 1 |+|D α x 1 | ρ )sgn(D α x 1 )] (6)
其中,s为滑模面变量,Iα为分数阶积分算子,sgn()为符号函数,q1为第三正实数,q2为第四正实数,q3为第五正实数,σ∈(0,1)为第一固定值,ρ∈(0,1)为第二固定值,kp>0为分数阶P(ID)α终端滑模面的比例系数,kd为分数阶P(ID)α终端滑模面的微分系数,ki>0为分数阶P(ID)α终端滑模面的积分系数;Among them, s is the sliding mode surface variable, I α is the fractional integral operator, sgn() is the sign function, q 1 is the third positive real number, q 2 is the fourth positive real number, q 3 is the fifth positive real number, σ ∈(0,1) is the first fixed value, ρ∈(0,1) is the second fixed value, k p > 0 is the fractional order P(ID) α terminal sliding mode scale coefficient, k d is the fractional order Differential coefficient of P(ID) α terminal sliding mode surface, k i > 0 is the integral coefficient of fractional P(ID) α terminal sliding mode surface;
步骤22、当分数阶机械臂模型的状态轨迹到达分数阶P(ID)α终端滑模面,将沿着分数阶P(ID)α终端滑模面进行滑模运动直至运动到原点。到达分数阶P(ID)α终端滑模面后满足s=Dαs=D2αs=0,对分数阶P(ID)α终端滑模面求α阶分数阶导数:Step 22. When the state trajectory of the fractional manipulator model reaches the fractional P(ID) α terminal sliding mode surface, the sliding mode motion will be performed along the fractional P(ID) α terminal sliding mode surface until the movement reaches the origin. After reaching the fractional P(ID) α terminal sliding mode surface, s=D α s=D 2α s=0 is satisfied, and the α-order fractional derivative is obtained for the fractional P(ID) α terminal sliding mode surface:
kpDαx1+kdD2αx1+ki(|x1|+|Dαx1|ρ)sgn(Dαx1)=0 (7)k p D α x 1 +k d D 2α x 1 +k i (|x 1 |+|D α x 1 | ρ )sgn(D α x 1 )=0 (7)
步骤23、结合分数阶微分性质D2αx1=Dα(Dαx1)=Dαx2,得出期望滑模态方程:Step 23. Combining the fractional differential property D 2α x 1 =D α (D α x 1 )=D α x 2 , the expected sliding mode equation is obtained:
针对机械臂结构控制过程中的滑模阶段,选择Lyapunov函数来验证期望滑模态方程的有限时间稳定性。For the sliding mode stage in the control process of the manipulator structure, the Lyapunov function is selected to verify the finite-time stability of the expected sliding mode equation.
对V1(t)求α阶分数阶导数,并根据分数阶算子特性,得到:Calculate the α-order fractional derivative for V 1 (t), and according to the characteristics of the fractional operator, we get:
令ki>kd,公式(11)简化为Let k i >k d , formula (11) simplifies to
选择辅助函数 Choose a helper function
将公式(12)变换为:Transform formula (12) into:
根据Stabilization of a class of cascade nonlinear switched systemswith application to chaotic systems的研究结果,存在常数η1>0,使得得:According to the research results of Stabilization of a class of cascade nonlinear switched systems with application to chaotic systems, there is a constant η 1 > 0 such that have to:
根据Graph theory-based finite-time synchronization of fractional-order complex dynamical networks的研究,能量函数分数阶导数满足式(15)的系统,其滑模态将在有限时间t2内收敛到原点:According to the research of Graph theory-based finite-time synchronization of fractional-order complex dynamical networks, the system whose fractional derivative of energy function satisfies Eq. (15), its sliding mode will converge to the origin in finite time t2 :
其中,t1为到达滑模面时间,Γ()为gamma函数。Among them, t 1 is the time to reach the sliding surface, and Γ() is the gamma function.
步骤3、考虑分数阶机械臂模型集总参数不确定性影响,根据分数阶P(ID)α终端滑模面,建立分数阶机械臂模型未知参数的自适应估计律,可以很好地预测未知参数上界提高系统的鲁棒性;本发明中分数阶机械臂模型未知参数的自适应估计律的建立过程为:Step 3. Considering the influence of the uncertainty of the lumped parameters of the fractional manipulator model, according to the fractional P(ID) α terminal sliding surface, establish an adaptive estimation law for the unknown parameters of the fractional manipulator model, which can well predict unknown parameters. The parameter upper bound improves the robustness of the system; the establishment process of the adaptive estimation law of the unknown parameters of the fractional-order manipulator model in the present invention is as follows:
其中,为第一未知参数γ的估计值,为第二未知参数λ的估计值,m>0为第一估计率增益,n>0为第二估计律增益,m、n的取值大小直接决定未知参数辨识速率。in, is the estimated value of the first unknown parameter γ, is the estimated value of the second unknown parameter λ, m>0 is the first estimation rate gain, n>0 is the second estimation law gain, and the values of m and n directly determine the unknown parameter identification rate.
步骤4、考虑扇形非线性输入影响并结合分数阶机械臂模型未知参数的自适应估计律,设计有限时间控制器,可以在给定时间内抑制系统产生的振动现象,提高系统运行的可靠性;本发明中有限时间控制器为:Step 4. Considering the influence of the fan-shaped nonlinear input and combining the adaptive estimation law of the unknown parameters of the fractional manipulator model, a finite-time controller is designed, which can suppress the vibration phenomenon generated by the system within a given time and improve the reliability of the system operation; The finite time controller in the present invention is:
其中,为有限时间控制器系数,ε(t)为有限时间控制器结构变量,sgn(Dαs)为符号函数,其值与Dαs有关,当Dαs>0,sgn(Dαs)=1,当Dαs=0,sgn(Dαs)=0,当Dαs<0,sgn(Dαs)=-1。in, is the finite-time controller coefficient, ε(t) is the finite-time controller structural variable, sgn(D α s) is the sign function, and its value is related to D α s, when D α s>0, sgn(D α s) =1, when D α s=0, sgn(D α s)=0, and when D α s<0, sgn(D α s)=−1.
结合公式(5),得:Combined with formula (5), we get:
由于且机械臂结构参数都为正,进一步可得:because And the structural parameters of the manipulator are all positive, we can further obtain:
-sgn(Dαs)φ(u)≥ε(t) (18)-sgn(D α s)φ(u)≥ε(t) (18)
对公式(18)不等式两侧同时乘以|Dαs|,并根据|Dαs|sgn(Dαs)=Dαs,可得:Multiply both sides of the inequality of formula (18) by |D α s| at the same time, and according to |D α s|sgn(D α s)=D α s, we can get:
接下来,验证趋近阶段有限时间特性:Next, verify the finite-time nature of the approach phase:
选择Lyapunov函数Choose the Lyapunov function
其中,为未知上界参数γ的估计误差,即估计值和实际值γ的差, 为未知上界参数λ的估计误差,即估计值和实际值λ的差, in, is the estimated error of the unknown upper bound parameter γ, that is, the estimated value difference from the actual value γ, is the estimated error of the unknown upper bound parameter λ, that is, the estimated value difference from the actual value λ,
对式(20)求α阶分数阶导数,并结合公式(3)、(6)、(9),可得:Calculate the α-order fractional derivative of formula (20), and combine formulas (3), (6), (9), we can get:
根据所设计的有限时间控制器(10)和扇形非线性输入满足的关系式(19),将公式(21)进一步简化为:According to the relation (19) satisfied by the designed finite-time controller (10) and the fan-shaped nonlinear input, formula (21) is further simplified as:
类似式(12)推导可得,分数阶机械臂模型的轨迹将在有限时间t1内到达滑模面,并沿着滑模面继续运动到原点,此时系统振动得到有效抑制:Similar to formula (12), it can be obtained that the trajectory of the fractional manipulator model will reach the sliding mode surface within a finite time t 1 , and continue to move to the origin along the sliding mode surface, at this time, the system vibration is effectively suppressed:
其中,η2>0为辅助参数。Among them, η 2 >0 is an auxiliary parameter.
综上分析,趋近阶段和滑模阶段经验证都是有限时间稳定的,即整个控制阶段为有限时间稳定。To sum up, the approach stage and the sliding mode stage are verified to be stable in a limited time, that is, the entire control stage is stable in a limited time.
步骤5、将建立的分数阶机械臂模型未知参数的自适应估计律以及设计的有限时间控制器应用于分数阶机械臂模型中,实现有限时间振动抑制。Step 5: Apply the adaptive estimation law of the unknown parameters of the established fractional-order manipulator model and the designed finite-time controller to the fractional-order manipulator model to realize finite-time vibration suppression.
本发明分数阶机械臂模型的变结构有限时间振动抑制方法能够实现分数阶机械臂模型的有限时间振动抑制,实现分数阶机械臂模型的状态轨迹在有限时间内收敛到平衡状态。尤其当系统出现输入非线性特性时,所设计的有限时间控制器可以提高受控系统的鲁棒性,改善分数阶机械臂模型的性能。相较于传统滑模控制技术,分数阶P(ID)α终端滑模面的设计,可以通过对分数阶微积分阶次的调节,灵活地调节过渡时间。The variable-structure finite-time vibration suppression method of the fractional-order manipulator model of the present invention can realize the finite-time vibration suppression of the fractional-order manipulator model, and realize that the state trajectory of the fractional manipulator model converges to an equilibrium state within a limited time. Especially when the system has input nonlinear characteristics, the designed finite-time controller can improve the robustness of the controlled system and improve the performance of the fractional-order manipulator model. Compared with the traditional sliding mode control technology, the design of the fractional P(ID) α terminal sliding mode surface can flexibly adjust the transition time by adjusting the fractional calculus order.
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施方式,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。The above are only preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions that belong to the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should be regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210831612.XA CN115202189A (en) | 2022-07-15 | 2022-07-15 | Variable-structure finite-time vibration suppression method for fractional-order manipulator model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210831612.XA CN115202189A (en) | 2022-07-15 | 2022-07-15 | Variable-structure finite-time vibration suppression method for fractional-order manipulator model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115202189A true CN115202189A (en) | 2022-10-18 |
Family
ID=83582368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210831612.XA Pending CN115202189A (en) | 2022-07-15 | 2022-07-15 | Variable-structure finite-time vibration suppression method for fractional-order manipulator model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115202189A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115586724A (en) * | 2022-10-27 | 2023-01-10 | 南京师范大学泰州学院 | Self-adaptive fractional order global sliding mode control method for gear inspection robot system |
CN116394257A (en) * | 2023-05-18 | 2023-07-07 | 南通大学 | Mechanical arm vibration reduction control method based on fractional order feedback |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106647277A (en) * | 2017-01-06 | 2017-05-10 | 淮阴工学院 | Self-adaptive dynamic surface control method of arc-shaped mini-sized electromechanical chaotic system |
CN108181813A (en) * | 2017-12-28 | 2018-06-19 | 南京埃斯顿机器人工程有限公司 | A kind of fractional order sliding-mode control of flexible joint mechanical arm |
CN110058525A (en) * | 2019-05-17 | 2019-07-26 | 金陵科技学院 | Fractional order is centrifuged flywheel speed-regulating system finite time stabilized control method |
-
2022
- 2022-07-15 CN CN202210831612.XA patent/CN115202189A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106647277A (en) * | 2017-01-06 | 2017-05-10 | 淮阴工学院 | Self-adaptive dynamic surface control method of arc-shaped mini-sized electromechanical chaotic system |
CN108181813A (en) * | 2017-12-28 | 2018-06-19 | 南京埃斯顿机器人工程有限公司 | A kind of fractional order sliding-mode control of flexible joint mechanical arm |
CN110058525A (en) * | 2019-05-17 | 2019-07-26 | 金陵科技学院 | Fractional order is centrifuged flywheel speed-regulating system finite time stabilized control method |
Non-Patent Citations (2)
Title |
---|
XIAOMIN TIAN: "Finite-time Stabilization of Fractional-order Systems withModel Uncertainties and External Disturbances", THE 26TH CHINESE CONTROL AND DECISION CONFERENCE, 2 June 2014 (2014-06-02) * |
胡斌: "机器人轨迹跟踪控制方法研究", 中国优秀硕士学位论文全文数据库(信息科技辑), 15 January 2020 (2020-01-15) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115586724A (en) * | 2022-10-27 | 2023-01-10 | 南京师范大学泰州学院 | Self-adaptive fractional order global sliding mode control method for gear inspection robot system |
CN115586724B (en) * | 2022-10-27 | 2023-11-24 | 南京师范大学泰州学院 | Self-adaptive fractional order global sliding mode control method for gear inspection robot system |
CN116394257A (en) * | 2023-05-18 | 2023-07-07 | 南通大学 | Mechanical arm vibration reduction control method based on fractional order feedback |
CN116394257B (en) * | 2023-05-18 | 2024-09-20 | 南通大学 | Mechanical arm vibration reduction control method based on fractional order feedback |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Valency et al. | Accuracy/robustness dilemma in impedance control | |
Hu et al. | Adaptive robust precision motion control of systems with unknown input dead-zones: A case study with comparative experiments | |
CN115202189A (en) | Variable-structure finite-time vibration suppression method for fractional-order manipulator model | |
Zain et al. | Hybrid learning control schemes with input shaping of a flexible manipulator system | |
Yao | Desired compensation adaptive robust control | |
Ghafarirad et al. | Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators | |
Jezernik et al. | Observer-based sliding mode control of a robotic manipulator | |
Lin et al. | Digital signal processor-based cross-coupled synchronous control of dual linear motors via functional link radial basis function network | |
Zirkohi | Direct adaptive function approximation techniques based control of robot manipulators | |
Xie et al. | Robust cascade path-tracking control of networked industrial robot using constrained iterative feedback tuning | |
CN110703609A (en) | Intelligent motion control method for motor servo system | |
CN111033396A (en) | Method for setting control parameters for model predictive control | |
Misgeld et al. | Closed-loop positive real optimal control of variable stiffness actuators | |
Wang et al. | Model-free adaptive sliding mode control with adjustable funnel boundary for robot manipulators with uncertainties | |
Wang et al. | Output torque tracking control of direct-drive rotary torque motor with dynamic friction compensation | |
Taghirad et al. | H∞-based robust torque control of harmonic drive systems | |
Xu | Robotic time-varying force tracking in position-based impedance control | |
Zhang et al. | Disturbance preview-based output feedback predictive control for pneumatic artificial muscle robot systems with hysteresis compensation | |
CN112859613A (en) | High-precision control method of control moment gyro frame system based on harmonic reducer | |
Chen | Development of nonlinear disturbance observer based control and nonlinear PID: A personal note | |
Sharkawy et al. | A robust fuzzy tracking control scheme for robotic manipulators with experimental verification | |
He et al. | A semiparametric model-based friction compensation method for multijoint industrial robot | |
Lacevic et al. | Closed-form solution to controller design for human-robot interaction | |
Nam | Comparison study of time delay control (TDC) and uncertainty and disturbance estimation (UDE) based control | |
Chatlatanagulchai et al. | Model-independent control of a flexible-joint robot manipulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |