CN115191331B - 一种用于立面复绿智能喷灌系统及方法 - Google Patents

一种用于立面复绿智能喷灌系统及方法 Download PDF

Info

Publication number
CN115191331B
CN115191331B CN202211000439.5A CN202211000439A CN115191331B CN 115191331 B CN115191331 B CN 115191331B CN 202211000439 A CN202211000439 A CN 202211000439A CN 115191331 B CN115191331 B CN 115191331B
Authority
CN
China
Prior art keywords
spray head
elevation angle
limit value
elevation
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211000439.5A
Other languages
English (en)
Other versions
CN115191331A (zh
Inventor
马吴艳
吴小庆
步立生
吴鲁皖
李奎
王帅
康铭铭
阎晓萌
周新宇
张子悦
陶国章
孟祥飞
杨坤
吴领昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Austria Ecological Environment Co ltd
Original Assignee
China Austria Ecological Environment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Austria Ecological Environment Co ltd filed Critical China Austria Ecological Environment Co ltd
Priority to CN202211000439.5A priority Critical patent/CN115191331B/zh
Publication of CN115191331A publication Critical patent/CN115191331A/zh
Application granted granted Critical
Publication of CN115191331B publication Critical patent/CN115191331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Abstract

本发明公开了一种用于立面复绿智能喷灌方法,包括以下步骤:获取立面坡度α和喷头仰角β;设定仰角变化量θ,并在立面坡度α不变的情况下,以喷头仰角(β+nθ)进行工作,其中n为正整数;获取喷头在立面坡度α和喷头仰角(β+nθ)的工作状态下,喷头所喷出的水雾所包含的灌溉区域的上极限值Hnmax和下极限值Hnmin;计算灌溉区域系数ΔHn,ΔHn=Hnmax‑Hnmin,获取无风环境下的最优喷头仰角γ,所述的喷头仰角γ对应最大的灌溉区域系数ΔHnmax。相比于现有技术,本申请可以根据风速进行相应的修正,使得喷灌设备一直保持最佳的灌溉位置。

Description

一种用于立面复绿智能喷灌系统及方法
技术领域
本发明涉及立面绿化技术领域,具体涉及一种用于立面复绿智能喷灌系统及方法。
背景技术
立面,是一个建筑学的术语,一般指建筑物的外墙——尤其是正面,但亦可指侧面或背面。立面复绿则指的是,在建筑物的立面处进行一系列的绿化操作,使其上附着有绿色的植被。因为立面不同于与常规的地面,所以在对立面进行绿化操作的时候,多半是利用客土掺混粘合剂和锚杆加固铁丝网技术,运用特制喷混机械将土壤、肥料、有机物质、保水材料、粘结材料、植物种子等混合干料加水后喷射到岩面上,形成近10㎝厚度的具有连续空隙的硬化体。种子可以在空隙中生根、发芽、生长,而一定程度的硬化又可防止雨水冲刷,从而达到恢复植被、改善景观、保护环境的目的。
而人工植被面临的最直观的问题就是日常的灌溉,常见的灌溉方式有漫灌、喷灌、滴灌和渗灌,但是考虑到立面绿化所覆盖的厚度比较浅,在植物根系与立面紧密吸附之前,漫灌和渗灌的方式容易造成硬化体的脱落;而滴灌则是借助重力的作用,使水滴向下滴落至植物根系部位,在立面上也无法实现;所以对于立面绿化植被来说,喷灌是最好的选择。
对于喷灌来说,可以实施的方式有很多,但是受限于立面的高度和倾斜程度,除了直接在立面上安装喷灌喷头之外,其余大多数方式要么费时费力,要么效果不佳;但是安装在立面上的喷头所喷出的水雾仍然会有相当一部分在重力和风力的作用下,难以弥散到植物表面,而是落到地面上,影响喷灌效果。
发明内容
本发明的目的在于提供一种用于立面复绿智能喷灌系统及方法,解决以下技术问题:
喷灌设备设置于立面上,部分水雾会在重力和风力的作用下无法弥散到植物表面,导致灌溉效果降低。
本发明的目的可以通过以下技术方案实现:
一种用于立面复绿智能喷灌方法,包括喷头和调节喷头转动的旋转组件,包括以下步骤:
获取立面坡度α和喷头仰角β;所述的立面坡度为立面覆盖有植被的一侧与地面的夹角;所述的喷头仰角β为喷头的中轴线与立面之间的最小夹角,并且所述的喷头仰角位于远离地面的一侧;
设定仰角变化量θ,并在立面坡度α不变的情况下,以喷头仰角(β+nθ)进行工作,其中n为正整数;
获取喷头在立面坡度α和喷头仰角(β+nθ)的工作状态下,喷头所喷出的水雾所包含的灌溉区域的上极限值Hnmax和下极限值Hnmin,所述的上极限值Hnmax为所述的灌溉区域离地面的最大高度,所述的下极限值Hnmin为所述的灌溉区域离地面的最低高度;
计算灌溉区域系数ΔHn,ΔHn=Hnmax-Hnmin,获取无风环境下的最优喷头仰角γ,所述的喷头仰角γ对应最大的灌溉区域系数ΔHnmax。
作为本发明进一步的方案:所述的步骤还包括:
计算标准风力影响量,在所述的标准风力影响量的计算过程中,对所述的喷头施加一个标准风速分量Vj,所述的标准风速风量Vj倾斜向上并且垂直所述的喷头的中轴线,测得此状态下的上极限值Hjmax和下极限值Hjmin,获取与上极限值Hjmax和下极限值Hjmin相对应的喷头仰角k,并计算出喷头仰角k与当前喷头仰角的差值Δk;
获取风速,计算出风速沿垂直于喷头中轴线方向上的风速分量V,计算出修正系数m=V/Vj,以及修正量ω=mΔk,将喷头仰角调整为(γ+mΔk),所述的(γ+mΔk)为有风环境下的最优喷头仰角。
作为本发明进一步的方案:所述的立面坡度α的取值区间为[90,180),所述的喷头仰角(β+nθ)的取值范区间为(0,90)。
作为本发明进一步的方案:如果不存在任一组上极限值Hnmax和下极限值Hnmin与所述的标准风力影响量计算过程中的上极限值Hjmax和下极限值Hjmin相同时,则取选择差值最小的一组作为参照。
作为本发明进一步的方案:在计算标准风力影响量的过程中,将所述的喷头的喷头仰角调整至等于无风环境下的最优喷头仰角γ,所述的Δk=k-γ。
作为本发明进一步的方案:所述的标准风速风量Vj的方向为斜向上或者竖直向上。
作为本发明进一步的方案:所述的仰角变化量θ的取值区间为(0,10]。
一种用于立面复绿智能喷灌系统,包括:
检测模块,获取立面坡度α和喷头仰角β;所述的立面坡度为立面覆盖有植被的一侧与地面的夹角;所述的喷头仰角β为喷头的中轴线与立面之间的最小夹角,并且所述的喷头仰角位于远离地面的一侧;
测试模块,设定仰角变化量θ,并在立面坡度α不变的情况下,以喷头仰角(β+nθ)进行工作,其中n为正整数,获取喷头在立面坡度α和喷头仰角(β+nθ)的工作状态下,喷头所喷出的水雾所包含的灌溉区域的上极限值Hnmax和下极限值Hnmin,所述的上极限值Hnmax为所述的灌溉区域离地面的最大高度,所述的下极限值Hnmin为所述的灌溉区域离地面的最低高度;计算灌溉区域系数ΔHn,ΔHn=Hnmax-Hnmin,获取无风环境下的最优喷头仰角γ,所述的喷头仰角γ对应最大的灌溉区域系数ΔHnmax;
测算模块,计算标准风力影响量,在所述的标准风力影响量的计算过程中,对所述的喷头施加一个标准风速分量Vj,所述的标准风速风量Vj倾斜向上并且垂直所述的喷头的中轴线,测得此状态下的上极限值Hjmax和下极限值Hjmin,获取与上极限值Hjmax和下极限值Hjmin相对应的喷头仰角k,并计算出喷头仰角k与当前喷头仰角的差值Δk;
修正模块,获取风速,计算出风速沿垂直于喷头中轴线方向上的风速分量V,计算出修正系数m=V/Vj,以及修正量ω=mΔk,将喷头仰角调整为(γ+mΔk),所述的(γ+mΔk)为有风环境下的最优喷头仰角。
本发明的有益效果:在本申请中,所应用的特别场景为立面,立面可以认为是与地面存在一定夹角(立面坡度α)的斜面,而常见的漫灌和渗灌的方式容易造成附着层脱落,以及滴灌的不适用,所以采用了喷灌的方式进行植被的灌溉;而在实际操作中又存在重力(因为喷头安装在立面上)和风力的影响,同样会导致灌溉效果降低,所以,本申请通过验证测试的方式来获取单位环境风变量(标准风速分量Vj)对喷头所造成的影响,以及克服该影响所需要的修正值(差值Δk),从而应用在具体的环境中,使得喷头一致保持在最佳的喷灌位置。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明用于立面复绿智能喷灌方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1所示,本发明为一种用于立面复绿智能喷灌方法,包括喷头和调节喷头转动的旋转组件,包括以下步骤:
获取立面坡度α和喷头仰角β;所述的立面坡度为立面覆盖有植被的一侧与地面的夹角;所述的喷头仰角β为喷头的中轴线与立面之间的最小夹角,并且所述的喷头仰角位于远离地面的一侧;
设定仰角变化量θ,并在立面坡度α不变的情况下,以喷头仰角(β+nθ)进行工作,其中n为正整数;
获取喷头在立面坡度α和喷头仰角(β+nθ)的工作状态下,喷头所喷出的水雾所包含的灌溉区域的上极限值Hnmax和下极限值Hnmin,所述的上极限值Hnmax为所述的灌溉区域离地面的最大高度,所述的下极限值Hnmin为所述的灌溉区域离地面的最低高度;
计算灌溉区域系数ΔHn,ΔHn=Hnmax-Hnmin,获取无风环境下的最优喷头仰角γ,所述的喷头仰角γ对应最大的灌溉区域系数ΔHnmax;
计算标准风力影响量,在所述的标准风力影响量的计算过程中,对所述的喷头施加一个标准风速分量Vj,所述的标准风速风量Vj倾斜向上并且垂直所述的喷头的中轴线,测得此状态下的上极限值Hjmax和下极限值Hjmin,获取与上极限值Hjmax和下极限值Hjmin相对应的喷头仰角k,并计算出喷头仰角k与当前喷头仰角的差值Δk;
获取风速,计算出风速沿垂直于喷头中轴线方向上的风速分量V,计算出修正系数m=V/Vj,以及修正量ω=mΔk,将喷头仰角调整为(γ+mΔk)。
在本实施例中,值得注意的是,立面坡度α是立面的固有参数,当立面确定之后就无法被改变,因此在本申请中并不将立面坡度α作为参数,引入分析,而是假设其为喷头的工作条件,因此本申请的方案在标准风力影响量的计算中,所获得的差值Δk仅适用于某一立面坡度α,当更换立面而造成立面坡度α改变时,需要重新测算标准风速分量下的差值Δk。
而文中所提到的旋转组件,主要功能是调节喷头与立面之间的夹角的,可以采用常见的组件,比如气缸、电机和电动转轴等,能实现远程操控,在本申请中定义为现有技术,是本领域人员的常规设备,在常见的喷灌设备上也可以见到。
在喷头运行的过程中,会逐渐增大喷头仰角,从β、β+θ、β+2θ、β+3θ……β+nθ,而每一次改变喷头仰角时,都可以测得一组上极限值和下极限值,因此β对应的是H0max和H0min,与β+θ对应的是H1max和H1min,与β+2θ对应的是H2max和H2min;因此在标准风力影响量的计算过程中,如果所述的上极限值Hjmax分别和下极限值Hjmin与H2max和H2min相等,则喷头仰角k=β+2θ,而当前喷头仰角则指的是,在进行标准风力影响量的过程中,喷头的实际仰角。
还有需要注意的是,本申请中的风速是一个矢量,包括数值大小和方向两部分,其获取的方式多种多样,可以通过常规的风速仪和风向标等来获取风速,也可以通过其他现有技术中设备来获取,如果不要求精度,还可以通过天气预报,具体不做赘述;另外,喷头所喷出的水雾所包含的灌溉区域指的是立面上实际被灌溉到的植被的区域。
在本实施例中,所述的立面坡度α的取值区间为[90,180),所述的喷头仰角(β+nθ)的取值范区间为(0,90),所述的仰角变化量θ的取值区间为(0,10]。
在本实施例一种情况中,如果不存在任一组上极限值Hnmax和下极限值Hnmin与所述的标准风力影响量计算过程中的上极限值Hjmax和下极限值Hjmin相同时,则取选择差值最小的一组作为参照。
在本发明另一种优选的实施例中,在计算标准风力影响量的过程中,将所述的喷头的喷头仰角调整至等于无风环境下的最优喷头仰角γ,所述的Δk=k-γ。引用上述例子,假如k=β+2θ,则Δk=β+2θ-γ。
值得注意的是,所述的标准风速风量Vj的方向为斜向上或者竖直向上。
一种用于立面复绿智能喷灌系统,包括:
检测模块,获取立面坡度α和喷头仰角β;所述的立面坡度为立面覆盖有植被的一侧与地面的夹角;所述的喷头仰角β为喷头的中轴线与立面之间的最小夹角,并且所述的喷头仰角位于远离地面的一侧;
测试模块,设定仰角变化量θ,并在立面坡度α不变的情况下,以喷头仰角(β+nθ)进行工作,其中n为正整数,获取喷头在立面坡度α和喷头仰角(β+nθ)的工作状态下,喷头所喷出的水雾所包含的灌溉区域的上极限值Hnmax和下极限值Hnmin,所述的上极限值Hnmax为所述的灌溉区域离地面的最大高度,所述的下极限值Hnmin为所述的灌溉区域离地面的最低高度;计算灌溉区域系数ΔHn,ΔHn=Hnmax-Hnmin,获取无风环境下的最优喷头仰角γ,所述的喷头仰角γ对应最大的灌溉区域系数ΔHnmax;
测算模块,计算标准风力影响量,在所述的标准风力影响量的计算过程中,对所述的喷头施加一个标准风速分量Vj,所述的标准风速风量Vj倾斜向上并且垂直所述的喷头的中轴线,测得此状态下的上极限值Hjmax和下极限值Hjmin,获取与上极限值Hjmax和下极限值Hjmin相对应的喷头仰角k,并计算出喷头仰角k与当前喷头仰角的差值Δk;
修正模块,获取风速,计算出风速沿垂直于喷头中轴线方向上的风速分量V,计算出修正系数m=V/Vj,以及修正量ω=mΔk,将喷头仰角调整为(γ+mΔk),所述的(γ+mΔk)为有风环境下的最优喷头仰角。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (5)

1.一种用于立面复绿智能喷灌方法,包括喷头和调节喷头转动的旋转组件,其特征在于,包括以下步骤:
获取立面坡度α和喷头仰角β;所述的立面坡度为立面覆盖有植被的一侧与地面的夹角;所述的喷头仰角β为喷头的中轴线与立面之间的最小夹角,并且所述的喷头仰角位于远离地面的一侧;
设定仰角变化量θ,并在立面坡度α不变的情况下,以喷头仰角(β+nθ)进行工作,其中n为正整数;
获取喷头在立面坡度α和喷头仰角(β+nθ)的工作状态下,喷头所喷出的水雾所包含的灌溉区域的上极限值Hnmax和下极限值Hnmin,所述的上极限值Hnmax为所述的灌溉区域离地面的最大高度,所述的下极限值Hnmin为所述的灌溉区域离地面的最低高度,喷头所喷出的水雾所包含的灌溉区域指的是立面上实际被灌溉到的植被的区域;
计算灌溉区域系数ΔHn,ΔHn=Hnmax-Hnmin,获取无风环境下的最优喷头仰角γ,所述的最优喷头仰角γ对应最大的灌溉区域系数ΔHnmax;
所述的步骤还包括:
计算标准风力影响量,在所述的标准风力影响量的计算过程中,对所述的喷头施加一个标准风速分量Vj,所述的标准风速分量Vj倾斜向上并且垂直所述的喷头的中轴线,测得此状态下的上极限值Hjmax和下极限值Hjmin,获取与上极限值Hjmax和下极限值Hjmin相对应的喷头仰角k,并计算出喷头仰角k与当前喷头仰角的差值Δk;如果不存在任一组上极限值Hnmax和下极限值Hnmin与所述的标准风力影响量计算过程中的上极限值Hjmax和下极限值Hjmin相同时,则取选择差值最小的一组作为参照;
获取风速,计算出风速沿垂直于喷头中轴线方向上的风速分量V,计算出修正系数m=V/Vj,以及修正量ω=mΔk,将喷头仰角调整为(γ+mΔk),所述的(γ+mΔk)为有风环境下的最优喷头仰角;
所述的立面坡度α的取值区间为[90°,180°),所述的喷头仰角(β+nθ)的取值区间为(0°,90°)。
2.根据权利要求1所述的一种用于立面复绿智能喷灌方法,其特征在于,在计算标准风力影响量的过程中,将所述的当前喷头仰角调整至等于无风环境下的最优喷头仰角γ,所述的Δk=k-γ。
3.根据权利要求1所述的一种用于立面复绿智能喷灌方法,其特征在于,所述的标准风速分量Vj的方向为斜向上。
4.根据权利要求1所述的一种用于立面复绿智能喷灌方法,其特征在于,所述的仰角变化量θ的取值区间为(0°,10°]。
5.一种用于立面复绿智能喷灌系统,其特征在于,包括:
检测模块,获取立面坡度α和喷头仰角β;所述的立面坡度为立面覆盖有植被的一侧与地面的夹角;所述的喷头仰角β为喷头的中轴线与立面之间的最小夹角,并且所述的喷头仰角位于远离地面的一侧;
测试模块,设定仰角变化量θ,并在立面坡度α不变的情况下,以喷头仰角(β+nθ)进行工作,其中n为正整数,获取喷头在立面坡度α和喷头仰角(β+nθ)的工作状态下,喷头所喷出的水雾所包含的灌溉区域的上极限值Hnmax和下极限值Hnmin,所述的上极限值Hnmax为所述的灌溉区域离地面的最大高度,所述的下极限值Hnmin为所述的灌溉区域离地面的最低高度;计算灌溉区域系数ΔHn,ΔHn=Hnmax-Hnmin,获取无风环境下的最优喷头仰角γ,所述的最优喷头仰角γ对应最大的灌溉区域系数ΔHnmax;
测算模块,计算标准风力影响量,在所述的标准风力影响量的计算过程中,对所述的喷头施加一个标准风速分量Vj,所述的标准风速分量Vj倾斜向上并且垂直所述的喷头的中轴线,测得此状态下的上极限值Hjmax和下极限值Hjmin,获取与上极限值Hjmax和下极限值Hjmin相对应的喷头仰角k,并计算出喷头仰角k与当前喷头仰角的差值Δk;如果不存在任一组上极限值Hnmax和下极限值Hnmin与所述的标准风力影响量计算过程中的上极限值Hjmax和下极限值Hjmin相同时,则取选择差值最小的一组作为参照;
修正模块,获取风速,计算出风速沿垂直于喷头中轴线方向上的风速分量V,计算出修正系数m=V/Vj,以及修正量ω=mΔk,将喷头仰角调整为(γ+mΔk),所述的(γ+mΔk)为有风环境下的最优喷头仰角;
喷头所喷出的水雾所包含的灌溉区域指的是立面上实际被灌溉到的植被的区域;
所述的立面坡度α的取值区间为[90°,180°),所述的喷头仰角(β+nθ)的取值区间为(0°,90°)。
CN202211000439.5A 2022-08-19 2022-08-19 一种用于立面复绿智能喷灌系统及方法 Active CN115191331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211000439.5A CN115191331B (zh) 2022-08-19 2022-08-19 一种用于立面复绿智能喷灌系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211000439.5A CN115191331B (zh) 2022-08-19 2022-08-19 一种用于立面复绿智能喷灌系统及方法

Publications (2)

Publication Number Publication Date
CN115191331A CN115191331A (zh) 2022-10-18
CN115191331B true CN115191331B (zh) 2023-09-22

Family

ID=83573407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211000439.5A Active CN115191331B (zh) 2022-08-19 2022-08-19 一种用于立面复绿智能喷灌系统及方法

Country Status (1)

Country Link
CN (1) CN115191331B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423529A (zh) * 2011-12-19 2012-04-25 西安瑞金源能源科技有限责任公司 一种自动跟踪灭火系统中的风速风向适应系统
KR20140105268A (ko) * 2013-02-22 2014-09-01 경북대학교 산학협력단 지표면 높이를 이용한 설계풍속 산정 장치 및 방법
CN106000737A (zh) * 2016-07-28 2016-10-12 中国农业科学院农田灌溉研究所 一种能调节喷头仰角的机构及带有该机构的灌溉装置
CN109156316A (zh) * 2018-09-27 2019-01-08 邢台市农业科学研究院 适用非标准形状种植区的喷灌方案的设计方法
CN109618883A (zh) * 2019-01-24 2019-04-16 重庆大学 一种用于坡地、风力环境的自调整喷射装置及使用方法
CN109997658A (zh) * 2019-04-23 2019-07-12 上海同济城市规划设计研究院有限公司 智能喷灌系统以及喷灌控制方法
CN113711892A (zh) * 2021-09-17 2021-11-30 广州大学 一种感风灌溉方法以及装置
CN114467699A (zh) * 2022-03-02 2022-05-13 浙江绿艺建设有限公司 下沉式绿地喷灌系统及实施方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423529A (zh) * 2011-12-19 2012-04-25 西安瑞金源能源科技有限责任公司 一种自动跟踪灭火系统中的风速风向适应系统
KR20140105268A (ko) * 2013-02-22 2014-09-01 경북대학교 산학협력단 지표면 높이를 이용한 설계풍속 산정 장치 및 방법
CN106000737A (zh) * 2016-07-28 2016-10-12 中国农业科学院农田灌溉研究所 一种能调节喷头仰角的机构及带有该机构的灌溉装置
CN109156316A (zh) * 2018-09-27 2019-01-08 邢台市农业科学研究院 适用非标准形状种植区的喷灌方案的设计方法
CN109618883A (zh) * 2019-01-24 2019-04-16 重庆大学 一种用于坡地、风力环境的自调整喷射装置及使用方法
CN109997658A (zh) * 2019-04-23 2019-07-12 上海同济城市规划设计研究院有限公司 智能喷灌系统以及喷灌控制方法
CN113711892A (zh) * 2021-09-17 2021-11-30 广州大学 一种感风灌溉方法以及装置
CN114467699A (zh) * 2022-03-02 2022-05-13 浙江绿艺建设有限公司 下沉式绿地喷灌系统及实施方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A.A.Soares,L.S.Willardson,J.Keller,崔天怀.地面坡度对喷灌均匀度的影响.灌溉排水学报.1993,全文. *
付志光 ; 叶邦彦 ; 韦水平 ; 梁添杰 ; .反馈式自适应抗风喷灌节水喷头的研制.机械制造与自动化.2007,全文. *
喷灌喷头抗风调节机制的研究;郑涵午等;节水灌溉(第5期);第79-81页 *
有风条件下喷射仰角对喷头性能的影响;R.D.Von Bernuth等;喷灌技术;第51-54页 *
陈学敏,陈大雕,袁达.坡地喷灌水量分布计算模型及其应用.水利学报.1989,全文. *

Also Published As

Publication number Publication date
CN115191331A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Mateos Assessing whole-field uniformity of stationary sprinkler irrigation systems
CN109258417B (zh) 一种自动灌溉方法
CN111742825A (zh) 农田精准灌溉控制模型的构建与应用
CN103563634A (zh) 烤烟抗旱节水栽培作业方法
CN115191331B (zh) 一种用于立面复绿智能喷灌系统及方法
CN209653241U (zh) 一种用于建筑物顶面绿化的建筑结构
CN105052692B (zh) 水稻叶片温差控制灌溉系统
CN106879434B (zh) 基于干深-时域控制的智能节水灌溉系统及其方法
CN114757405B (zh) 灌区水资源均衡优化配置方法
CN113179923A (zh) 一种农作物精确灌溉算法及控制系统
CN207022646U (zh) 智能化人造水循环耕地
CN106386024A (zh) 一种墙面种植绿化工艺
CN1480020A (zh) 智能化草坪系统
CN205389661U (zh) 垂直绿化系统
CN1393603A (zh) 粘结式快速治理沙化土地方法
CN204498986U (zh) 一种基于风电的农田灌溉设备
CN207692533U (zh) 一种小麦滴灌育苗装置
CN206658479U (zh) 中心支轴拖管式施肥灌溉一体机
CN110432121A (zh) 一种蓄水稳定水压灌溉系统
CN111357529A (zh) 一种用于高陡岩质边坡的孔穴式植物固定装置及复绿方法
CN108112328A (zh) 一种高海拔沙化地区植被恢复的养护方法
CN112772248A (zh) 一种古木大树一体化自动监测管理方法和设备
CN216626581U (zh) 一种种子毯的生产线
CN215736019U (zh) 一种垂直绿化钢结构房屋建筑
CN217284336U (zh) 一种可自动调节浇水高度的风景园林浇灌装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant