CN115187316A - 一种适应现货市场交易的风储微电网分布式交易方法 - Google Patents

一种适应现货市场交易的风储微电网分布式交易方法 Download PDF

Info

Publication number
CN115187316A
CN115187316A CN202211113178.8A CN202211113178A CN115187316A CN 115187316 A CN115187316 A CN 115187316A CN 202211113178 A CN202211113178 A CN 202211113178A CN 115187316 A CN115187316 A CN 115187316A
Authority
CN
China
Prior art keywords
microgrid
power
distribution network
time
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211113178.8A
Other languages
English (en)
Other versions
CN115187316B (zh
Inventor
侯婷婷
方仍存
王灼
侯慧
汪致洵
贺兰菲
颜玉林
唐金锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Wuhan University of Technology WUT
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT, Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Wuhan University of Technology WUT
Priority to CN202211113178.8A priority Critical patent/CN115187316B/zh
Publication of CN115187316A publication Critical patent/CN115187316A/zh
Application granted granted Critical
Publication of CN115187316B publication Critical patent/CN115187316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Hardware Design (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种适应现货市场交易的风储微电网分布式交易方法,包括以下步骤:建立配电网多时段动态重构模型;在考虑风电不确定性的基础上,建立多微网P2P能源交易模型;基于增广拉格朗日罚函数法分别松弛多微网之间的耦合约束以及多微网与配电网之间的耦合约束,将原始双层优化问题分解为多个子问题,得到双层优化模型,以实现上层配电网重构和下层多微网P2P能源交易决策一致性;在ADMM算法的基础上,引入并行求解机制,得到嵌入式并行ADMM算法,在保护个体隐私的情况下以最小信息开销迭代求解配电网最优重构方案及多微网最优交易策略。本发明不仅提高了交易方案的可实施性,而且增强了微网的自主性和交互性。

Description

一种适应现货市场交易的风储微电网分布式交易方法
技术领域
本发明涉及电力系统优化调度领域,尤其涉及一种适应现货市场交易的风储微电网分布式交易方法。
背景技术
微网传统的单一运行模式忽略了微网间的互联互济,无法为上级电网安全稳定运行提供支撑。因此,将局部区域内邻近微网组成互联多微网系统,一方面能够提高电力系统运行稳定性和可靠性,另一方面可以缓解分布式发电与需求不匹配等问题,实现发电资源优势互补,降低互联系统总运营成本。可再生能源的随机性使得多微网运营和交易过程大大复杂化。此外,随着微网在配网侧的接入,如何在满足配电网潮流约束的基础上响应多微网短期交易诉求成为关键问题。然而,多微网P2P能源交易会对配电网运行造成影响,这反过来不可避免会影响多微网能源交易过程。因此,为了降低优化过程的复杂性,现有的多微网P2P交易优化方法大多假设可再生能源出力是固定的,同时将配电网模型进行简化,忽略配电网潮流约束,这无疑会降低求解方案的可实施性。此外,常规验证性潮流模型中固定的网络拓扑导致多微网交易方案受到配电网调度需求影响,降低了微网的自主性和交互性。
发明内容
本发明的目的是克服现有技术中存在的可实施性差、微网的自主性和交互性差的缺陷与问题,提供一种可实施性好、微网的自主性和交互性好的适应现货市场交易的风储微电网分布式交易方法。
为实现以上目的,本发明的技术解决方案是:一种适应现货市场交易的风储微电网分布式交易方法,该方法包括以下步骤:
S1、建立配电网多时段动态重构模型,该模型以最小化网络损耗成本、支路开关动作成本和最大化过网费收益为配电网目标函数,以Distflow潮流约束、配电网辐射结构约束、开关动作次数约束、安全运行约束、系统运行约束为配电网约束条件;
S2、在考虑风电不确定性的基础上,建立多微网P2P能源交易模型,该模型以微型燃气轮机运行成本、储能设施折旧成本、与相邻微网P2P能源交易成本、与配电网功率交互成本之和期望最小为微网目标函数,以微型燃气轮机运行约束、储能设施运行约束、风电出力约束、能源交易约束、功率平衡约束为微网约束条件;
S3、基于增广拉格朗日罚函数法分别松弛多微网之间的耦合约束以及多微网与配电网之间的耦合约束,将原始双层优化问题分解为多个子问题,得到双层优化模型,以实现上层配电网重构和下层多微网P2P能源交易决策一致性;
S4、在ADMM算法的基础上,引入并行求解机制,得到嵌入式并行ADMM算法;基于嵌入式并行ADMM算法,在保护个体隐私的情况下以最小信息开销迭代求解配电网最优重构方案及多微网最优交易策略。
步骤S1中,所述配电网目标函数
Figure 303692DEST_PATH_IMAGE001
为:
Figure 751991DEST_PATH_IMAGE002
式中,
Figure 797307DEST_PATH_IMAGE003
为配电网网络损耗成本,
Figure 582730DEST_PATH_IMAGE004
为支路开关动作成本,
Figure 662681DEST_PATH_IMAGE005
为配电系统运营 商向微网收取的过网费;
Figure 750723DEST_PATH_IMAGE006
Figure 424281DEST_PATH_IMAGE007
Figure 888760DEST_PATH_IMAGE008
式中,
Figure 823218DEST_PATH_IMAGE009
为配电网节点
Figure 82161DEST_PATH_IMAGE010
和节点
Figure 226703DEST_PATH_IMAGE011
之间的支路,
Figure 494874DEST_PATH_IMAGE012
为配电网支路集合,
Figure 283838DEST_PATH_IMAGE013
为配电网节点集合,
Figure 854628DEST_PATH_IMAGE014
为时刻集合,
Figure 361833DEST_PATH_IMAGE015
为与配电网节点
Figure 902535DEST_PATH_IMAGE011
相连的微 网,
Figure 201799DEST_PATH_IMAGE016
为与配电网节点
Figure 68123DEST_PATH_IMAGE011
相连的微网集合,
Figure 62624DEST_PATH_IMAGE017
为配电网网络损耗成本系 数,
Figure 813543DEST_PATH_IMAGE018
为支路
Figure 577099DEST_PATH_IMAGE019
的电阻,
Figure 22117DEST_PATH_IMAGE020
Figure 238334DEST_PATH_IMAGE021
时刻流经支路
Figure 386419DEST_PATH_IMAGE022
的电流,
Figure 879848DEST_PATH_IMAGE023
为支路开关动作一次的成 本系数,
Figure 353555DEST_PATH_IMAGE024
Figure 57069DEST_PATH_IMAGE021
时刻相对上一时刻支路开关动作次数,
Figure 867899DEST_PATH_IMAGE025
为过网费单位价格,
Figure 606048DEST_PATH_IMAGE026
为配 电网与微网
Figure 250656DEST_PATH_IMAGE027
通过节点
Figure 582411DEST_PATH_IMAGE028
Figure 337877DEST_PATH_IMAGE021
时刻的总交互功率。
步骤S1中,Distflow潮流约束为:
Figure 789587DEST_PATH_IMAGE029
Figure 605096DEST_PATH_IMAGE030
Figure 283202DEST_PATH_IMAGE031
Figure 717726DEST_PATH_IMAGE032
Figure 164888DEST_PATH_IMAGE033
式中,
Figure 10353DEST_PATH_IMAGE034
为节点
Figure 175755DEST_PATH_IMAGE035
的子节点,
Figure 7445DEST_PATH_IMAGE036
为节点
Figure 574692DEST_PATH_IMAGE035
的子节点集合,
Figure 76212DEST_PATH_IMAGE037
Figure 994489DEST_PATH_IMAGE038
分别为
Figure 629870DEST_PATH_IMAGE039
时刻 支路
Figure 910679DEST_PATH_IMAGE040
发送端有功功率和无功功率,
Figure 973313DEST_PATH_IMAGE041
Figure 847728DEST_PATH_IMAGE042
分别为
Figure 427745DEST_PATH_IMAGE039
时刻支路
Figure 704005DEST_PATH_IMAGE043
发送端有功功率和 无功功率,
Figure 937541DEST_PATH_IMAGE044
Figure 299252DEST_PATH_IMAGE045
分别为
Figure 401069DEST_PATH_IMAGE039
时刻节点
Figure 531836DEST_PATH_IMAGE035
注入的有功功率和无功功率,
Figure 936273DEST_PATH_IMAGE046
为支路
Figure 926225DEST_PATH_IMAGE047
的电 抗;
Figure 441520DEST_PATH_IMAGE048
为布尔变量,
Figure 692373DEST_PATH_IMAGE048
表示
Figure 267711DEST_PATH_IMAGE039
时刻支路
Figure 728648DEST_PATH_IMAGE043
的开关状态,
Figure 47634DEST_PATH_IMAGE049
表示
Figure 418572DEST_PATH_IMAGE039
时刻支路
Figure 40178DEST_PATH_IMAGE050
开 关闭合,
Figure 598198DEST_PATH_IMAGE051
表示
Figure 720875DEST_PATH_IMAGE039
时刻支路
Figure 680741DEST_PATH_IMAGE043
开关打开;
Figure 988094DEST_PATH_IMAGE052
为辅助变量,
Figure 298990DEST_PATH_IMAGE053
为足够大的正数,
Figure 959778DEST_PATH_IMAGE054
Figure 649517DEST_PATH_IMAGE055
分别为
Figure 3137DEST_PATH_IMAGE039
时刻节点
Figure 535750DEST_PATH_IMAGE056
与节点
Figure 396302DEST_PATH_IMAGE035
的电压幅值;
配电网辐射结构约束为:
Figure 65180DEST_PATH_IMAGE057
式中,
Figure 589703DEST_PATH_IMAGE058
为布尔变量,表示
Figure 609611DEST_PATH_IMAGE039
时刻支路
Figure 487569DEST_PATH_IMAGE019
的开关状态,
Figure 542112DEST_PATH_IMAGE059
表示
Figure 237536DEST_PATH_IMAGE039
时刻支路 开关闭合,
Figure 603795DEST_PATH_IMAGE060
表示
Figure 410077DEST_PATH_IMAGE039
时刻支路开关打开;
Figure 319127DEST_PATH_IMAGE061
为配电网中的根节点数;
开关动作次数约束为:
Figure 60818DEST_PATH_IMAGE062
Figure 55319DEST_PATH_IMAGE063
式中,
Figure 399713DEST_PATH_IMAGE064
为单个优化周期内支路开关动作总次数上限;
安全运行约束为:
Figure 163269DEST_PATH_IMAGE065
Figure 59550DEST_PATH_IMAGE066
Figure 541347DEST_PATH_IMAGE067
Figure 689432DEST_PATH_IMAGE068
式中,
Figure 307495DEST_PATH_IMAGE069
Figure 656568DEST_PATH_IMAGE070
分别为节点
Figure 360081DEST_PATH_IMAGE056
电压下限和上限;
Figure 46278DEST_PATH_IMAGE071
为支路
Figure 909060DEST_PATH_IMAGE022
允许通过的最大电 流;
Figure 22510DEST_PATH_IMAGE072
Figure 478899DEST_PATH_IMAGE073
分别为支路
Figure 844152DEST_PATH_IMAGE009
有功功率下限和上限;
Figure 436808DEST_PATH_IMAGE074
Figure 986738DEST_PATH_IMAGE075
分别为支路
Figure 55057DEST_PATH_IMAGE022
无功功率下 限和上限;
系统运行约束为:
Figure 83056DEST_PATH_IMAGE076
Figure 530218DEST_PATH_IMAGE077
Figure 251049DEST_PATH_IMAGE078
式中,
Figure 557396DEST_PATH_IMAGE079
Figure 389086DEST_PATH_IMAGE080
分别为节点
Figure 690755DEST_PATH_IMAGE035
Figure 707121DEST_PATH_IMAGE039
时刻从主网吸收的有功功率和无功功率;
Figure 625398DEST_PATH_IMAGE081
Figure 995200DEST_PATH_IMAGE082
分别为节点
Figure 292320DEST_PATH_IMAGE035
Figure 620533DEST_PATH_IMAGE039
时刻的有功负载和无功负载;
Figure 494948DEST_PATH_IMAGE083
为公共耦合节点PCC有功功率传 输上限。
步骤S2中,所述微网
Figure 58654DEST_PATH_IMAGE015
目标函数
Figure 334914DEST_PATH_IMAGE084
为:
Figure 568450DEST_PATH_IMAGE085
式中,
Figure 930161DEST_PATH_IMAGE086
为风电出力场景,
Figure 782710DEST_PATH_IMAGE087
为微网
Figure 179057DEST_PATH_IMAGE015
内部风电出力场景集合,
Figure 583493DEST_PATH_IMAGE088
为场景
Figure 557134DEST_PATH_IMAGE089
对应的 概率,
Figure 338008DEST_PATH_IMAGE090
为微网
Figure 588861DEST_PATH_IMAGE015
内微型燃气轮机发电成本,
Figure 39565DEST_PATH_IMAGE091
为微网
Figure 375869DEST_PATH_IMAGE015
内储能设施发电折旧成本,
Figure 694854DEST_PATH_IMAGE092
为微网
Figure 184567DEST_PATH_IMAGE015
与相邻微网P2P交易成本,
Figure 930807DEST_PATH_IMAGE093
为微网
Figure 488827DEST_PATH_IMAGE015
从配电网购电成本或向配电网售电所得收 益,
Figure 611504DEST_PATH_IMAGE094
为微网
Figure 712315DEST_PATH_IMAGE015
传递能源交易所需过网费;
Figure 629455DEST_PATH_IMAGE095
Figure 940351DEST_PATH_IMAGE096
Figure 725773DEST_PATH_IMAGE097
Figure 540145DEST_PATH_IMAGE098
Figure 893766DEST_PATH_IMAGE099
式中,
Figure 567324DEST_PATH_IMAGE100
为微网
Figure 766224DEST_PATH_IMAGE015
内部微型燃气轮机发电系数,
Figure 700682DEST_PATH_IMAGE101
为微网
Figure 225205DEST_PATH_IMAGE015
内部微型燃气轮机 在场景
Figure 104168DEST_PATH_IMAGE102
Figure 637917DEST_PATH_IMAGE039
时刻的发电功率,
Figure 426882DEST_PATH_IMAGE103
为微网
Figure 732092DEST_PATH_IMAGE015
内部储能设施充放电损耗成本系数,
Figure 239297DEST_PATH_IMAGE104
Figure 45579DEST_PATH_IMAGE105
分别为微网
Figure 689050DEST_PATH_IMAGE015
内部储能设施在场景
Figure 680009DEST_PATH_IMAGE106
Figure 674509DEST_PATH_IMAGE039
时刻的充电功率和放电功率,
Figure 284482DEST_PATH_IMAGE107
为微网
Figure 923405DEST_PATH_IMAGE015
和 微网
Figure 695052DEST_PATH_IMAGE108
之间P2P能源交易价格;
Figure 176849DEST_PATH_IMAGE109
为微网
Figure 715147DEST_PATH_IMAGE015
和微网
Figure 333210DEST_PATH_IMAGE108
Figure 275758DEST_PATH_IMAGE039
时刻的P2P能源交易量,
Figure 979272DEST_PATH_IMAGE110
表示微网
Figure 806413DEST_PATH_IMAGE015
Figure 278983DEST_PATH_IMAGE039
时刻从微网
Figure 923591DEST_PATH_IMAGE108
购电,
Figure 239035DEST_PATH_IMAGE111
表示微网
Figure 728922DEST_PATH_IMAGE015
Figure 321577DEST_PATH_IMAGE039
时刻向微网
Figure 12453DEST_PATH_IMAGE108
售电;
Figure 424980DEST_PATH_IMAGE112
Figure 718558DEST_PATH_IMAGE113
分别为微网
Figure 165719DEST_PATH_IMAGE015
从配电网购电价格和向配电网售电价格,
Figure 11185DEST_PATH_IMAGE114
Figure 176587DEST_PATH_IMAGE115
分别为微网
Figure 8276DEST_PATH_IMAGE015
Figure 309945DEST_PATH_IMAGE039
时刻从 配电网购电量和向配电网售电量,
Figure 342623DEST_PATH_IMAGE116
为微网
Figure 729742DEST_PATH_IMAGE015
Figure 365123DEST_PATH_IMAGE039
时刻总功率交易量。
步骤S2中,微型燃气轮机运行约束为:
Figure 911510DEST_PATH_IMAGE117
Figure 239724DEST_PATH_IMAGE118
式中,
Figure 114139DEST_PATH_IMAGE119
Figure 162997DEST_PATH_IMAGE120
分别为微网
Figure 439258DEST_PATH_IMAGE015
内部微型燃气轮机出力上限和下限,
Figure 938372DEST_PATH_IMAGE121
为微网
Figure 430577DEST_PATH_IMAGE015
内部微型燃气轮机的爬坡上限;
储能设施运行约束为:
Figure 407760DEST_PATH_IMAGE122
Figure 804106DEST_PATH_IMAGE123
Figure 349488DEST_PATH_IMAGE124
Figure 932916DEST_PATH_IMAGE125
式中,
Figure 713790DEST_PATH_IMAGE126
为微网
Figure 964643DEST_PATH_IMAGE015
内部储能设施在场景
Figure 664615DEST_PATH_IMAGE106
Figure 735339DEST_PATH_IMAGE039
时刻的储能等级,
Figure 54325DEST_PATH_IMAGE127
Figure 300630DEST_PATH_IMAGE128
分别 为微网
Figure 46869DEST_PATH_IMAGE015
内部储能设施充电效率和放电效率,
Figure 870468DEST_PATH_IMAGE129
为时间间隔,
Figure 727566DEST_PATH_IMAGE130
Figure 77645DEST_PATH_IMAGE131
分别为微网
Figure 994785DEST_PATH_IMAGE015
内部 储能设施充电功率和放电功率的最大值,
Figure 305681DEST_PATH_IMAGE132
Figure 841835DEST_PATH_IMAGE133
分别为微网
Figure 921787DEST_PATH_IMAGE015
内部储能设施容量的下 限和上限;
风电出力约束为:
Figure 9828DEST_PATH_IMAGE134
式中,
Figure 542441DEST_PATH_IMAGE135
Figure 397133DEST_PATH_IMAGE136
分别为微网
Figure 331591DEST_PATH_IMAGE015
内部风机在场景
Figure 590534DEST_PATH_IMAGE106
Figure 485809DEST_PATH_IMAGE039
时刻风电的实际出力和风 电预测值;
能源交易约束为:
Figure 753979DEST_PATH_IMAGE137
Figure 542944DEST_PATH_IMAGE138
Figure 363001DEST_PATH_IMAGE139
Figure 870206DEST_PATH_IMAGE140
Figure 676488DEST_PATH_IMAGE141
Figure 319959DEST_PATH_IMAGE142
式中,
Figure 61650DEST_PATH_IMAGE143
为微网
Figure 790572DEST_PATH_IMAGE108
和微网
Figure 666124DEST_PATH_IMAGE015
Figure 288735DEST_PATH_IMAGE039
时刻的P2P能源交易量,
Figure 325961DEST_PATH_IMAGE144
为微网
Figure 542179DEST_PATH_IMAGE015
和微网
Figure 690263DEST_PATH_IMAGE108
之 间P2P交易的最大值,
Figure 449272DEST_PATH_IMAGE145
Figure 657399DEST_PATH_IMAGE146
分别为微网
Figure 360913DEST_PATH_IMAGE015
从配电网购电和向配电网售电的最大值;
功率平衡约束为:
Figure 437322DEST_PATH_IMAGE147
式中,
Figure 909892DEST_PATH_IMAGE148
为微网
Figure 288921DEST_PATH_IMAGE015
Figure 620676DEST_PATH_IMAGE039
时刻的功率负载。
步骤S3中,双层优化模型中,配电网目标函数
Figure 110563DEST_PATH_IMAGE149
为:
Figure 703219DEST_PATH_IMAGE150
微网
Figure 987569DEST_PATH_IMAGE015
目标函数
Figure 55888DEST_PATH_IMAGE151
为:
Figure 349467DEST_PATH_IMAGE152
式中,
Figure 796628DEST_PATH_IMAGE153
为内循环ADMM迭代次数,即多微网之间ADMM迭代次数;
Figure 392826DEST_PATH_IMAGE154
为外循环迭代次 数,即多微网与配电网之间ADMM迭代次数;
Figure 292649DEST_PATH_IMAGE155
Figure 124339DEST_PATH_IMAGE156
分别为内循环ADMM第
Figure 691586DEST_PATH_IMAGE153
次迭代 时微网
Figure 991110DEST_PATH_IMAGE157
和微网
Figure 378229DEST_PATH_IMAGE158
Figure 13610DEST_PATH_IMAGE039
时刻的功率交互,
Figure 310730DEST_PATH_IMAGE159
Figure 373364DEST_PATH_IMAGE160
分别为内循环和外循环的拉格朗 日乘子,
Figure 513358DEST_PATH_IMAGE161
Figure 811484DEST_PATH_IMAGE162
分别为内循环和外循环的二次项罚函数,
Figure 87745DEST_PATH_IMAGE163
为外循环ADMM第
Figure 321280DEST_PATH_IMAGE154
次迭代时配电网在
Figure 823937DEST_PATH_IMAGE039
时刻的节点流出功率,
Figure 801120DEST_PATH_IMAGE164
为外循环ADMM第
Figure 931887DEST_PATH_IMAGE165
次迭代时微网
Figure 336324DEST_PATH_IMAGE015
Figure 247648DEST_PATH_IMAGE039
时刻 的总交互功率,
Figure 28522DEST_PATH_IMAGE166
为二范数的平方。
步骤S4中,引入中间变量彻底分离配电网和多微网间的一致性约束:
Figure 13796DEST_PATH_IMAGE167
式中,
Figure 979346DEST_PATH_IMAGE168
为外循环ADMM第
Figure 315650DEST_PATH_IMAGE169
次迭代时配电网在
Figure 634636DEST_PATH_IMAGE039
时刻的节点流出功率,
Figure 739995DEST_PATH_IMAGE170
为外循环ADMM第
Figure 361600DEST_PATH_IMAGE171
次迭代时微网
Figure 450779DEST_PATH_IMAGE015
Figure 307877DEST_PATH_IMAGE039
时刻的总交互功率,
Figure 392376DEST_PATH_IMAGE172
Figure 575096DEST_PATH_IMAGE173
分别为针 对上层配电网和下层多微网的中间变量;
扩展对偶变量,将增广拉格朗日函数线性项和二次项以下述形式组合在一起:
Figure 620412DEST_PATH_IMAGE174
式中,
Figure 422146DEST_PATH_IMAGE175
Figure 502098DEST_PATH_IMAGE176
分别为对于配电网和微网
Figure 590139DEST_PATH_IMAGE015
的扩展对偶变量;
则配电网目标函数
Figure 122752DEST_PATH_IMAGE149
变换为:
Figure 711865DEST_PATH_IMAGE177
微网
Figure 646323DEST_PATH_IMAGE015
目标函数
Figure 905266DEST_PATH_IMAGE151
变换为:
Figure 66120DEST_PATH_IMAGE178
步骤S4中,基于嵌入式并行ADMM算法求解双层优化问题,判断是否满足收敛条件,具体流程如下:
a、数据下载:
读入配电网节点负载、网络拓扑;多微网内部分布式发电机组参数、负载需求以及风力预测数据;
b、初始化:
设定内循环和外循环增广拉格朗日乘子分别为
Figure 68711DEST_PATH_IMAGE107
Figure 857675DEST_PATH_IMAGE179
;设定内循环和外循 环二次项罚函数分别为
Figure 553099DEST_PATH_IMAGE180
Figure 184938DEST_PATH_IMAGE181
;设定内循环和外循环收敛精度分别为
Figure 725640DEST_PATH_IMAGE182
Figure 900270DEST_PATH_IMAGE183
;设定 内循环和外循环迭代指数分别为
Figure 376382DEST_PATH_IMAGE153
Figure 370882DEST_PATH_IMAGE154
c、外循环优化问题求解:
接收到中间变量
Figure 715276DEST_PATH_IMAGE184
后,配电系统运营商求解上层优化问题;
d、内循环优化问题求解:
接收到中间变量
Figure 478833DEST_PATH_IMAGE185
后,微网
Figure 640693DEST_PATH_IMAGE015
求解下层优化问题;
e、内循环判敛:
多微网相互传递期望交易功率,若收敛条件满足下式,则内循环停止迭代,否则,继续执行步骤f;
Figure 122490DEST_PATH_IMAGE186
f、内循环信息更新:
Figure 270574DEST_PATH_IMAGE187
,根据下式更新内循环增广拉格朗日乘子以及二次项罚函数,返回步 骤d;
Figure 764003DEST_PATH_IMAGE188
Figure 972131DEST_PATH_IMAGE189
式中,
Figure 675645DEST_PATH_IMAGE190
为罚函数更新步长;
g、外循环判敛:
若收敛条件满足下式,则外循环停止迭代,否则,继续执行步骤h;
Figure 361841DEST_PATH_IMAGE191
h、外循环信息更新:
Figure 496062DEST_PATH_IMAGE192
,根据下式更新对偶扩展变量,返回步骤b,直到满足外循环收敛条件;
Figure 875091DEST_PATH_IMAGE193
Figure 65901DEST_PATH_IMAGE194
与现有技术相比,本发明的有益效果为:
本发明一种适应现货市场交易的风储微电网分布式交易方法中,首先,提出了一种双层分布式交易架构,上层实现了配电网最优拓扑规划,下层降低了不确定性对多微网交易的影响;其次,提出的交易模型能够保证多微网与配电网之间的买卖电,多微网之间P2P的能源交易全部通过配电网传输并且满足交流潮流约束,符合实际场景;再次,通过嵌入式并行ADMM算法,即多微网与配电网之间分布式交易以及多微网之间的分布式交易,增强了微网的自主性以及微网之间的交互性;最后,这种双层分布式交易框架能够在上层保证配电系统安全运行、最小化网损,下层考虑风电不确定性的情况下给出多微网之间准确的能源交易量,增强交易模型与实际应用的契合度,从而提高所得交易方案的可实施性。
附图说明
图1是本发明一种适应现货市场交易的风储微电网分布式交易方法的流程图。
图2是本发明中嵌入式并行ADMM算法的流程图。
图3是本发明的实施例中带有三微网的IEEE33节点配电网网络结构拓扑图。
图4是本发明的实施例中各微网负载曲线图。
图5是本发明的实施例中微网1风电随机场景曲线图。
图6是本发明的实施例中微网2风电随机场景曲线图。
图7是本发明的实施例中微网3风电随机场景曲线图。
图8是本发明的实施例中各微网P2P能源交易曲线图。
图9是本发明的实施例中配电网支路开关动态变化图。
图10是本发明的实施例中内循环误差演变图。
图11是本发明的实施例中外循环误差演变图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1、图3,一种适应现货市场交易的风储微电网分布式交易方法,该方法包括以下步骤:
S1、建立配电网多时段动态重构模型,该模型以最小化网络损耗成本、支路开关动作成本和最大化过网费收益为配电网目标函数,以Distflow潮流约束、配电网辐射结构约束、开关动作次数约束、安全运行约束、系统运行约束为配电网约束条件;
所述配电网目标函数
Figure 431154DEST_PATH_IMAGE001
为:
Figure 758230DEST_PATH_IMAGE002
式中,
Figure 573740DEST_PATH_IMAGE003
为配电网网络损耗成本,
Figure 376479DEST_PATH_IMAGE004
为支路开关动作成本,
Figure 670058DEST_PATH_IMAGE005
为配电系统运营 商向微网收取的过网费;
Figure 117219DEST_PATH_IMAGE006
Figure 572471DEST_PATH_IMAGE007
Figure 613240DEST_PATH_IMAGE008
式中,
Figure 710509DEST_PATH_IMAGE009
为配电网节点
Figure 277756DEST_PATH_IMAGE195
和节点
Figure 28544DEST_PATH_IMAGE011
之间的支路,
Figure 681242DEST_PATH_IMAGE012
为配电网支路集合,
Figure 316622DEST_PATH_IMAGE013
为配电网节点集合,
Figure 472797DEST_PATH_IMAGE014
为时刻集合,
Figure 410797DEST_PATH_IMAGE015
为与配电网节点
Figure 550792DEST_PATH_IMAGE011
相连的微 网,
Figure 989863DEST_PATH_IMAGE196
为与配电网节点
Figure 390758DEST_PATH_IMAGE011
相连的微网集合,
Figure 624293DEST_PATH_IMAGE017
为配电网网络损耗成本系 数,
Figure 986004DEST_PATH_IMAGE018
为支路
Figure 963187DEST_PATH_IMAGE019
的电阻,
Figure 234900DEST_PATH_IMAGE197
Figure 639336DEST_PATH_IMAGE021
时刻流经支路
Figure 488344DEST_PATH_IMAGE022
的电流,
Figure 128273DEST_PATH_IMAGE023
为支路开关动作一次的成 本系数,
Figure 379125DEST_PATH_IMAGE024
Figure 220042DEST_PATH_IMAGE021
时刻相对上一时刻支路开关动作次数,
Figure 431712DEST_PATH_IMAGE025
为过网费单位价格,
Figure 750698DEST_PATH_IMAGE198
为配 电网与微网
Figure 856057DEST_PATH_IMAGE027
通过节点
Figure 602296DEST_PATH_IMAGE199
Figure 284950DEST_PATH_IMAGE021
时刻的总交互功率;
Distflow潮流约束为:
Figure 673206DEST_PATH_IMAGE029
Figure 633072DEST_PATH_IMAGE030
Figure 425579DEST_PATH_IMAGE200
Figure 736474DEST_PATH_IMAGE032
Figure 662842DEST_PATH_IMAGE033
式中,
Figure 601848DEST_PATH_IMAGE034
为节点
Figure 955469DEST_PATH_IMAGE035
的子节点,
Figure 488082DEST_PATH_IMAGE036
为节点
Figure 952561DEST_PATH_IMAGE035
的子节点集合,
Figure 496806DEST_PATH_IMAGE037
Figure 21328DEST_PATH_IMAGE038
分别为
Figure 306816DEST_PATH_IMAGE039
时刻 支路
Figure 434041DEST_PATH_IMAGE201
发送端有功功率和无功功率,
Figure 223005DEST_PATH_IMAGE041
Figure 918429DEST_PATH_IMAGE042
分别为
Figure 160054DEST_PATH_IMAGE039
时刻支路
Figure 841702DEST_PATH_IMAGE043
发送端有功功率和 无功功率,
Figure 16332DEST_PATH_IMAGE044
Figure 617077DEST_PATH_IMAGE045
分别为
Figure 730353DEST_PATH_IMAGE039
时刻节点
Figure 74746DEST_PATH_IMAGE035
注入的有功功率和无功功率,
Figure 838303DEST_PATH_IMAGE046
为支路
Figure 750895DEST_PATH_IMAGE047
的电 抗;
Figure 232692DEST_PATH_IMAGE048
为布尔变量,
Figure 380777DEST_PATH_IMAGE048
表示
Figure 998840DEST_PATH_IMAGE039
时刻支路
Figure 331601DEST_PATH_IMAGE043
的开关状态,
Figure 35115DEST_PATH_IMAGE049
表示
Figure 986891DEST_PATH_IMAGE039
时刻支路
Figure 600406DEST_PATH_IMAGE050
开 关闭合,
Figure 713855DEST_PATH_IMAGE051
表示
Figure 904665DEST_PATH_IMAGE039
时刻支路
Figure 784765DEST_PATH_IMAGE043
开关打开;
Figure 377421DEST_PATH_IMAGE052
为辅助变量,
Figure 927351DEST_PATH_IMAGE053
为足够大的正数,
Figure 605457DEST_PATH_IMAGE054
Figure 508822DEST_PATH_IMAGE055
分别为
Figure 221563DEST_PATH_IMAGE039
时刻节点
Figure 942394DEST_PATH_IMAGE056
与节点
Figure 232430DEST_PATH_IMAGE035
的电压幅值;
配电网辐射结构约束为:
Figure 64120DEST_PATH_IMAGE057
式中,
Figure 365788DEST_PATH_IMAGE202
为布尔变量,表示
Figure 257521DEST_PATH_IMAGE039
时刻支路
Figure 785585DEST_PATH_IMAGE019
的开关状态,
Figure 420966DEST_PATH_IMAGE059
表示
Figure 842720DEST_PATH_IMAGE039
时刻支路 开关闭合,
Figure 29988DEST_PATH_IMAGE060
表示
Figure 904403DEST_PATH_IMAGE039
时刻支路开关打开;
Figure 343474DEST_PATH_IMAGE061
为配电网中的根节点数;
开关动作次数约束为:
Figure 619735DEST_PATH_IMAGE062
Figure 994216DEST_PATH_IMAGE063
式中,
Figure 355927DEST_PATH_IMAGE064
为单个优化周期内支路开关动作总次数上限;配电网支路开关动态变 化如图9所示;
安全运行约束为:
Figure 67531DEST_PATH_IMAGE065
Figure 588511DEST_PATH_IMAGE066
Figure 992947DEST_PATH_IMAGE067
Figure 841955DEST_PATH_IMAGE068
式中,
Figure 498195DEST_PATH_IMAGE203
Figure 749048DEST_PATH_IMAGE070
分别为节点
Figure 324386DEST_PATH_IMAGE056
电压下限和上限;
Figure 660689DEST_PATH_IMAGE071
为支路
Figure 104309DEST_PATH_IMAGE022
允许通过的最大电 流;
Figure 209668DEST_PATH_IMAGE072
Figure 221486DEST_PATH_IMAGE073
分别为支路
Figure 654873DEST_PATH_IMAGE009
有功功率下限和上限;
Figure 777550DEST_PATH_IMAGE074
Figure 737415DEST_PATH_IMAGE075
分别为支路
Figure 44769DEST_PATH_IMAGE022
无功功率下 限和上限;
系统运行约束为:
Figure 355665DEST_PATH_IMAGE076
Figure 16453DEST_PATH_IMAGE077
Figure 830825DEST_PATH_IMAGE078
式中,
Figure 59812DEST_PATH_IMAGE079
Figure 592425DEST_PATH_IMAGE080
分别为节点
Figure 791325DEST_PATH_IMAGE035
Figure 725783DEST_PATH_IMAGE039
时刻从主网吸收的有功功率和无功功率;
Figure 646378DEST_PATH_IMAGE204
Figure 400707DEST_PATH_IMAGE205
分别为节点
Figure 668877DEST_PATH_IMAGE035
Figure 333208DEST_PATH_IMAGE039
时刻的有功负载和无功负载;
Figure 763052DEST_PATH_IMAGE206
为公共耦合节点PCC有功功率传 输上限;
S2、在考虑风电不确定性的基础上,建立多微网P2P能源交易模型,该模型以微型燃气轮机运行成本、储能设施折旧成本、与相邻微网P2P能源交易成本、与配电网功率交互成本之和期望最小为微网目标函数,以微型燃气轮机运行约束、储能设施运行约束、风电出力约束、能源交易约束、功率平衡约束为微网约束条件;
所述微网
Figure 270257DEST_PATH_IMAGE015
目标函数
Figure 76539DEST_PATH_IMAGE084
为:
Figure 110223DEST_PATH_IMAGE207
式中,
Figure 976548DEST_PATH_IMAGE086
为风电出力场景,
Figure 705469DEST_PATH_IMAGE087
为微网
Figure 190809DEST_PATH_IMAGE015
内部风电出力场景集合,
Figure 954365DEST_PATH_IMAGE088
为场景
Figure 991591DEST_PATH_IMAGE089
对应的 概率,
Figure 598022DEST_PATH_IMAGE090
为微网
Figure 746107DEST_PATH_IMAGE015
内微型燃气轮机发电成本,
Figure 364170DEST_PATH_IMAGE091
为微网
Figure 306718DEST_PATH_IMAGE015
内储能设施发电折旧成本,
Figure 885598DEST_PATH_IMAGE092
为微网
Figure 102953DEST_PATH_IMAGE015
与相邻微网P2P交易成本,
Figure 575522DEST_PATH_IMAGE093
为微网
Figure 79185DEST_PATH_IMAGE015
从配电网购电成本或向配电网售电所得收 益,
Figure 269995DEST_PATH_IMAGE094
为微网
Figure 759882DEST_PATH_IMAGE015
传递能源交易所需过网费;
Figure 352537DEST_PATH_IMAGE095
Figure 777834DEST_PATH_IMAGE096
Figure 455940DEST_PATH_IMAGE097
Figure 749518DEST_PATH_IMAGE098
Figure 321313DEST_PATH_IMAGE099
式中,
Figure 42145DEST_PATH_IMAGE100
为微网
Figure 207547DEST_PATH_IMAGE015
内部微型燃气轮机发电系数,
Figure 39237DEST_PATH_IMAGE208
Figure 481850DEST_PATH_IMAGE209
为微网
Figure 373583DEST_PATH_IMAGE015
内部微型燃气轮机在场景
Figure 760702DEST_PATH_IMAGE210
Figure 520716DEST_PATH_IMAGE039
时刻的发电功率;
Figure 942470DEST_PATH_IMAGE211
为微网
Figure 5104DEST_PATH_IMAGE015
内部储能设施充放电损耗成 本系数,
Figure 20465DEST_PATH_IMAGE212
Figure 193957DEST_PATH_IMAGE213
Figure 470218DEST_PATH_IMAGE214
分别为微网
Figure 703753DEST_PATH_IMAGE015
内部储能设施在场景
Figure 190098DEST_PATH_IMAGE102
Figure 167281DEST_PATH_IMAGE039
时刻的充 电功率和放电功率,
Figure 563628DEST_PATH_IMAGE107
为微网
Figure 109010DEST_PATH_IMAGE015
和微网
Figure 692438DEST_PATH_IMAGE108
之间P2P能源交易价格;
Figure 473312DEST_PATH_IMAGE109
为微网
Figure 724165DEST_PATH_IMAGE015
和微网
Figure 689716DEST_PATH_IMAGE108
Figure 760440DEST_PATH_IMAGE039
时刻的P2P能源交易量,
Figure 79426DEST_PATH_IMAGE215
表示微网
Figure 60151DEST_PATH_IMAGE015
Figure 337549DEST_PATH_IMAGE039
时刻从微网
Figure 568939DEST_PATH_IMAGE108
购电,
Figure 426037DEST_PATH_IMAGE111
表示微网
Figure 651482DEST_PATH_IMAGE015
Figure 709568DEST_PATH_IMAGE039
时刻向微网
Figure 754884DEST_PATH_IMAGE108
售电;
Figure 415673DEST_PATH_IMAGE112
Figure 620258DEST_PATH_IMAGE216
分别为微网
Figure 708300DEST_PATH_IMAGE015
从配电网购电价格和向配电网售电价格,
Figure 240912DEST_PATH_IMAGE217
Figure 846337DEST_PATH_IMAGE218
分别为微网
Figure 780795DEST_PATH_IMAGE015
Figure 39738DEST_PATH_IMAGE039
时刻从配电网购电量和向配电网售电量,
Figure 59646DEST_PATH_IMAGE219
为微网
Figure 452451DEST_PATH_IMAGE015
Figure 506994DEST_PATH_IMAGE039
时 刻总功率交易量;
微型燃气轮机运行约束为:
Figure 936839DEST_PATH_IMAGE117
Figure 319409DEST_PATH_IMAGE118
式中,
Figure 125691DEST_PATH_IMAGE119
Figure 769162DEST_PATH_IMAGE120
分别为微网
Figure 635487DEST_PATH_IMAGE015
内部微型燃气轮机出力上限和下限,
Figure 754622DEST_PATH_IMAGE220
Figure 364595DEST_PATH_IMAGE221
Figure 862572DEST_PATH_IMAGE222
为微网
Figure 775164DEST_PATH_IMAGE015
内部微型燃气轮机的爬坡上限,
Figure 991382DEST_PATH_IMAGE223
储能设施运行约束为:
Figure 139467DEST_PATH_IMAGE122
Figure 757530DEST_PATH_IMAGE123
Figure 355870DEST_PATH_IMAGE124
Figure 59384DEST_PATH_IMAGE125
式中,
Figure 11160DEST_PATH_IMAGE126
为微网
Figure 359096DEST_PATH_IMAGE015
内部储能设施在场景
Figure 3703DEST_PATH_IMAGE106
Figure 194513DEST_PATH_IMAGE039
时刻的储能等级;
Figure 809034DEST_PATH_IMAGE127
Figure 401690DEST_PATH_IMAGE128
分别 为微网
Figure 686041DEST_PATH_IMAGE015
内部储能设施充电效率和放电效率,
Figure 364147DEST_PATH_IMAGE224
Figure 798670DEST_PATH_IMAGE225
Figure 245832DEST_PATH_IMAGE129
为时间间隔;
Figure 966663DEST_PATH_IMAGE226
Figure 991120DEST_PATH_IMAGE227
分别为微网
Figure 822810DEST_PATH_IMAGE015
内部储能设施充电功率和放电功率的最大值,
Figure 390057DEST_PATH_IMAGE228
Figure 281790DEST_PATH_IMAGE229
Figure 544275DEST_PATH_IMAGE132
Figure 445235DEST_PATH_IMAGE133
分别为微网
Figure 866989DEST_PATH_IMAGE015
内部储能设施容量的下限和上限,
Figure 54257DEST_PATH_IMAGE230
Figure 928672DEST_PATH_IMAGE231
风电出力约束为:
Figure 102164DEST_PATH_IMAGE134
式中,
Figure 519370DEST_PATH_IMAGE135
Figure 752905DEST_PATH_IMAGE136
分别为微网
Figure 114617DEST_PATH_IMAGE015
内部风机在场景
Figure 91800DEST_PATH_IMAGE106
Figure 353060DEST_PATH_IMAGE039
时刻风电的实际出力和风 电预测值,各微网风电随机场景曲线如图5、图6、图7所示;
能源交易约束为:
Figure 757497DEST_PATH_IMAGE137
Figure 872083DEST_PATH_IMAGE138
Figure 528324DEST_PATH_IMAGE139
Figure 513597DEST_PATH_IMAGE140
Figure 88935DEST_PATH_IMAGE141
Figure 425238DEST_PATH_IMAGE142
式中,
Figure 134437DEST_PATH_IMAGE143
为微网
Figure 239797DEST_PATH_IMAGE108
和微网
Figure 986036DEST_PATH_IMAGE015
Figure 685001DEST_PATH_IMAGE039
时刻的P2P能源交易量;
Figure 542099DEST_PATH_IMAGE144
为微网
Figure 501965DEST_PATH_IMAGE015
和微网
Figure 74897DEST_PATH_IMAGE108
之 间P2P交易的最大值,
Figure 120214DEST_PATH_IMAGE232
Figure 781002DEST_PATH_IMAGE233
Figure 860954DEST_PATH_IMAGE234
分别为微网
Figure 824362DEST_PATH_IMAGE015
从配电网购电和向配电网售 电的最大值,
Figure 356974DEST_PATH_IMAGE235
Figure 87033DEST_PATH_IMAGE236
;各微网P2P能源交易曲线如图8所示;
功率平衡约束为:
Figure 146125DEST_PATH_IMAGE147
式中,
Figure 405068DEST_PATH_IMAGE148
为微网
Figure 424976DEST_PATH_IMAGE015
Figure 427567DEST_PATH_IMAGE039
时刻的功率负载,各微网负载曲线如图4所示;
S3、基于增广拉格朗日罚函数法分别松弛多微网之间的耦合约束(
Figure 91898DEST_PATH_IMAGE237
) 以及多微网与配电网之间的耦合约束(
Figure 787321DEST_PATH_IMAGE238
),将原始双层优化问题分解为多个规 模较小变量较少的子问题,得到双层优化模型,以实现上层配电网重构和下层多微网P2P能 源交易决策一致性;
双层优化模型中,配电网目标函数
Figure 560105DEST_PATH_IMAGE149
为:
Figure 225442DEST_PATH_IMAGE239
微网
Figure 134492DEST_PATH_IMAGE015
目标函数
Figure 735238DEST_PATH_IMAGE151
为:
Figure 729739DEST_PATH_IMAGE152
式中,
Figure 949498DEST_PATH_IMAGE153
为内循环ADMM迭代次数,即多微网之间ADMM迭代次数;
Figure 978634DEST_PATH_IMAGE154
为外循环迭代次 数,即多微网与配电网之间ADMM迭代次数;
Figure 15860DEST_PATH_IMAGE155
Figure 356712DEST_PATH_IMAGE240
分别为内循环ADMM第
Figure 504797DEST_PATH_IMAGE153
次迭代 时微网
Figure 122860DEST_PATH_IMAGE157
和微网
Figure 471933DEST_PATH_IMAGE158
Figure 175446DEST_PATH_IMAGE039
时刻的功率交互,
Figure 861643DEST_PATH_IMAGE159
Figure 599791DEST_PATH_IMAGE160
分别为内循环和外循环的拉格朗 日乘子,
Figure 103454DEST_PATH_IMAGE161
Figure 294264DEST_PATH_IMAGE162
分别为内循环和外循环的二次项罚函数,
Figure 49730DEST_PATH_IMAGE163
为外循环ADMM第
Figure 252173DEST_PATH_IMAGE154
次迭代时配电网在
Figure 802103DEST_PATH_IMAGE039
时刻的节点流出功率,
Figure 480209DEST_PATH_IMAGE164
为外循环ADMM第
Figure 773787DEST_PATH_IMAGE165
次迭代时微网
Figure 345582DEST_PATH_IMAGE015
Figure 66414DEST_PATH_IMAGE039
时刻 的总交互功率,
Figure 231816DEST_PATH_IMAGE166
为二范数的平方;
S4、在ADMM算法的基础上,引入并行求解机制,得到嵌入式并行ADMM算法,以实现上下层高效并行求解;基于嵌入式并行ADMM算法,在保护个体隐私的情况下以最小信息开销迭代求解配电网最优重构方案及多微网最优交易策略;
引入中间变量彻底分离配电网和多微网间的一致性约束:
Figure 938872DEST_PATH_IMAGE241
式中,
Figure 506119DEST_PATH_IMAGE168
为外循环ADMM第
Figure 132273DEST_PATH_IMAGE169
次迭代时配电网在
Figure 784971DEST_PATH_IMAGE039
时刻的节点流出功率,
Figure 804705DEST_PATH_IMAGE170
为外循环ADMM第
Figure 960880DEST_PATH_IMAGE169
次迭代时微网
Figure 23514DEST_PATH_IMAGE015
Figure 773295DEST_PATH_IMAGE039
时刻的总交互功率,
Figure 477946DEST_PATH_IMAGE242
Figure 754207DEST_PATH_IMAGE173
分别为针 对上层配电网和下层多微网的中间变量;
扩展对偶变量,将增广拉格朗日函数线性项和二次项以下述形式组合在一起:
Figure 112376DEST_PATH_IMAGE174
式中,
Figure 474087DEST_PATH_IMAGE175
Figure 451270DEST_PATH_IMAGE176
分别为对于配电网和微网
Figure 722983DEST_PATH_IMAGE015
的扩展对偶变量;
则配电网目标函数
Figure 127419DEST_PATH_IMAGE001
变换为:
Figure 976427DEST_PATH_IMAGE177
微网
Figure 491722DEST_PATH_IMAGE015
目标函数
Figure 867208DEST_PATH_IMAGE151
变换为:
Figure 442546DEST_PATH_IMAGE243
参见图2,基于嵌入式并行ADMM算法求解双层优化问题,判断是否满足收敛条件,具体流程如下:
a、数据下载:
读入配电网节点负载、网络拓扑;多微网内部分布式发电机组参数、负载需求以及风力预测数据;
b、初始化:
设定内循环和外循环增广拉格朗日乘子分别为
Figure 44429DEST_PATH_IMAGE107
Figure 238781DEST_PATH_IMAGE179
;设定内循环和外循 环二次项罚函数分别为
Figure 344140DEST_PATH_IMAGE180
Figure 90379DEST_PATH_IMAGE244
;设定内循环和外循环收敛精度分别为
Figure 38612DEST_PATH_IMAGE182
Figure 161289DEST_PATH_IMAGE183
;设定 内循环和外循环迭代指数分别为
Figure 121155DEST_PATH_IMAGE153
Figure 38295DEST_PATH_IMAGE154
c、外循环优化问题求解:
接收到中间变量
Figure 224557DEST_PATH_IMAGE184
后,配电系统运营商求解上层优化问题;
d、内循环优化问题求解:
接收到中间变量
Figure 885346DEST_PATH_IMAGE185
后,微网
Figure 699718DEST_PATH_IMAGE015
求解下层优化问题;
e、内循环判敛:
多微网相互传递期望交易功率,若收敛条件满足下式,则内循环停止迭代,否则,继续执行步骤f;
Figure 443552DEST_PATH_IMAGE186
f、内循环信息更新:
Figure 976164DEST_PATH_IMAGE187
,根据下式更新内循环增广拉格朗日乘子以及二次项罚函数,返回步 骤d;
Figure 440644DEST_PATH_IMAGE188
Figure 109523DEST_PATH_IMAGE189
式中,
Figure 509411DEST_PATH_IMAGE190
为罚函数更新步长;
g、外循环判敛:
若收敛条件满足下式,则外循环停止迭代,否则,继续执行步骤h;
Figure 794899DEST_PATH_IMAGE191
h、外循环信息更新:
Figure 797490DEST_PATH_IMAGE245
,根据下式更新对偶扩展变量,返回步骤b,直到满足外循环收敛条件;
Figure 711088DEST_PATH_IMAGE246
Figure 406512DEST_PATH_IMAGE247
内循环误差演变如图10所示,外循环误差演变如图11所示。
根据配电网与多微网交互关系,搭建双层能源交易模型;在上层,将传统配电网验证性最优潮流模型转化为以用户为中心和以交易为导向的动态网络重构模型;在下层,风力发电的不确定性被整合到微网运行模型中,并通过随机规划方法解决;基于增广拉格朗日罚函数法分别松弛多微网之间以及多维网与配电网之间的耦合变量,建立所有实体之间的全局分布式交易机制,实现上层配电网重构和下层多微网P2P交易决策一致性;利用并行ADMM算法,在保护个体隐私的情况下以最小信息开销迭代求解配电网最优重构方案及多微网最优交易策略。
在多微网运营交易研究中增强交易模型与实际应用的契合程度,充分考虑可再生能源的随机性及多微网与配电网之间的相互作用,对于电力系统建设具有重要意义。此外,在确保多微网自主性和隐私性的前提下,求解能够满足配电网潮流约束并免疫可再生能源的不确定性的多微网最优交易方案,具有重要的现实意义。

Claims (8)

1.一种适应现货市场交易的风储微电网分布式交易方法,其特征在于,该方法包括以下步骤:
S1、建立配电网多时段动态重构模型,该模型以最小化网络损耗成本、支路开关动作成本和最大化过网费收益为配电网目标函数,以Distflow潮流约束、配电网辐射结构约束、开关动作次数约束、安全运行约束、系统运行约束为配电网约束条件;
S2、在考虑风电不确定性的基础上,建立多微网P2P能源交易模型,该模型以微型燃气轮机运行成本、储能设施折旧成本、与相邻微网P2P能源交易成本、与配电网功率交互成本之和期望最小为微网目标函数,以微型燃气轮机运行约束、储能设施运行约束、风电出力约束、能源交易约束、功率平衡约束为微网约束条件;
S3、基于增广拉格朗日罚函数法分别松弛多微网之间的耦合约束以及多微网与配电网之间的耦合约束,将原始双层优化问题分解为多个子问题,得到双层优化模型,以实现上层配电网重构和下层多微网P2P能源交易决策一致性;
S4、在ADMM算法的基础上,引入并行求解机制,得到嵌入式并行ADMM算法;基于嵌入式并行ADMM算法,在保护个体隐私的情况下以最小信息开销迭代求解配电网最优重构方案及多微网最优交易策略。
2.根据权利要求1所述的一种适应现货市场交易的风储微电网分布式交易方法,其特征在于:
步骤S1中,所述配电网目标函数
Figure 51793DEST_PATH_IMAGE001
为:
Figure 858075DEST_PATH_IMAGE002
式中,
Figure 32705DEST_PATH_IMAGE003
为配电网网络损耗成本,
Figure 508816DEST_PATH_IMAGE004
为支路开关动作成本,
Figure 768896DEST_PATH_IMAGE005
为配电系统运营商向 微网收取的过网费;
Figure 113290DEST_PATH_IMAGE006
Figure 7340DEST_PATH_IMAGE007
Figure 44566DEST_PATH_IMAGE008
式中,
Figure 526363DEST_PATH_IMAGE009
为配电网节点
Figure 549814DEST_PATH_IMAGE010
和节点
Figure 167877DEST_PATH_IMAGE011
之间的支路,
Figure 641584DEST_PATH_IMAGE012
为配电网支路集合,
Figure 469731DEST_PATH_IMAGE013
为配电网节点集合,
Figure 155927DEST_PATH_IMAGE014
为时刻集合,
Figure 894076DEST_PATH_IMAGE015
为与配电网节点
Figure 148471DEST_PATH_IMAGE011
相连的微 网,
Figure 339281DEST_PATH_IMAGE016
为与配电网节点
Figure 829168DEST_PATH_IMAGE011
相连的微网集合,
Figure 421824DEST_PATH_IMAGE017
为配电网网络损耗成本系 数,
Figure 361967DEST_PATH_IMAGE018
为支路
Figure 40073DEST_PATH_IMAGE009
的电阻,
Figure 68072DEST_PATH_IMAGE019
Figure 390600DEST_PATH_IMAGE020
时刻流经支路
Figure 377010DEST_PATH_IMAGE021
的电流,
Figure 542412DEST_PATH_IMAGE022
为支路开关动作一次的成 本系数,
Figure 498736DEST_PATH_IMAGE023
Figure 800404DEST_PATH_IMAGE020
时刻相对上一时刻支路开关动作次数,
Figure 957716DEST_PATH_IMAGE024
为过网费单位价格,
Figure 485781DEST_PATH_IMAGE025
为配 电网与微网
Figure 855582DEST_PATH_IMAGE026
通过节点
Figure 277336DEST_PATH_IMAGE027
Figure 339970DEST_PATH_IMAGE020
时刻的总交互功率。
3.根据权利要求2所述的一种适应现货市场交易的风储微电网分布式交易方法,其特征在于:
步骤S1中,Distflow潮流约束为:
Figure 604598DEST_PATH_IMAGE028
Figure 43670DEST_PATH_IMAGE029
Figure 319930DEST_PATH_IMAGE030
Figure 694411DEST_PATH_IMAGE031
Figure 56122DEST_PATH_IMAGE032
式中,
Figure 767726DEST_PATH_IMAGE033
为节点
Figure 288706DEST_PATH_IMAGE034
的子节点,
Figure 693143DEST_PATH_IMAGE035
为节点
Figure 807729DEST_PATH_IMAGE034
的子节点集合,
Figure 198390DEST_PATH_IMAGE036
Figure 449243DEST_PATH_IMAGE037
分别为
Figure 24581DEST_PATH_IMAGE038
时刻支路
Figure 751098DEST_PATH_IMAGE039
发送端有功功率和无功功率,
Figure 70083DEST_PATH_IMAGE040
Figure 175443DEST_PATH_IMAGE041
分别为
Figure 921682DEST_PATH_IMAGE038
时刻支路
Figure 355068DEST_PATH_IMAGE042
发送端有功功率和无功 功率,
Figure 743324DEST_PATH_IMAGE043
Figure 703190DEST_PATH_IMAGE044
分别为
Figure 744964DEST_PATH_IMAGE038
时刻节点
Figure 321439DEST_PATH_IMAGE045
注入的有功功率和无功功率,
Figure 982228DEST_PATH_IMAGE046
为支路
Figure 671966DEST_PATH_IMAGE047
的电抗;
Figure 25587DEST_PATH_IMAGE048
为布尔变量,
Figure 558199DEST_PATH_IMAGE049
表示
Figure 141453DEST_PATH_IMAGE038
时刻支路
Figure 75911DEST_PATH_IMAGE042
的开关状态,
Figure 600433DEST_PATH_IMAGE050
表示
Figure 495708DEST_PATH_IMAGE038
时刻支路
Figure 763879DEST_PATH_IMAGE051
开关 闭合,
Figure 552843DEST_PATH_IMAGE052
表示
Figure 982687DEST_PATH_IMAGE038
时刻支路
Figure 614526DEST_PATH_IMAGE042
开关打开;
Figure 686387DEST_PATH_IMAGE053
为辅助变量,
Figure 329858DEST_PATH_IMAGE054
为足够大的正数,
Figure 71549DEST_PATH_IMAGE055
Figure 800471DEST_PATH_IMAGE056
分别为
Figure 676023DEST_PATH_IMAGE038
时刻节点
Figure 564213DEST_PATH_IMAGE057
与节点
Figure 335860DEST_PATH_IMAGE045
的电压幅值;
配电网辐射结构约束为:
Figure 817657DEST_PATH_IMAGE058
式中,
Figure 106687DEST_PATH_IMAGE059
为布尔变量,表示
Figure 724750DEST_PATH_IMAGE038
时刻支路
Figure 667298DEST_PATH_IMAGE060
的开关状态,
Figure 370812DEST_PATH_IMAGE061
表示
Figure 712801DEST_PATH_IMAGE038
时刻支路开关 闭合,
Figure 185370DEST_PATH_IMAGE062
表示
Figure 564399DEST_PATH_IMAGE038
时刻支路开关打开;
Figure 630575DEST_PATH_IMAGE063
为配电网中的根节点数;
开关动作次数约束为:
Figure 120462DEST_PATH_IMAGE064
Figure 978697DEST_PATH_IMAGE065
式中,
Figure 653261DEST_PATH_IMAGE066
为单个优化周期内支路开关动作总次数上限;
安全运行约束为:
Figure 65788DEST_PATH_IMAGE067
Figure 624945DEST_PATH_IMAGE068
Figure 947473DEST_PATH_IMAGE069
Figure 668304DEST_PATH_IMAGE070
式中,
Figure 833706DEST_PATH_IMAGE071
Figure 665396DEST_PATH_IMAGE072
分别为节点
Figure 357278DEST_PATH_IMAGE057
电压下限和上限;
Figure 249010DEST_PATH_IMAGE073
为支路
Figure 636129DEST_PATH_IMAGE060
允许通过的最大电流;
Figure 146876DEST_PATH_IMAGE074
Figure 834209DEST_PATH_IMAGE075
分别为支路
Figure 896843DEST_PATH_IMAGE009
有功功率下限和上限;
Figure 895892DEST_PATH_IMAGE076
Figure 69385DEST_PATH_IMAGE077
分别为支路
Figure 345645DEST_PATH_IMAGE021
无功功率下限和上 限;
系统运行约束为:
Figure 720126DEST_PATH_IMAGE078
Figure 81837DEST_PATH_IMAGE079
Figure 59020DEST_PATH_IMAGE080
式中,
Figure 455367DEST_PATH_IMAGE081
Figure 250016DEST_PATH_IMAGE082
分别为节点
Figure 833444DEST_PATH_IMAGE045
Figure 614318DEST_PATH_IMAGE038
时刻从主网吸收的有功功率和无功功率;
Figure 740537DEST_PATH_IMAGE083
Figure 581454DEST_PATH_IMAGE084
分别为节点
Figure 652179DEST_PATH_IMAGE045
Figure 101658DEST_PATH_IMAGE038
时刻的有功负载和无功负载;
Figure 207017DEST_PATH_IMAGE085
为公共耦合节点PCC有功功率传输上 限。
4.根据权利要求3所述的一种适应现货市场交易的风储微电网分布式交易方法,其特征在于:
步骤S2中,所述微网
Figure 218835DEST_PATH_IMAGE015
目标函数
Figure 917801DEST_PATH_IMAGE086
为:
Figure 774899DEST_PATH_IMAGE087
式中,
Figure 344DEST_PATH_IMAGE088
为风电出力场景,
Figure 917484DEST_PATH_IMAGE089
为微网
Figure 353013DEST_PATH_IMAGE015
内部风电出力场景集合,
Figure 13802DEST_PATH_IMAGE090
为场景
Figure 93753DEST_PATH_IMAGE091
对应的概率,
Figure 57161DEST_PATH_IMAGE092
为微网
Figure 855353DEST_PATH_IMAGE015
内微型燃气轮机发电成本,
Figure 319832DEST_PATH_IMAGE093
为微网
Figure 378924DEST_PATH_IMAGE015
内储能设施发电折旧成本,
Figure 637867DEST_PATH_IMAGE094
为微 网
Figure 657776DEST_PATH_IMAGE015
与相邻微网P2P交易成本,
Figure 66891DEST_PATH_IMAGE095
为微网
Figure 855856DEST_PATH_IMAGE015
从配电网购电成本或向配电网售电所得收益,
Figure 285700DEST_PATH_IMAGE096
为微网
Figure 792905DEST_PATH_IMAGE015
传递能源交易所需过网费;
Figure 989400DEST_PATH_IMAGE097
Figure 632871DEST_PATH_IMAGE098
Figure 499196DEST_PATH_IMAGE099
Figure 103483DEST_PATH_IMAGE100
Figure 713456DEST_PATH_IMAGE101
式中,
Figure 477013DEST_PATH_IMAGE102
为微网
Figure 638873DEST_PATH_IMAGE015
内部微型燃气轮机发电系数,
Figure 855091DEST_PATH_IMAGE103
为微网
Figure 268754DEST_PATH_IMAGE015
内部微型燃气轮机在场 景
Figure 762184DEST_PATH_IMAGE104
Figure 970311DEST_PATH_IMAGE038
时刻的发电功率,
Figure 673825DEST_PATH_IMAGE105
为微网
Figure 625601DEST_PATH_IMAGE015
内部储能设施充放电损耗成本系数,
Figure 488383DEST_PATH_IMAGE106
Figure 867412DEST_PATH_IMAGE107
分 别为微网
Figure 58222DEST_PATH_IMAGE015
内部储能设施在场景
Figure 689054DEST_PATH_IMAGE108
Figure 281710DEST_PATH_IMAGE038
时刻的充电功率和放电功率,
Figure 566061DEST_PATH_IMAGE109
为微网
Figure 368800DEST_PATH_IMAGE015
和微网
Figure 662379DEST_PATH_IMAGE110
之间P2P能源交易价格;
Figure 375120DEST_PATH_IMAGE111
为微网
Figure 971317DEST_PATH_IMAGE015
和微网
Figure 871140DEST_PATH_IMAGE110
Figure 968409DEST_PATH_IMAGE038
时刻的P2P能源交易量,
Figure 660290DEST_PATH_IMAGE112
表示微 网
Figure 552023DEST_PATH_IMAGE015
Figure 939142DEST_PATH_IMAGE038
时刻从微网
Figure 715468DEST_PATH_IMAGE110
购电,
Figure 137222DEST_PATH_IMAGE113
表示微网
Figure 199856DEST_PATH_IMAGE015
Figure 74271DEST_PATH_IMAGE038
时刻向微网
Figure 655555DEST_PATH_IMAGE110
售电;
Figure 931815DEST_PATH_IMAGE114
Figure 165351DEST_PATH_IMAGE115
分别为 微网
Figure 402428DEST_PATH_IMAGE015
从配电网购电价格和向配电网售电价格,
Figure 645190DEST_PATH_IMAGE116
Figure 775958DEST_PATH_IMAGE117
分别为微网
Figure 305028DEST_PATH_IMAGE015
Figure 419614DEST_PATH_IMAGE038
时刻从配电网 购电量和向配电网售电量,
Figure 200489DEST_PATH_IMAGE118
为微网
Figure 61128DEST_PATH_IMAGE015
Figure 902045DEST_PATH_IMAGE038
时刻总功率交易量。
5.根据权利要求4所述的一种适应现货市场交易的风储微电网分布式交易方法,其特征在于:
步骤S2中,微型燃气轮机运行约束为:
Figure 238349DEST_PATH_IMAGE119
Figure 681968DEST_PATH_IMAGE120
式中,
Figure 787328DEST_PATH_IMAGE121
Figure 533567DEST_PATH_IMAGE122
分别为微网
Figure 498112DEST_PATH_IMAGE015
内部微型燃气轮机出力上限和下限,
Figure 355209DEST_PATH_IMAGE123
为微网
Figure 315075DEST_PATH_IMAGE015
内部 微型燃气轮机的爬坡上限;
储能设施运行约束为:
Figure 497795DEST_PATH_IMAGE124
Figure 667745DEST_PATH_IMAGE125
Figure 594113DEST_PATH_IMAGE126
Figure 674064DEST_PATH_IMAGE127
式中,
Figure 637472DEST_PATH_IMAGE128
为微网
Figure 170085DEST_PATH_IMAGE015
内部储能设施在场景
Figure 634564DEST_PATH_IMAGE108
Figure 569022DEST_PATH_IMAGE038
时刻的储能等级,
Figure 218178DEST_PATH_IMAGE129
Figure 238087DEST_PATH_IMAGE130
分别为微 网
Figure 240678DEST_PATH_IMAGE015
内部储能设施充电效率和放电效率,
Figure 905008DEST_PATH_IMAGE131
为时间间隔,
Figure 600432DEST_PATH_IMAGE132
Figure 107637DEST_PATH_IMAGE133
分别为微网
Figure 38552DEST_PATH_IMAGE015
内部储能 设施充电功率和放电功率的最大值,
Figure 947602DEST_PATH_IMAGE134
Figure 548348DEST_PATH_IMAGE135
分别为微网
Figure 542849DEST_PATH_IMAGE015
内部储能设施容量的下限和 上限;
风电出力约束为:
Figure 762609DEST_PATH_IMAGE136
式中,
Figure 791745DEST_PATH_IMAGE137
Figure 828971DEST_PATH_IMAGE138
分别为微网
Figure 169822DEST_PATH_IMAGE015
内部风机在场景
Figure 849065DEST_PATH_IMAGE108
Figure 608074DEST_PATH_IMAGE038
时刻风电的实际出力和风电预 测值;
能源交易约束为:
Figure 816201DEST_PATH_IMAGE139
Figure 519715DEST_PATH_IMAGE140
Figure 330545DEST_PATH_IMAGE141
Figure 68694DEST_PATH_IMAGE142
Figure 713302DEST_PATH_IMAGE143
Figure 779478DEST_PATH_IMAGE144
式中,
Figure 269365DEST_PATH_IMAGE145
为微网
Figure 596441DEST_PATH_IMAGE110
和微网
Figure 146371DEST_PATH_IMAGE015
Figure 220550DEST_PATH_IMAGE038
时刻的P2P能源交易量,
Figure 514128DEST_PATH_IMAGE146
为微网
Figure 961290DEST_PATH_IMAGE015
和微网
Figure 291908DEST_PATH_IMAGE110
之间P2P 交易的最大值,
Figure 457310DEST_PATH_IMAGE147
Figure 554579DEST_PATH_IMAGE148
分别为微网
Figure 246461DEST_PATH_IMAGE015
从配电网购电和向配电网售电的最大值;
功率平衡约束为:
Figure 872614DEST_PATH_IMAGE149
式中,
Figure 525312DEST_PATH_IMAGE150
为微网
Figure 160693DEST_PATH_IMAGE015
Figure 457813DEST_PATH_IMAGE038
时刻的功率负载。
6.根据权利要求5所述的一种适应现货市场交易的风储微电网分布式交易方法,其特征在于:
步骤S3中,双层优化模型中,配电网目标函数
Figure 520447DEST_PATH_IMAGE151
为:
Figure 394862DEST_PATH_IMAGE152
微网
Figure 958568DEST_PATH_IMAGE015
目标函数
Figure 234828DEST_PATH_IMAGE153
为:
Figure 733943DEST_PATH_IMAGE154
式中,
Figure 971020DEST_PATH_IMAGE155
为内循环ADMM迭代次数,即多微网之间ADMM迭代次数;
Figure 948203DEST_PATH_IMAGE156
为外循环迭代次数,即 多微网与配电网之间ADMM迭代次数;
Figure 78970DEST_PATH_IMAGE157
Figure 483407DEST_PATH_IMAGE158
分别为内循环ADMM第
Figure 457048DEST_PATH_IMAGE155
次迭代时微 网
Figure 237922DEST_PATH_IMAGE159
和微网
Figure 488775DEST_PATH_IMAGE160
Figure 939479DEST_PATH_IMAGE038
时刻的功率交互,
Figure 275782DEST_PATH_IMAGE161
Figure 594768DEST_PATH_IMAGE162
分别为内循环和外循环的拉格朗日乘 子,
Figure 700128DEST_PATH_IMAGE163
Figure 836580DEST_PATH_IMAGE164
分别为内循环和外循环的二次项罚函数,
Figure 394600DEST_PATH_IMAGE165
为外循环ADMM第
Figure 517277DEST_PATH_IMAGE156
次迭 代时配电网在
Figure 352509DEST_PATH_IMAGE038
时刻的节点流出功率,
Figure 269649DEST_PATH_IMAGE166
为外循环ADMM第
Figure 846124DEST_PATH_IMAGE156
次迭代时微网
Figure 631546DEST_PATH_IMAGE015
Figure 445919DEST_PATH_IMAGE038
时刻的总 交互功率,
Figure 799539DEST_PATH_IMAGE167
为二范数的平方。
7.根据权利要求6所述的一种适应现货市场交易的风储微电网分布式交易方法,其特征在于:
步骤S4中,引入中间变量彻底分离配电网和多微网间的一致性约束:
Figure 332152DEST_PATH_IMAGE168
式中,
Figure 937577DEST_PATH_IMAGE169
为外循环ADMM第
Figure 606456DEST_PATH_IMAGE170
次迭代时配电网在
Figure 130978DEST_PATH_IMAGE038
时刻的节点流出功率,
Figure 275520DEST_PATH_IMAGE171
为外循环ADMM第
Figure 278111DEST_PATH_IMAGE172
次迭代时微网
Figure 67076DEST_PATH_IMAGE015
Figure 903445DEST_PATH_IMAGE038
时刻的总交互功率,
Figure 145070DEST_PATH_IMAGE173
Figure 951352DEST_PATH_IMAGE174
分别为针对上层 配电网和下层多微网的中间变量;
扩展对偶变量,将增广拉格朗日函数线性项和二次项以下述形式组合在一起:
Figure 860402DEST_PATH_IMAGE175
式中,
Figure 585782DEST_PATH_IMAGE176
Figure 845862DEST_PATH_IMAGE177
分别为对于配电网和微网
Figure 190255DEST_PATH_IMAGE015
的扩展对偶变量;
则配电网目标函数
Figure 829178DEST_PATH_IMAGE151
变换为:
Figure 600825DEST_PATH_IMAGE178
微网
Figure 82622DEST_PATH_IMAGE015
目标函数
Figure 230707DEST_PATH_IMAGE153
变换为:
Figure 233123DEST_PATH_IMAGE179
8.根据权利要求7所述的一种适应现货市场交易的风储微电网分布式交易方法,其特征在于:
步骤S4中,基于嵌入式并行ADMM算法求解双层优化问题,判断是否满足收敛条件,具体流程如下:
a、数据下载:
读入配电网节点负载、网络拓扑;多微网内部分布式发电机组参数、负载需求以及风力预测数据;
b、初始化:
设定内循环和外循环增广拉格朗日乘子分别为
Figure 441251DEST_PATH_IMAGE109
Figure 144765DEST_PATH_IMAGE180
;设定内循环和外循环二 次项罚函数分别为
Figure 706327DEST_PATH_IMAGE181
Figure 444476DEST_PATH_IMAGE182
;设定内循环和外循环收敛精度分别为
Figure 557926DEST_PATH_IMAGE183
Figure 138949DEST_PATH_IMAGE184
;设定内循 环和外循环迭代指数分别为
Figure 628836DEST_PATH_IMAGE155
Figure 221491DEST_PATH_IMAGE156
c、外循环优化问题求解:
接收到中间变量
Figure 771421DEST_PATH_IMAGE185
后,配电系统运营商求解上层优化问题;
d、内循环优化问题求解:
接收到中间变量
Figure 590473DEST_PATH_IMAGE186
后,微网
Figure 618471DEST_PATH_IMAGE015
求解下层优化问题;
e、内循环判敛:
多微网相互传递期望交易功率,若收敛条件满足下式,则内循环停止迭代,否则,继续执行步骤f;
Figure 65633DEST_PATH_IMAGE187
f、内循环信息更新:
Figure 911098DEST_PATH_IMAGE188
,根据下式更新内循环增广拉格朗日乘子以及二次项罚函数,返回步骤d;
Figure 76500DEST_PATH_IMAGE189
Figure 908190DEST_PATH_IMAGE190
式中,
Figure 209859DEST_PATH_IMAGE191
为罚函数更新步长;
g、外循环判敛:
若收敛条件满足下式,则外循环停止迭代,否则,继续执行步骤h;
Figure 242537DEST_PATH_IMAGE192
h、外循环信息更新:
Figure 895235DEST_PATH_IMAGE193
,根据下式更新对偶扩展变量,返回步骤b,直到满足外循环收敛条件;
Figure 265036DEST_PATH_IMAGE194
Figure 811424DEST_PATH_IMAGE195
CN202211113178.8A 2022-09-14 2022-09-14 一种适应现货市场交易的风储微电网分布式交易方法 Active CN115187316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211113178.8A CN115187316B (zh) 2022-09-14 2022-09-14 一种适应现货市场交易的风储微电网分布式交易方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211113178.8A CN115187316B (zh) 2022-09-14 2022-09-14 一种适应现货市场交易的风储微电网分布式交易方法

Publications (2)

Publication Number Publication Date
CN115187316A true CN115187316A (zh) 2022-10-14
CN115187316B CN115187316B (zh) 2022-11-29

Family

ID=83524696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211113178.8A Active CN115187316B (zh) 2022-09-14 2022-09-14 一种适应现货市场交易的风储微电网分布式交易方法

Country Status (1)

Country Link
CN (1) CN115187316B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116316915A (zh) * 2023-05-12 2023-06-23 武汉中元华电科技股份有限公司 计及功率预测误差的风电场有功出力优化控制方法及装置
CN116416027A (zh) * 2023-03-10 2023-07-11 苏州科技大学 微电网能源交易方法和系统
CN116562864A (zh) * 2023-07-11 2023-08-08 国网湖北省电力有限公司经济技术研究院 一种直流微电网互联系统的电力点对点交易方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546743A (zh) * 2017-08-17 2018-01-05 国网山东省电力公司电力科学研究院 一种辐射状配电网分布式优化潮流方法
CN108734350A (zh) * 2018-05-17 2018-11-02 燕山大学 一种含微电网的配电网独立与联合调度的求解方法
US20180358812A1 (en) * 2017-05-05 2018-12-13 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Coordinating Distributed Energy Storage
EP3493344A1 (en) * 2017-12-01 2019-06-05 Telefonica Innovacion Alpha S.L Method, system and computer programs for scheduling energy transfer in a distributed peer-to-peer energy network
CN109980685A (zh) * 2019-04-02 2019-07-05 东南大学 一种考虑不确定性的主动配电网分布式优化运行方法
CN112381263A (zh) * 2020-09-23 2021-02-19 四川大学 基于区块链分布式数据存储多微网日前鲁棒电能交易方法
CN112952908A (zh) * 2021-03-29 2021-06-11 四川大学 一种多合作微电网主体分布式协调交易方法
CN113363964A (zh) * 2021-05-26 2021-09-07 国网天津市电力公司 考虑重要负荷供电的配电网分布式储能规划方法及装置
CN113538061A (zh) * 2021-07-28 2021-10-22 上海电机学院 一种多微电网能量管理系统
CN114092243A (zh) * 2021-11-15 2022-02-25 东南大学 基于配网节点不确定性边际电价的两阶段p2p交易方法
CN114123213A (zh) * 2022-01-24 2022-03-01 武汉大学 一种电网的时空功率均衡方法及系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358812A1 (en) * 2017-05-05 2018-12-13 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Coordinating Distributed Energy Storage
CN107546743A (zh) * 2017-08-17 2018-01-05 国网山东省电力公司电力科学研究院 一种辐射状配电网分布式优化潮流方法
EP3493344A1 (en) * 2017-12-01 2019-06-05 Telefonica Innovacion Alpha S.L Method, system and computer programs for scheduling energy transfer in a distributed peer-to-peer energy network
CN108734350A (zh) * 2018-05-17 2018-11-02 燕山大学 一种含微电网的配电网独立与联合调度的求解方法
CN109980685A (zh) * 2019-04-02 2019-07-05 东南大学 一种考虑不确定性的主动配电网分布式优化运行方法
CN112381263A (zh) * 2020-09-23 2021-02-19 四川大学 基于区块链分布式数据存储多微网日前鲁棒电能交易方法
CN112952908A (zh) * 2021-03-29 2021-06-11 四川大学 一种多合作微电网主体分布式协调交易方法
CN113363964A (zh) * 2021-05-26 2021-09-07 国网天津市电力公司 考虑重要负荷供电的配电网分布式储能规划方法及装置
CN113538061A (zh) * 2021-07-28 2021-10-22 上海电机学院 一种多微电网能量管理系统
CN114092243A (zh) * 2021-11-15 2022-02-25 东南大学 基于配网节点不确定性边际电价的两阶段p2p交易方法
CN114123213A (zh) * 2022-01-24 2022-03-01 武汉大学 一种电网的时空功率均衡方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
练小林等: "可交易能源框架下的微网群动态电能交易策略", 《电力建设》 *
肖谦等: "适应分布式发电交易的分散式电力市场探讨", 《电力系统自动化》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116416027A (zh) * 2023-03-10 2023-07-11 苏州科技大学 微电网能源交易方法和系统
CN116416027B (zh) * 2023-03-10 2023-11-10 苏州科技大学 微电网能源交易方法和系统
CN116316915A (zh) * 2023-05-12 2023-06-23 武汉中元华电科技股份有限公司 计及功率预测误差的风电场有功出力优化控制方法及装置
CN116316915B (zh) * 2023-05-12 2023-08-08 武汉中元华电科技股份有限公司 计及功率预测误差的风电场有功出力优化控制方法及装置
CN116562864A (zh) * 2023-07-11 2023-08-08 国网湖北省电力有限公司经济技术研究院 一种直流微电网互联系统的电力点对点交易方法及系统
CN116562864B (zh) * 2023-07-11 2023-09-15 国网湖北省电力有限公司经济技术研究院 一种直流微电网互联系统的电力点对点交易方法及系统

Also Published As

Publication number Publication date
CN115187316B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
Mansouri et al. A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources
CN115187316B (zh) 一种适应现货市场交易的风储微电网分布式交易方法
Liu et al. Distributed day-ahead peer-to-peer trading for multi-microgrid systems in active distribution networks
Qiu et al. Distributed generation and energy storage system planning for a distribution system operator
Zhou et al. Optimal operation of regional microgrids with renewable and energy storage: Solution robustness and nonanticipativity against uncertainties
Xu et al. Optimal operation and economic value of energy storage at consumer locations
CN107546743A (zh) 一种辐射状配电网分布式优化潮流方法
CN103997062A (zh) 一种微网能量管理控制方法
Kichou et al. A simple and effective methodology for sizing electrical energy storage (EES) systems based on energy balance
Ciabattoni et al. Artificial bee colonies based optimal sizing of microgrid components: A profit maximization approach
Liu et al. Microgrid trading game model based on blockchain technology and optimized particle swarm algorithm
Nair et al. Exploring blockchain enabled smart community with electric vehicles
Xu et al. A multi-time scale tie-line energy and reserve allocation model considering wind power uncertainties for multi-area systems
Salameh et al. A digital ecosystem cooperative model: An application on microgrids
Wang et al. Bilevel energy optimization for grid-connected AC multimicrogrids
Yang et al. Coordination and optimization of CCHP microgrid group game based on the interaction of electric and thermal energy considering conditional value at risk
Zhang et al. Network-aware energy management for microgrids in distribution market: A leader-followers approach
Rouzbahani et al. Optimizing resource swap functionality in ioe-based grids using approximate reasoning reward-based adjustable deep double q-learning
Sivaranjani et al. Smart energy optimization using new genetic algorithms in Smart Grids with the integration of renewable energy sources
CN115496256A (zh) 一种基于神经网络预测的共享储能容量优化方法
Chen et al. Value stacking of a behind-the-meter utility-scale battery for demand response markets and demand charge management: real-world operation on the UC San Diego campus
CN113988567A (zh) 一种储能共享控制方法及其控制系统
Levron et al. Control of energy storage devices under uncertainty using nonlinear feedback systems
Lin et al. Distributed optimal operation for distribution networks with multi-microgrid based on ADMM
Qi et al. Coordinated optimization of integrated energy system considering demand response and energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant