CN115184362A - 一种基于结构光投影的快速缺陷检测方法 - Google Patents

一种基于结构光投影的快速缺陷检测方法 Download PDF

Info

Publication number
CN115184362A
CN115184362A CN202210757298.5A CN202210757298A CN115184362A CN 115184362 A CN115184362 A CN 115184362A CN 202210757298 A CN202210757298 A CN 202210757298A CN 115184362 A CN115184362 A CN 115184362A
Authority
CN
China
Prior art keywords
image
defect
template
grating
structured light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210757298.5A
Other languages
English (en)
Inventor
陈扬
张�杰
顾宇浩
周壮壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Suzhou Intelligent Computing Technology Research Institute
Original Assignee
Zhongke Suzhou Intelligent Computing Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Suzhou Intelligent Computing Technology Research Institute filed Critical Zhongke Suzhou Intelligent Computing Technology Research Institute
Priority to CN202210757298.5A priority Critical patent/CN115184362A/zh
Publication of CN115184362A publication Critical patent/CN115184362A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Abstract

本发明公开了一种基于结构光投影的快速缺陷检测方法,使用投影仪对检测物体表面投影光栅图像,并基于光栅在缺陷处产生畸变的原理,增强物体表面缺陷的显著性,并使相机可以有效获取到二维纹理缺陷与三维结构缺陷。该检测方法通过装置标定、学习参数的准备阶段和图像校正、实时检测的工作阶段,尤其学习参数阶段对模板库进行离散化,在实时检测时引入快速归一化计算和模板匹配,并籍此计算缺陷区域。应用本发明该检测方法,提升了对物体表面三维缺陷的检测能力,克服了外界环境对缺陷检测功能的影响;特别采用一维的离散模板快速匹配发,大幅缩减了计算量,显著提高了检测速度。

Description

一种基于结构光投影的快速缺陷检测方法
技术领域
本发明涉及一种机器视觉的工业应用,尤其涉及一种基于结构光投影的快速缺陷检测方法。
背景技术
机器视觉是通过对图像进行分析,使工业装备具有了基本的识别和分析能力。随着工业数字化、智能化转型逐渐深入、智能制造的逐步推进,工业机器视觉逐渐形成规模化的产业,并随着人工智能技术在工业领域落地而逐渐深入到工业生产的各种场景之中。表面缺陷检测任务作为机器视觉领域的一个基础性研究课题,它的目标是自动区分不同的物体表面情况,在很多实际任务中得到应用,例如3C产品表面缺陷检测、手机盖板玻璃检测、晶圆表面检测等。
在工业转型升级的过程中,正从过度依赖低廉劳动成本的粗加工和制造模式向全面自动化、高附加值和高生产率转型。在旧工业体系的生产线中,产品表面的缺陷主要依靠人眼观察,这种人工检测的方式会出现较大的主观意愿差异,而且随着工作时间的加长导致检测效率低下,无法适应于高速智能的社会生产节奏。基于机器视觉的表面缺陷检测方法则通过摄像机拍摄物体表面的图像,通过视觉分析算法计算出缺陷的种类和位置,代替了人眼观察的过程。基于机器视觉的表面缺陷检测方法具有非接触测量、长时间稳定工作、不受恶劣的工作环境影响等优势,受到众多企业的青睐。
当前工业界和学术界对基于结构光表面缺陷检测的研究仍停留在使用传统的二维机器视觉算法检测无纹理物体表面的缺陷这一简单任务层次中。例如,Caulier等(2007)提出具有一定普适性的光栅图案特征算法,但该方法对光照的鲁棒性较低并且需要较大的计算量。Kemao等(2006)提出基于模板匹配和窗口傅里叶变换的方法检测异常缺陷,该方法虽然在实时性上有所提升,但对光照变化较敏感,算法的普适性和鲁棒性较低。除此之外,还有一些研究工作应用Gabor滤波器、小波变换、注意力机制等异常特征提取方法。基于结构光缺陷检测的公告方案包括:合肥铜冠信息科技有限责任公司(2021)申请的基于结构光金属板缺陷检测方,该专利中将待检测条纹图片分别与标准条纹图片中对应像素点做乘法,以此求解相位,并基于金属板的高度信息定位缺陷;北京市新技术应用研究所(2020)提供一种产品反光表面缺陷检测方法,基于边缘检测和形态学滤波的方法定位表面缺陷;另有湖南讯目科技有限公司(2020)通过对待测玻璃透射出光栅条纹,采用虚拟莫尔条纹技术可以对玻筋等微小变形进行检测计算,得到常规缺陷的大小、位置等信息。
纵观国内外的表面缺陷检测研究现状,可以发现存在如下问题:首先,现有的机器视觉检测装置缺乏普适性。大多数缺陷检测方法是使用在漫射照明、定向照明等传统的光照方式获取物体表面的图像,摄像机可以获取到纹理缺陷但难以有效地捕捉到结构缺陷。尽管目前的深度学习神经网络可以提取到较深层次的特征,仍无法从摄像机捕捉不到缺陷的图像中检测到缺陷。因此,对物体表面低效的照明方式,直接导致了现有机器视觉装置对缺陷的检测效果不佳。
其次,现有的缺陷检测方法缺乏稳定性。大多数缺陷检测方法可检测成像质量较好的图像中缺陷,当环境发生改变时,例如,相机工作距离、图像清晰图、光照强度、材料反光、上料过程中的硬件抖动等,导致图像质量降低、检测算法失效。因此,为确保在不同环境下的有效性,需要设计更稳定的缺陷检测算法。
最后,现有机器视觉检测算法的实时性不高。对于检测要求较高的工业应用场景,现有的方法在检测缺陷的过程中需要较大的计算量,导致检测所需时间较长。
发明内容
针对现有技术的上述不足,本发明提出了基于结构光投影的快速缺陷检测方法,通过装置设备的调整和检测方法的重构,解决工业生产领域进行产品表面缺陷检测缺乏普适性、鲁棒性、实时性以及缺陷的定级等问题。
本发明实现上述目的的技术解决方案为,一种基于结构光投影的快速缺陷检测方法,基于由投影仪、相机和计算机构成的检测装置实现,并以光栅为结构光,其特征在于包括:
S1、装置标定,通过计算投影仪成像区域与理想坐标的映射关系,将倾斜的光栅图像区域映射到理想坐标系中,得到与Y轴平行的光栅图像;
S2、学习参数,使用不同材质表面的样品通过投射及取景范围,并通过投影仪对场景投射正弦光栅条纹,学习包括模板特征、噪声阈值、缺陷阈值、背景亮度阈值的图案特征;
S3、图像校正,在工作阶段利用装置标定步骤所得映射关系,将相机输入的倾斜光栅图像校正为相对光栅的条纹方向垂直的理想光栅图像;
S4、实时检测,向计算机输入图像校正后的理想光栅图像,并由计算机基于用户对缺陷的定义,对输入图像分割目标、检测缺陷并分析缺陷,其中检测缺陷包括快速归一化、快速模板匹配和计算缺陷区域三部分,对误差区域图像,分析输出包含符合用户需求的全部缺陷信息的图像。
进一步地,学习参数中所述模板特征为获取无缺陷的待检物体表面图案,通过图像处理算法提取出不同相位、不同周期的归一化正选波形、并组成模板库;
所述噪声阈值为计算无缺陷的表面图像中每一段数据于模板库中全部模板的平均绝对误差
Figure 100002_DEST_PATH_IMAGE001
,其中
Figure 874569DEST_PATH_IMAGE002
为模板向量,
Figure 100002_DEST_PATH_IMAGE003
为图像向量;
所述缺陷阈值得自于将带有缺陷的表面图像与模板库的模板进行匹配,并计算图像中所有数据段的匹配误差、从小到大排序后自定义设置的取值个数;
所述背景亮度阈值为对待检产品的背景材质投影全亮的图案,并取背景材质图像的亮度平均值所得;
所述测量参数表示图像坐标与真实世界的对应关系。
更进一步地,还包括对模板库进行离散化,离散化程度与模板的周期相关。
进一步地,实时检测中所述分割目标为基于背景亮度阈值提取目标区域,并对目标区域作边缘拟合。
进一步地,实时检测中所述快速归一化,通过计算光栅图像的每一段向量在一个周期内的最低值与最高值,计算公式为:
Figure 767570DEST_PATH_IMAGE004
,其中
Figure 100002_DEST_PATH_IMAGE005
为归一化的图像向量,
Figure 947622DEST_PATH_IMAGE006
为图像数据向量,
Figure 100002_DEST_PATH_IMAGE007
为图像数据向量的最大值,
Figure 417918DEST_PATH_IMAGE008
为图像数据向量的最小值。
进一步地,实时检测中所述快速模板匹配,模板匹配过程包括:
S41、对归一化光栅图像、目标区域图像在Y方向上降采样,获取初始化模板索引;
S42、一维快速模板匹配,自目标区域图像的第一行、第一列起,向右、向下寻找一个周期的图像向量;
S43、基于当前图像向量进行模板匹配,从三种周期的模板库中,根据最小的匹配误差选取最佳的匹配模板;
S44、基于目标区域图像寻找下一段图像数据,如找到则进入S43,否则转入S45;
S45、完成降采样模板匹配过程,生成降采样的模板图像;
S46、基于插值方法,在Y方向上提高降采样模板图像的分辨率,生成原分辨率的模板图像。
进一步地,实时检测中所述计算缺陷区域,基于模板图像与归一化图像计算缺陷误差图像,并基于学习参数阶段提取的缺陷阈值,对缺陷误差图像阈值化,生成误差区域图像。
进一步地,分析缺陷,采用连通域分析算法提取缺陷信息的连通域特征,并基于测量参数将连通域特征转换至真实世界的缺陷量化表征,基于预设的缺陷参数,过滤并输出待检产品表面符合用户定义的缺陷量化表征或图像表征。
应用本发明该快速缺陷检测的技术解决方案,与传统人工检测或其它机器视觉检测方法相比较,其显著的进步性概括为:提升了对物体表面三维缺陷的检测能力,克服了外界环境对缺陷检测功能的影响;采用一维的离散模板快速匹配发,大幅缩减了计算量,显著提高了检测速度。
附图说明
图1为本发明检测和测量产品表面缺陷所用装置的结构示意图。
图2为本发明检测和测量产品表面缺陷的方法流程示意图。
图3为本发明检测方法中一张投射光栅图案。
图4至图6为本发明检测方法对模板进行离散化的数据图。
图7是本发明快速模板匹配的细化流程示意图。
具体实施方式
下面将结合本发明的附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明所述“以上”、“以下”均含本数。若未特别指明,实施举例中所用的技术手段为本领域技术人员所熟知的常规手段。需要说明的是:全文所述“计算”均指录入本发明提供算法/方法后利用硬件或软件自动运行的计算,并非指人为计算;在使用本发明提供算法/方法进行相机标定时,最终获得的标定结果也不以人的意志为转移。
如图1所示的装置硬件结构示意图可见,该装置主要包括投影仪、相机及计算机三部分。从功能限定来看,其中投影仪用于向产线上实时通过的待检产品表面投射结构光;而相机则用于实时抓拍被投射结构光的待检产品表面成像;两者集合成为一体,并固接于产线从中穿过的龙门架上,投影仪的投射角度和相机的拍摄距离、角度可调。另有未图示的计算机总线连接投影仪及相机,用于对投影仪输出结构光,并接收来自于相机的采集图像,通过计算机所预设的图像处理算法,检测与测量物体的表面包括划痕、污损、擦伤、碰伤等缺陷并量化尺寸规格。
本装置从数据获取的角度解决了缺乏普适性的问题。使用投影仪对检测物体表面投影光栅图像,并基于光栅在缺陷处产生畸变的原理,增强了物体表面缺陷的显著性,使摄像机可以有效获取到二维纹理缺陷与三维结构缺陷。
本装置设计了一套有效的缺陷检测方法解决了鲁棒性的问题。选择自然界中存在较少的蓝光作为结构光投射的光线,对环境光具有一定的鲁棒性。
基于上述检测和测量装置的结构描述,以下通过结合设备的技术路线描述,进一步理解其检测方法的可实现性。而该装置的技术路线如图2所示,该装置在使用前需进行学习,包括装置标定、学习参数。概括描述为:S1、装置标定,通过计算投影仪成像区域与理想坐标的映射关系,将倾斜的光栅图像区域映射到理想坐标系中,得到与Y轴平行的光栅图像;S2、学习参数,使用不同材质表面的样品通过投射及取景范围,并通过投影仪对场景投射正弦光栅条纹,学习包括模板特征、噪声阈值、缺陷阈值、背景亮度阈值、测量参数的图案特征。而在结束学习过程后,在系统工作时会输出物体表面的缺陷信息,主要包括有图像校正、实时检测的步骤。概括描述为:S3、图像校正,在工作阶段利用装置标定步骤所得映射关系,将相机输入的倾斜光栅图像校正为相对光栅的条纹方向垂直的理想光栅图像;S4、实时检测,向计算机输入图像校正后的理想光栅图像,并由计算机基于学习参数和设定参数对输入图像分割目标并检测缺陷,输出包含符合用户需求的全部缺陷信息的图像。最后分析缺陷,采用连通域分析算法提取缺陷信息的连通域特征,并基于测量参数将连通域特征转换至真实世界的缺陷量化表征,基于预设的缺陷参数,过滤并输出待检产品表面符合用户定义的缺陷量化表征或图像表征。
从更具体的细节描述来看:首先装置标定,采用投影仪在物体投射条纹图案、相机拍摄的方式,获取物体表面信息。在实际环境中很难保持光栅条纹的方向与摄像机成像的垂直方向一致,因而实际获取的图像中光栅投影图案的方向多变,给后期的特征提取算法加大了难度。因此本装置通过计算投影仪成像区域与理想坐标的映射关系,将倾斜的光栅图像区域映射到理想坐标系中,得到与Y轴平行的光栅图像。这里理想坐标系具有本领域技术人员所习惯的认知及定义,结合产线而言,即传送带所在平面为XY平面,待检产品传送方向平行于Y轴,而待检产品高度即为Z轴。
装置的标定过程如下,首先对物体表面投影棋盘格图案;然后提取棋盘格图像中的最外侧角点的位置,并建立角点位置到理想坐标的透视变换关系;最终,利用这一透视变换关系将条纹倾斜的光栅图像校正为理想的光栅图像。
再者学习参数,在工作时,投影仪对场景投射正弦光栅条纹,在不同的工作环境和工作距离中,相机采集到的正弦波形有不同的周期、相位、幅度等特征;除此之外。投影光线经过材质表面吸收、折射、反射等过程,相机获取的正弦图案存在变形。本装置在工作前,通过学习不同材质表面的正弦图案特征,使其灵活应用在不同的环境中。需要学习的特征有:模板特征、噪声阈值、缺陷阈值、背景亮度阈值参数等。
(1)、模板特征由一系列不同相位和周期的正弦数据构成。本装置获取无缺陷的待检测物体表面图案,通过图像处理算法,提取出不同相位、不同周期的归一化正选波形、并组成模板库。模板库中每一模板为一个周期的正弦数据,如图3所示。
本方法在在无缺陷的图像中获取三种周期的模板特征,由这三种周期的模板组成模板库。因此,模板库中包含三个不同周期的小模板库,其中每一小模板库由同一周期的不同相位正弦模板组成,模板库的三个周期分别为T1、T2、T3。
本方法对模板库的模板进行离散化,离散化程度由模板的周期决定。如图4所示,将正弦模板均匀离散化为16个数据,离散化程度为
Figure 803769DEST_PATH_IMAGE010
;如图5所示,进一步将正弦波形离散化为16段数据,图4与图5的结果相当于对原正弦数据离散化为32份,离散化程度为
Figure DEST_PATH_IMAGE011
;如图6所示,在图5的基础上进一步离散化为32份数据,结合先前离散化结果,相当于对原正弦信号离散化64份,离散化程度为
Figure DEST_PATH_IMAGE013
(2)、噪声阈值用于实时检测阶段,判断某一数据段是否匹配到模板。本装置使用模板匹配算法,取无缺陷的表面图像中每一段数据,与模板库的模板进行匹配,找到最佳匹配的模板。在模板匹配之前,对无缺陷的表面图像进行归一化处理。计算无缺陷的表面图像中每一段数据与模板库中全部模板的平均绝对误差(MAE),将其作为噪声阈值,计算公式为
Figure 505271DEST_PATH_IMAGE014
,其中,
Figure DEST_PATH_IMAGE015
为模板向量,
Figure 357689DEST_PATH_IMAGE016
为图像向量。而其中误差最小的模板即匹配的模板,该误差即为匹配误差。
(3)、缺陷阈值用于实时检测阶段,判断某一数据段是否包含缺陷。本装置使用模板匹配算法,将带有缺陷的表面图像与模板库的模板进行匹配,计算图像中所有数据段的匹配误差,并将其从小到到排序。缺陷阈值取全部匹配误差中,第k个值,其中k值由缺陷占图像中的比例决定,为自定义设置的取值个数。
(4)、背景亮度阈值用于实时检测阶段,用于分割图像中的目标区域和背景区域。由于不同材质的表面对投影仪光的反射系数不同,例如表面光滑的材质,常见的有玻璃、显示屏等,当图案投影仪到其表面将发生镜面反射,相机捕获的图像其亮度往往较低;对表面粗糙的材质投影图案,在其表面产生漫反射,相机捕获的图像其亮度往往较高。本装置基于目标材质与背景的表面反射系数不同,对背景材质投影全亮的图案,并取背景材质图像的亮度平均值为背景亮度阈值,用于分割出图像中的目标区域和背景区域。
完成检测前准备后,接着图像校正,由于实际环境中很难保持光栅条纹的方向与摄像机成像的垂直方向一致,因而实际获取的图像中光栅投影图案的方向多变,给实时检测过程加大了难度。本装置基于装置标定步骤得到的透视变换关系,在工作阶段将输入的倾斜光栅图像校正为条纹方向垂直的理想光栅图像。
而后实时检测,该阶段基于学习参数和设定参数,输出符合用户需求的全部缺陷。该阶段的输入图像是理想光栅图像,输出为图像中的缺陷信息,包括缺陷在图像中的位置、宽度和高度,缺陷在真实世界的参数,例如周长、面积与最长边等。该阶段主要由分割目标、检测缺陷并分析缺陷。
在实际工业应用中,当待检测的物体形状不规则或相机的视野较大是,光栅图像夹杂一部分背景区域,将影响缺陷检测算法的有效性。本装置基于不同材质对投影不同的图案反射能力,使用学习得到的背景亮度阈值,基于阈值化的方法分割出目标区域与背景区域。除此之外,物体的边缘也存在一部分缺陷,例如破边缺陷。本装置通过对目标区域的边缘进行拟合,拟合的方法有圆形、椭圆、多边形等方法,对目标区域进行填补。
在检测缺陷阶段基于用户对缺陷的定义,在图像中检测出满足错位判断法条件的全部缺陷。检测方法主要由基于模板匹配的异常检测、缺陷区域计算两部分构成。
1)、快速归一化。为克服光照不均等环境因素对模板匹配的影响,本方法基于归一化的光栅图像数据进行模板匹配,通过计算光栅图像的每一段向量在一个周期内的最低值与最高值,计算公式为:
Figure DEST_PATH_IMAGE017
,其中
Figure 260486DEST_PATH_IMAGE018
为归一化的图像向量,
Figure DEST_PATH_IMAGE019
为图像数据向量,
Figure 653291DEST_PATH_IMAGE020
为图像数据向量的最大值,
Figure DEST_PATH_IMAGE021
为图像数据向量的最小值。
本方法提出快速图像归一化的方法。首先,基于图像插值等方法对光栅图像在Y方向上降采样,降低图像的分辨率。在降采样的图像中,计算每一个周期中图像数据的最大值、最小值,得到降采样最大值图像和降采样最小值图像。其次,本方法对得到的降采样最大值图像和降采样最小值图像在Y方向上提升分辨率,恢复原图像大小;最后,基于原图像大小的最大值图像和最小值图像对原图像进行归一化,方法如公式1所示。
2)、快速模板匹配。为降低模板匹配计算量,本方法对归一化光栅图像、目标区域图像在Y方向上降采样。对降采样后的图片进行模板匹配,计算降采样模板图像,模板匹配的过程如下。
S41:对归一化光栅图像、目标区域图像在Y方向上降采样初始化模板库,获取初始化模板索引。
S42:一维快速模板匹配的过程,如图所示。基于目标区域图像,从目标区域图像的第一行、第一列起,向右、向下寻找一个周期的图像向量。
S43:基于当前图像向量进行模板匹配,从三种周期的小模板库中,选取最佳的匹配模板,判断最佳的标准是匹配误差最小。为降低计算量,基于前一数据段的模板在模板库中的索引,在其邻域中搜索最佳模板。在模板匹配的计算中,为本方法使用离散化的模板进行计算,选取最佳的匹配模板,如图5所示。当最佳模板的匹配误差大于缺陷阈值,则标记该数据为缺陷,并提升离散化级数,重新进行快速模板匹配的过程,一直到实际离散化级数为64。
S44:基于目标区域图像寻找下一段图像数据,如果找到,进入step3,否则,step5。
S45:完成降采样模板匹配过程,生成降采样的模板图像。
S46:基于插值方法,在Y方向上提高降采样模板图像的分辨率,生成原分辨率的模板图像。
3)、计算缺陷区域。本方法基于模板图像与归一化图像计算缺陷误差图像,并基于学习阶段提取的缺陷阈值,对缺陷误差图像阈值化,生成误差区域图像。
最后分析缺陷,基于缺陷区域图像提取所有缺陷的信息,例如缺陷在图像中的位置、宽度和高度,缺陷在真实世界的参数,例如周长、面积与最长边等。采用连通域分析算法提取缺陷的连通域,并基于学习阶段获取的测量相关参数,将连通域特征转换到真实世界中,测量缺陷的大小、周长、面积等信息。除此之外,本装置基于用户对缺陷的容忍度要求,过滤不符合要求的缺陷,输出产品表面上用户定义的缺陷信息。
本发明针对各种场景的工业环境设计了一套有效的缺陷检测算法,在相机工作距离不固定、图像清晰度改变、光照强度不均、材料反光、上料过程中的硬件抖动等环境中,具有准确、稳定的检测能力。而本方法的计算量小于现有各类检测方法计算量的万分之一,在确保检测性能的基础上、显著提高了检测速度。同时由于计算量的小型化改善,也降低了对计算机的硬件要求,仅需要普通的计算机,不需要昂贵的显卡、FPGA等并行计算设备辅助也可以达到工业的实时性要求,可满足大多数工业应用的要求。
综上关于本发明基于结构光投影的快速缺陷检测方法的实施例详述,较之于传统人工检测或其它机器视觉检测方法相比较,其显著的进步性逐条描述如下。
(1)普适性高:通过对物体表面投射光栅图案,使用相机捕捉到缺陷,最终通过机器视觉算法检测出缺陷。不仅可以检测出划痕、磨损等平面二维缺陷,对于物体表面三维的缺陷也有很好的检测能力,例如凸起、凹陷、碰伤等。
(2)稳定性高:克服了外界环境对缺陷检测功能的影响,对亮暗不均等复杂的应用环境具有较高的鲁棒性。在实际应用场景中测试,本方法克服了物体在传输过程中的抖动影响,保持较高的准确性。
(3)实时性高:提出一维的离散模板快速匹配方法,计算量不足同类模板匹配算法的万分之一。同类算法的模板匹配计算量为O(W×H×N×C),本方法的计算量在O((W/D1)×(H/C)×D3),其中W、H、N、C分别为图像的宽度、高度、模板数量、模板维度,D1、D2、D3分别为X方向模板的数量、Y方向降采样系数、模板离散化数量。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式的具体变换,这些均属于本发明的保护范围内。

Claims (8)

1.一种基于结构光投影的快速缺陷检测方法,基于由投影仪、相机和计算机构成的检测装置实现,并以光栅为结构光,其特征在于包括:
S1、装置标定,通过计算投影仪成像区域与理想坐标的映射关系,将倾斜的光栅图像区域映射到理想坐标系中,得到与Y轴平行的光栅图像;
S2、学习参数,使用不同材质表面的样品通过投射及取景范围,并通过投影仪对场景投射正弦光栅条纹,学习包括模板特征、噪声阈值、缺陷阈值、背景亮度阈值的图案特征;
S3、图像校正,在工作阶段利用装置标定步骤所得映射关系,将相机输入的倾斜光栅图像校正为相对光栅的条纹方向垂直的理想光栅图像;
S4、实时检测,向计算机输入图像校正后的理想光栅图像,并由计算机基于用户对缺陷的定义,对输入图像分割目标、检测缺陷并分析缺陷,其中检测缺陷包括快速归一化、快速模板匹配和计算缺陷区域三部分,对误差区域图像,分析输出包含符合用户需求的全部缺陷信息的图像。
2.根据权利要求1所述基于结构光投影的快速缺陷检测方法,其特征在于:学习参数中所述模板特征为获取无缺陷的待检物体表面图案,通过图像处理算法提取出不同相位、不同周期的归一化正选波形、并组成模板库;
所述噪声阈值为计算无缺陷的表面图像中每一段数据于模板库中全部模板的平均绝对误差
Figure DEST_PATH_IMAGE001
,其中
Figure DEST_PATH_IMAGE003
为模板向量,
Figure 617504DEST_PATH_IMAGE004
为图像向量;
所述缺陷阈值得自于将带有缺陷的表面图像与模板库的模板进行匹配,并计算图像中所有数据段的匹配误差、从小到大排序后自定义设置的取值个数;
所述背景亮度阈值为对待检产品的背景材质投影全亮的图案,并取背景材质图像的亮度平均值所得;
所述测量参数表示图像坐标与真实世界的对应关系。
3.根据权利要求2所述基于结构光投影的快速缺陷检测方法,其特征在于:还包括对模板库进行离散化,离散化程度与模板的周期相关。
4.根据权利要求1所述基于结构光投影的快速缺陷检测方法,其特征在于:实时检测中所述分割目标为基于背景亮度阈值提取目标区域,并对目标区域作边缘拟合。
5.根据权利要求1所述基于结构光投影的快速缺陷检测方法,其特征在于:实时检测中所述快速归一化,通过计算光栅图像的每一段向量在一个周期内的最低值与最高值,计算公式为:
Figure DEST_PATH_IMAGE005
,其中
Figure 389106DEST_PATH_IMAGE006
为归一化的图像向量,
Figure DEST_PATH_IMAGE007
为图像数据向量,
Figure 119909DEST_PATH_IMAGE008
为图像数据向量的最大值,
Figure DEST_PATH_IMAGE009
为图像数据向量的最小值。
6.根据权利要求1所述基于结构光投影的快速缺陷检测方法,其特征在于:实时检测中所述快速模板匹配,模板匹配过程包括:
S41、对归一化光栅图像、目标区域图像在Y方向上降采样,获取初始化模板索引;
S42、一维快速模板匹配,自目标区域图像的第一行、第一列起,向右、向下寻找一个周期的图像向量;
S43、基于当前图像向量进行模板匹配,从三种周期的模板库中,根据最小的匹配误差选取最佳的匹配模板;
S44、基于目标区域图像寻找下一段图像数据,如找到则进入S43,否则转入S45;
S45、完成降采样模板匹配过程,生成降采样的模板图像;
S46、基于插值方法,在Y方向上提高降采样模板图像的分辨率,生成原分辨率的模板图像。
7.根据权利要求1所述基于结构光投影的快速缺陷检测方法,其特征在于:基于模板图像与归一化图像计算缺陷误差图像,并基于学习参数阶段提取的缺陷阈值,对缺陷误差图像阈值化,生成误差区域图像。
8.根据权利要求1所述基于结构光投影的快速缺陷检测方法,其特征在于:分析缺陷,采用连通域分析算法提取缺陷信息的连通域特征,并基于测量参数将连通域特征转换至真实世界的缺陷量化表征,基于预设的缺陷参数,过滤并输出待检产品表面符合用户定义的缺陷量化表征或图像表征。
CN202210757298.5A 2022-06-30 2022-06-30 一种基于结构光投影的快速缺陷检测方法 Pending CN115184362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210757298.5A CN115184362A (zh) 2022-06-30 2022-06-30 一种基于结构光投影的快速缺陷检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210757298.5A CN115184362A (zh) 2022-06-30 2022-06-30 一种基于结构光投影的快速缺陷检测方法

Publications (1)

Publication Number Publication Date
CN115184362A true CN115184362A (zh) 2022-10-14

Family

ID=83514849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210757298.5A Pending CN115184362A (zh) 2022-06-30 2022-06-30 一种基于结构光投影的快速缺陷检测方法

Country Status (1)

Country Link
CN (1) CN115184362A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117746027A (zh) * 2024-02-07 2024-03-22 深圳新视智科技术有限公司 隔膜检测中的寻边方法、装置及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117746027A (zh) * 2024-02-07 2024-03-22 深圳新视智科技术有限公司 隔膜检测中的寻边方法、装置及设备

Similar Documents

Publication Publication Date Title
CN103063159B (zh) 一种基于ccd的零件尺寸测量方法
JP5699788B2 (ja) スクリーン領域検知方法及びシステム
JP6899189B2 (ja) ビジョンシステムで画像内のプローブを効率的に採点するためのシステム及び方法
CN113324478A (zh) 一种线结构光的中心提取方法及锻件三维测量方法
CN114627080B (zh) 基于计算机视觉的车辆冲压配件缺陷检测方法
CN110189375A (zh) 一种基于单目视觉测量的图像目标识别方法
CN114136975A (zh) 一种微波裸芯片表面缺陷智能检测系统和方法
CN116503388B (zh) 缺陷检测方法、装置及存储介质
CN114280075A (zh) 一种管类零件表面缺陷在线视觉检测系统及检测方法
CN112381751A (zh) 一种基于图像处理算法的在线智能检测系统及方法
CN109671084B (zh) 一种工件形状的测量方法
CN115184362A (zh) 一种基于结构光投影的快速缺陷检测方法
CN113406111B (zh) 一种基于结构光场视频流的缺陷检测方法和装置
JP2003216931A (ja) 特定パターン認識方法、特定パターン認識プログラム、特定パターン認識プログラム記録媒体および特定パターン認識装置
CN113252103A (zh) 一种基于matlab图像识别技术计算物料堆体积及质量的方法
CN110334727B (zh) 一种隧道裂缝智能匹配检测方法
CN116596987A (zh) 一种基于双目视觉的工件三维尺寸高精度测量方法
TW201601119A (zh) 物件辨識與定位方法
CN113970560B (zh) 一种基于多传感融合的缺陷三维检测方法
Sun et al. Precision work-piece detection and measurement combining top-down and bottom-up saliency
CN115035071A (zh) 一种pad导光板黑点缺陷的视觉检测方法
CN115201202A (zh) 用于检测和测量产品表面缺陷的装置及方法
CN109087278B (zh) 基于改进Canny算子的安全套正反面识别法
CN111210419A (zh) 基于人类视觉特性的微型磁瓦表面缺陷检测方法
Le’Win et al. Results Analysis of Real-Time Edge Detection Techniques using LabView

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination