CN115185357A - 一种受限空间内主被动耦合散热系统及方法 - Google Patents

一种受限空间内主被动耦合散热系统及方法 Download PDF

Info

Publication number
CN115185357A
CN115185357A CN202210829462.9A CN202210829462A CN115185357A CN 115185357 A CN115185357 A CN 115185357A CN 202210829462 A CN202210829462 A CN 202210829462A CN 115185357 A CN115185357 A CN 115185357A
Authority
CN
China
Prior art keywords
active
passive
heat
circulation
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210829462.9A
Other languages
English (en)
Inventor
张伟
曲玖哲
张超
赵伟
宇波
孙东亮
万江红
马继楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Anxing High Tech New Energy Development Co ltd
Beijing Institute of Petrochemical Technology
Original Assignee
Beijing Anxing High Tech New Energy Development Co ltd
Beijing Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Anxing High Tech New Energy Development Co ltd, Beijing Institute of Petrochemical Technology filed Critical Beijing Anxing High Tech New Energy Development Co ltd
Priority to CN202210829462.9A priority Critical patent/CN115185357A/zh
Publication of CN115185357A publication Critical patent/CN115185357A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明公开了属于高性能芯片散热技术领域的一种受限空间内主被动耦合散热系统及方法。该系统由布置于机箱内的耦合冷板、大气热沉、储液罐、循环泵、箱内热沉、主动循环管路和被动循环管路构成。芯片产生的热量传递给交替布置于耦合冷板上的被动循环回路蒸发端微通道和主动循环回路微通道内的冷却工质,发生吸热相变;被动循环回路内形成的两相自然循环使热量经箱内热沉释放,循环泵导致的主动循环使主动循环回路内潜热及机箱内的热量通过大气热沉释放到机箱外。本发明散热系统,既单一克服被动回路换热能力不足及热阱向机箱内部放热导致机箱内升温的问题,又避免单一主动回路失效导致芯片超温烧毁,兼顾高效、低噪与高可靠性的多重散热需求。

Description

一种受限空间内主被动耦合散热系统及方法
技术领域
本发明属于高性能芯片散热技术领域,特别涉及一种受限空间内主被动耦合散热系统及方法。
背景技术
随着数据中心及机架式服务器的大规模应用,计算机微电子系统不断朝微型化、集成化和紧凑化方向发展。随着芯片性能的提升,日益增长的发热量导致的散热需求也成为制约芯片性能进一步发展的关键因素之一,同时受限于紧凑的布置空间,若不能迅速有效地将多余的热量带走,机箱内电子元器件也将因处于高温状态而降低寿命,甚至失效。因此我们需要一种新型高效的散热系统来解决其散热问题。
对于高热流密度芯片的散热问题,国内外相关研究者已经对换热方式、装置结构以及工质类型开展了大量的相关研究,形成了较为完善的体系。当前针对高性能服务器所应用芯片主要存在水冷和风冷两种散热方式。风冷散热通常应用于热流密度不超过0.8W/cm2的场景,已经无法满足高性能芯片的散热需求,且风扇运行噪音及功耗都比较大;单相水冷虽然具有相较于风冷更强的散热能力,但仍无法满足高性能芯片持续运行时的散热需求;相变冷却因利用潜热换热而具有极高的换热能力,适用于当前绝大部分高性能芯片的散热场景,对于相变冷却主要包括主动循环和被动循环两种模式。
当前背景下,采用主动循环相变散热通常以循环泵驱动作用进行,能够实现对流体的长距离快速输运,但由于系统布置相对复杂,一旦发生故障,如循环泵停机,将导致主动循环模式失效,芯片将会因得不到有效冷却而迅速超温甚至烧毁,降低了计算机系统的整体可靠性;而基于热管进行被动循环散热,虽然可以提高计算机整体可靠性,但其换热效率相对较低,且热管的热量传输路径较短,导致位于机箱内的热阱无法有效将芯片热量散失到机箱外,造成机箱内升温过热。面对上述情况,本发明通过一种散热系统来解决受限空间内电子系统高效、高可靠性及低噪声散热问题。能够同时保证高可靠性、高效换热以及低噪声的需求,以保证该机箱内高性能芯片保持良好的工作性能。
发明内容
本发明的目的是提供一种受限空间内主被动耦合散热系统及方法,其特征在于,该散热系统包括在机箱1内高性能芯片2上布置的耦合冷板3及其两端分别通过被动循环管路4并联连接的箱内热沉5和通过主动循环管路9连接的大气热沉6、储液罐7、循环泵8及流量传感器10的串联回路构成;其中,大气热沉6固定在机箱1壳体左边,两个冷风入口11固定在机箱1壳体右边;所述箱内热沉5由布置于冷凝端41的翅片51阵列和集成PWM风扇52构成;设置在被动循环管路4上;大气热沉6由布置于主动循环管路9上的翅片61阵列和PWM风扇62构成;布置在主动循环管路9上,大气热沉6内设置热风出口12。
所述耦合冷板3上交替布置在主动循环回路中的相变微通道31和被动循环回路中的蒸发微通道32,其两端分别设置液相却工质集液腔33和两相混合工质汇集腔34;蒸发微通道32的两端分别与被动循环管路4连接,冷凝热阱41及配套的箱内热沉热阱5构成被动循环回路;通过自然循环的方式将高性能芯片2产生的部分热量转移到机箱1内。
所述集液腔33和汇集腔34分别连接主动循环管路9,通过主动循环将高性能芯片2产生的热量转移到机箱1外。
所述PWM风扇62的控制器集成在控制电路板上,PWM风扇62的控制器使PWM风扇62维持低转速运行状态,控制电路板上集成的循环泵8控制器调控循环泵8逐步降低运行转速,主被动耦合散热系统的运行基于控制电路板进行分级冗余调控策略进行控制。
所述被动循环回路由多组并联的蒸发微通道32和被动循环管路4构成,被动循环管路4及蒸发微通道32内部均为毛细液芯结构。
所述主动循环回路在抽真空后装载总装量80%~85%的工质量,在储液罐7内预留总装量15%~20%的装量容积作为气空间,以抑制主动循环回路内工质相变引起的流动振荡。
一种受限空间内主被动耦合散热系统的耦合散热方法,其特征在于,高性能芯片2的温度状态通过温度传感器进行监测,温度传感器的温度信号T传递给主被动耦合散热系统的控制电路板进行逻辑判断并调控系统运行:当温度信号T<40℃时,控制电路板上集成的PWM风扇62控制器使PWM风扇62维持低转速运行状态,控制电路板上集成的循环泵8控制器调控循环泵8逐步降低运行转速,箱内热沉5上布置的集成PWM风扇52处于关闭状态;当温度信号T为60℃>T>40℃时,控制电路板上集成的PWM风扇62控制器使大气热沉6的PWM风扇62维持低转速运行状态,控制电路板上集成的循环泵8控制器调控循环泵8逐步提高运行转速,直至芯片2温度降低至40℃以下,箱内热沉5上布置的集成PWM风扇52处于关闭状态;当温度信号T为75℃>T>60℃时,控制电路板上集成的PWM风扇62控制器调控大气热沉6上布置的PWM风扇62逐步提高运行转速,控制电路板上集成的循环泵8控制器调控循环泵8逐步提高运行转速,直至芯片2温度降低至40℃以下,箱内热沉5上布置的PWM风扇52处于关闭状态;当温度信号T为T>75℃时,控制电路板上集成的PWM风扇62控制器调控PWM风扇62逐步提高运行转速,控制电路板上集成的循环泵8控制器调控循环泵8逐步提高运行转速,启动箱内热沉5布置的集成PWM风扇52,并通过控制器逐步提高其运行转速,直至芯片2的温度降下来;当主动循环回路失效导致回路流量为0时,此时,主被动耦合散热系统的冗余控制电路板将发出故障报警信号,同时启动箱内热沉5上布置的集成PWM风扇52并通过其控制器逐渐调高运行风扇转速,PWM风扇62的转速则根据上述芯片2温度信号T的所处区间由控制电路板进行调控。
所述主动循环回路与被动循环回路基于耦合冷板3进行耦合散热的具体热量转移方式为:芯片2运行过程产生的热量经耦合冷板3同时传递给其上布置的相变微通道31内的液相冷却工质和蒸发微通道32内的冷却剂,蒸发微通道32内的冷却剂发生相变吸热,在被动循环管路4内毛细力的作用下,被动循环回路内形成气液两相自然循环,气相冷却剂在布置于箱内热沉5中冷凝热阱41作用下将气相冷凝释放的潜热转移到机箱1内,冷凝后的液相通过毛细液芯重新回到蒸发微通道32内,相变微通道31内的液相冷却工质吸收热量后发生相变换热,气液两相混合工质在循环泵8的驱动下经两相混合工质的汇集腔34后被大气热沉6冷凝,冷凝后且具有一定过冷度的液相冷却工质进入储液罐7,随后在通过液相冷却工质的集液腔33的分配下重新进入相变微通道31参与下一次循环;PWM风扇62运转使机箱热风出口12处形成负压区,对流效应使冷凝释放的热量和机箱1内的热量被同时转移到机箱1外,外部冷风经冷风入口11进入机箱1内从而降低机箱1内的温度
本发明的有益效果如下:
1.利用在耦合冷板上交替设置主动回路的相变微通道和被动循环回路的蒸发微通道,同时设置有主动循环回路和被动循环回路,二者在耦合冷板上发生同步换热,使工质发生相变换热,达到潜热高效换热。被动循环回路既能够直接参与芯片的热量转移以降低主动循环回路的能耗,又可作为主动循环回路的冗余回路以应对主动循环回路故障导致的冷却失效,提高芯片及计算机系统的运行可靠性。
2.大气热沉能够同时实现将被动循环回路释放到机箱内的热量和主动循环回路转移的热量散失到机箱外,既实现了对芯片热量转移,同时避免了机箱内的升温,使机箱内的电子元器件能够维持相对低的工作温度状态。
3.基于分级冗余控制策略调控本发明系统的运行,分级冗余控制策略使循环系统能够根据芯片的工作温度状态进行分级管理,通过温度反馈机制使本发明系统运行过程能够快速响应芯片的工作状态,在避免芯片超温运行的同时还使本发明系统中的风扇设备保持低转速的低噪声状态运行。同时本发明还设计了冗余控制逻辑,能够在主动循环回路失效的状态,使被动循环回路进入高效换热模式,避免芯片因超温而被烧毁,提高计算机散热系统的可靠性。
附图说明
图1为主被动耦合散热系统组成示意图。
图2为图1三维结构示意图。
图3为耦合冷板示意图。其中a俯视图、b立体图;
图4为分级冗余控制策略逻辑图。
图5为主被动循环过程示意图。
附图标号说明:机箱(1)、高性能芯片(2)、耦合冷板(3)、被动循环管路(4)、箱内热沉(5)、大气热沉(6)、储液罐(7)、循环泵(8)、主动循环管路(9)、质量流量传感器(10)、冷风入口(11)、热风出口(12)、项变微通道(31)、蒸发微通道(32)、集液腔(33)、汇集腔(34)、翅片(51)、PWM风扇(52)、翅片(61)和PWM风扇(62)。
具体实施方式
本发明提供一种受限空间内主被动耦合散热系统及方法,下面结合附图和实施例对本发明作进一步详细说明,
如图1和图2所示的主被动耦合散热系统组成示意图及三维结构组成示意图,该散热系统包括在机箱1内高性能芯片2上布置的耦合冷板3及其两端分别通过被动循环管路4并联连接的箱内热沉5和通过主动循环管路9连接的大气热沉6、储液罐7、循环泵8及流量传感器10的串联回路构成;其中,大气热沉6固定在机箱1壳体左边,两个冷风入口11固定在机箱1壳体右边;所述箱内热沉5由布置于冷凝端41的翅片51阵列和集成PWM风扇52构成;设置在被动循环管路4上;大气热沉6由布置于主动循环管路9上的翅片61阵列和PWM风扇62构成;布置在主动循环管路9上,大气热沉6内设置热风出口12。
如图3为耦合冷板3示意图,所示,其中a俯视图、b立体图;所示耦合冷板3上分别交替设置主动循环回路微通道31和被动循环回路蒸发端32微通道结构,蒸发端32微通道结构分别与被动循环管路4连接。
如图4所示为本发明分级冗余控制策略逻辑图,当温度信号T<40℃时,控制电路板上集成的PWM风扇62控制器使PWM风扇62维持低转速运行状态,控制电路板上集成的循环泵8控制器调控循环泵8逐步降低运行转速,箱内热沉5上布置的集成PWM风扇52处于关闭状态。当温度信号60℃>T>40℃时,控制电路板上集成的PWM风扇62控制器使PWM风扇62维持低转速运行状态,控制电路板上集成的循环泵8控制器调控循环泵8逐步提高运行转速,直至芯片2温度降低至40℃以下,箱内热沉5上布置的集成PWM风扇52处于关闭状态。当温度信号75℃>T>60℃时,控制电路板上集成的PWM风扇62控制器调控PWM风扇62逐步提高运行转速,控制电路板上集成的循环泵8控制器调控循环泵8逐步提高运行转速,直至芯片2温度降低至40℃以下,箱内热沉5上布置的集成PWM风扇52处于关闭状态。当温度信号T>75℃时,控制电路板上集成的PWM风扇62控制器调控PWM风扇62逐步提高运行转速,控制电路板上集成的循环泵8控制器调控循环泵8逐步提高运行转速,同时启动箱内热沉5上布置的集成PWM风扇52并通过集成于控制电路板上的控制器逐步提高其运行转速,直至芯片2的温度降下来。当主动循环回路失效导致回路流量为0时,此时,主被动耦合散热系统的冗余控制电路板将发出故障报警信号,同时启动箱内热沉5布置的集成PWM风扇52并通过集成于冗余控制电路板上的集成PWM风扇52控制器逐渐调高风扇运行转速,PWM风扇62的转速则根据上述芯片2温度信号T的所处区间被控制电路板上集成的控制器调控。
实施例1:
在针对高性能机架式服务器CPU进行冷却的情况下,设计一种受限空间内主被动耦合散热系统。本系统三维结构如图2所示,耦合冷板3与被动循环管路4和主动循环管路9间采用真空钎焊工艺进行连接,热源耦合冷板3布置于高性能芯片3上方,采用HFE-7100作为主动循环回路和被动循环回路的冷却工质,被动循环回路内采用烧结工艺加工毛细液芯结构,主被动循环过程如图5所示。
基于分级冗余控制策略,高性能芯片2运行过程产生的热量经耦合冷板3同时传递给其上布置的相变微通道31和蒸发微通道32内的液相HFE-7100。蒸发微通道32内的HFE-7100发生相变吸热,在被动循环管路4内毛细力的作用下,被动循环回路内形成气液两相自然循环,气相HFE-7100在冷凝端41被箱内热沉5冷凝,汽化潜热通过箱内热沉5释放到机箱1内,冷凝后的液相HFE-7100通过毛细液芯重新回到蒸发微通道32;相变微通道31内的液相HFE-7100吸收热量后发生相变换热,两相混合工质在循环泵8的驱动下经汇集腔34进入主动循环管路9,气相HFE-7100在大气热沉6被冷凝,PWM风扇62运转使机箱热风出口12处形成负压区,对流效应使冷凝释放的潜热和机箱1内的热量被同时散失到机箱1外,外部冷风通过冷风入口11进入机箱1内,降低机箱1内的温度,冷凝后且具有一定过冷度的液相冷却工质进入储液罐7,随后经主动循环管路9进入集液腔33。

Claims (8)

1.一种受限空间内主被动耦合散热系统,其特征在于,该散热系统包括在机箱(1)内高性能芯片(2)上布置的耦合冷板(3)及其两端分别通过被动循环管路(4)并联连接的箱内热沉(5)和通过主动循环管路(9)连接的大气热沉(6)、储液罐(7)、循环泵(8)及流量传感器(10)的串联回路构成;其中,大气热沉(6)固定在机箱(1)壳体左边,两个冷风入口(11)固定在机箱(1)壳体右边;所述箱内热沉(5)由布置于冷凝端(41)的翅片(51)阵列和集成PWM风扇(52)构成;设置在被动循环管路(4)上;大气热沉(6)由布置于主动循环管路(9)上的翅片(61)阵列和PWM风扇(62)构成;布置在主动循环管路(9)上,大气热沉(6)内设置热风出口(12)。
2.根据权利要求1所述一种受限空间内主被动耦合散热系统,其特征在于,所述耦合冷板(3)上交替布置在主动循环回路中的相变微通道(31)和被动循环回路中的蒸发微通道(32),其两端分别设置液相却工质集液腔(33)和两相混合工质汇集腔(34);蒸发微通道(32)的两端分别与被动循环管路(4)连接,冷凝热阱(41)及配套的箱内热沉热阱(5)构成被动循环回路;通过自然循环的方式将高性能芯片(2)产生的部分热量转移到机箱(1)内。
3.根据权利要求1所述一种受限空间内主被动耦合散热系统,其特征在于,所述集液腔(33)和汇集腔(34)分别连接主动循环管路(9),通过主动循环将高性能芯片(2)产生的热量转移到机箱(1)外。
4.根据权利要求1所述一种受限空间内主被动耦合散热系统,其特征在于,所述PWM风扇(62)的控制器集成在控制电路板上,PWM风扇(62)的控制器使PWM风扇(62)维持低转速运行状态,控制电路板上集成的循环泵(8)控制器调控循环泵(8)逐步降低运行转速,主被动耦合散热系统的运行基于控制电路板进行分级冗余调控策略进行控制。
5.根据权利要求1所述一种受限空间内主被动耦合散热系统,其特征在于,所述被动循环回路由多组并联的蒸发微通道(32)和被动循环管路(4)构成,被动循环管路(4)及蒸发微通道(32)内部均为毛细液芯结构。
6.根据权利要求1所述一种受限空间内主被动耦合散热系统,其特征在于,所述主动循环回路在抽真空后装载总装量80%~85%的工质量,在储液罐(7)内预留总装量15%~20%的装量容积作为气空间,以抑制主动循环回路内工质相变引起的流动振荡。
7.一种受限空间内主被动耦合散热系统的耦合散热方法,其特征在于,高性能芯片(2)的温度状态通过温度传感器进行监测,温度传感器的温度信号T传递给主被动耦合散热系统的控制电路板进行逻辑判断并调控系统运行:当温度信号T<40℃时,控制电路板上集成的PWM风扇(62)控制器使PWM风扇(62)维持低转速运行状态,控制电路板上集成的循环泵(8)控制器调控循环泵(8)逐步降低运行转速,箱内热沉(5)上布置的集成PWM风扇(52)处于关闭状态;当温度信号T为60℃>T>40℃时,控制电路板上集成的PWM风扇(62)控制器使大气热沉(6)的PWM风扇(62)维持低转速运行状态,控制电路板上集成的循环泵(8)控制器调控循环泵(8)逐步提高运行转速,直至芯片(2)温度降低至40℃以下,箱内热沉(5)上布置的集成PWM风扇(52)处于关闭状态;当温度信号T为75℃>T>60℃时,控制电路板上集成的PWM风扇(62)控制器调控大气热沉(6)上布置的PWM风扇(62)逐步提高运行转速,控制电路板上集成的循环泵(8)控制器调控循环泵(8)逐步提高运行转速,直至芯片(2)温度降低至40℃以下,箱内热沉(5)上布置的集成PWM风扇(52)处于关闭状态;当温度信号T为T>75℃时,控制电路板上集成的PWM风扇(62)控制器调控PWM风扇(62)逐步提高运行转速,控制电路板上集成的循环泵(8)控制器调控循环泵(8)逐步提高运行转速,启动箱内热沉(5)布置的集成PWM风扇(52),并通过控制器逐步提高其运行转速,直至芯片(2)的温度降下来;当主动循环回路失效导致回路流量为0时,此时,主被动耦合散热系统的冗余控制电路板将发出故障报警信号,同时启动箱内热沉(5)上布置的集成PWM风扇(52)并通过其控制器逐渐调高运行风扇转速,PWM风扇(62)的转速则根据上述芯片(2)温度信号T的所处区间由控制电路板进行调控。
8.根据权利要求7所述一种受限空间内主被动耦合散热系统的耦合散热方法,其特征在于,所述主动循环回路与被动循环回路基于耦合冷板(3)进行耦合散热的具体热量转移方式为:芯片(2)运行过程产生的热量经耦合冷板(3)同时传递给其上布置的相变微通道(31)内的液相冷却工质和蒸发微通道(32)内的冷却剂,蒸发微通道(32)内的冷却剂发生相变吸热,在被动循环管路(4)内毛细力的作用下,被动循环回路内形成气液两相自然循环,气相冷却剂在布置于箱内热沉(5)中冷凝热阱(41)作用下将气相冷凝释放的潜热转移到机箱(1)内,冷凝后的液相通过毛细液芯重新回到蒸发微通道(32)内,相变微通道(31)内的液相冷却工质吸收热量后发生相变换热,气液两相混合工质在循环泵(8)的驱动下经两相混合工质的汇集腔(34)后被大气热沉(6)冷凝,冷凝后且具有一定过冷度的液相冷却工质进入储液罐(7),随后在通过液相冷却工质的集液腔(33)的分配下重新进入相变微通道(31)参与下一次循环;PWM风扇(62)运转使机箱热风出口(12)处形成负压区,对流效应使冷凝释放的热量和机箱(1)内的热量被同时转移到机箱(1)外,外部冷风经冷风入口(11)进入机箱(1)内从而降低机箱(1)内的温度。
CN202210829462.9A 2022-07-15 2022-07-15 一种受限空间内主被动耦合散热系统及方法 Pending CN115185357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210829462.9A CN115185357A (zh) 2022-07-15 2022-07-15 一种受限空间内主被动耦合散热系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210829462.9A CN115185357A (zh) 2022-07-15 2022-07-15 一种受限空间内主被动耦合散热系统及方法

Publications (1)

Publication Number Publication Date
CN115185357A true CN115185357A (zh) 2022-10-14

Family

ID=83519404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210829462.9A Pending CN115185357A (zh) 2022-07-15 2022-07-15 一种受限空间内主被动耦合散热系统及方法

Country Status (1)

Country Link
CN (1) CN115185357A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116634738A (zh) * 2023-05-31 2023-08-22 成都赛力斯科技有限公司 一种车载高算力芯片散热方法、装置和系统
CN117015191A (zh) * 2023-05-25 2023-11-07 东南大学 一种储热型相变回路装置、控制系统及控制方法
CN117355116A (zh) * 2023-11-17 2024-01-05 广东液冷时代科技有限公司 一种数据中心多段式流道冷板相变散热系统及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117015191A (zh) * 2023-05-25 2023-11-07 东南大学 一种储热型相变回路装置、控制系统及控制方法
CN117015191B (zh) * 2023-05-25 2024-02-13 东南大学 一种储热型相变回路装置和控制系统
CN116634738A (zh) * 2023-05-31 2023-08-22 成都赛力斯科技有限公司 一种车载高算力芯片散热方法、装置和系统
CN117355116A (zh) * 2023-11-17 2024-01-05 广东液冷时代科技有限公司 一种数据中心多段式流道冷板相变散热系统及其控制方法

Similar Documents

Publication Publication Date Title
CN111642103B (zh) 高热流密度多孔热沉流动冷却装置
CN115185357A (zh) 一种受限空间内主被动耦合散热系统及方法
JP6588654B2 (ja) ハイパワー部品用の作動媒体接触式冷却システム及びその作動方法
CN111511164B (zh) 喷雾冷却相变热沉一体化蒸发冷却装置
CN108882654B (zh) 相变冷却系统、冷却系统及变流器柜冷却系统
AU2009282170A1 (en) Liquid submerged, horizontal computer server rack and systems and methods of cooling such a server rack
CN111156843B (zh) 片式堆叠液冷换热器
WO2024148872A1 (zh) 一种浸没式液冷服务器及其余热回收系统
US20180066663A1 (en) Cooling using coolant-driven fans
CN114071972B (zh) 一种用于高功率密度机柜的泵驱双环路热管组合散热系统
CN115529796A (zh) 一种散热系统和包括散热系统的服务器
CN114190063A (zh) 一种一体定向浸没冷却式服务器模块及数据中心
CN114762469A (zh) 电子系统、特别是用于数据中心的冷却系统
CN114727566A (zh) 一种能耗低的超算/数据中心被动式散热系统
CN115857644A (zh) 一种服务器用冷板式散热装置
CN115942722A (zh) 一种液体隔离式混合气液双相浸没式液冷系统
CN213462750U (zh) 一种脉动热管式刀片式服务器热管理系统
CN112105231B (zh) 一种脉动热管式刀片式服务器热管理系统
CN114531830A (zh) 一种功率模块及功率柜
CN211406686U (zh) 一种用于服务器的回路热管系统
CN117651400B (zh) 一种服务器用一体化吸收式制冷系统
CN218450982U (zh) 一种能耗低的超算/数据中心被动式散热系统
CN218273313U (zh) 一种用于计算机芯片的风冷水冷组合散热设备
CN117174675B (zh) Tec热能驱动的环路热管无泵循环芯片散热装置及方法
CN220914365U (zh) 一种联合热管理液冷储能系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination