CN115183969A - Method and system for estimating BWBN model parameters - Google Patents
Method and system for estimating BWBN model parameters Download PDFInfo
- Publication number
- CN115183969A CN115183969A CN202210770940.3A CN202210770940A CN115183969A CN 115183969 A CN115183969 A CN 115183969A CN 202210770940 A CN202210770940 A CN 202210770940A CN 115183969 A CN115183969 A CN 115183969A
- Authority
- CN
- China
- Prior art keywords
- identified
- parameter
- bwbn
- model
- optimization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000009826 distribution Methods 0.000 claims abstract description 69
- 238000005259 measurement Methods 0.000 claims abstract description 35
- 238000002474 experimental method Methods 0.000 claims abstract description 17
- 238000005457 optimization Methods 0.000 claims description 58
- 238000006073 displacement reaction Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 12
- 230000003044 adaptive effect Effects 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 claims description 7
- 238000006731 degradation reaction Methods 0.000 claims description 7
- 238000013016 damping Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000009827 uniform distribution Methods 0.000 claims description 5
- 108010074864 Factor XI Proteins 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 239000000523 sample Substances 0.000 claims 11
- 238000005070 sampling Methods 0.000 abstract description 13
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/022—Vibration control arrangements, e.g. for generating random vibrations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/13—Differential equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Operations Research (AREA)
- Complex Calculations (AREA)
Abstract
本发明涉及一种BWBN模型的参数估计方法及系统,方法包括:获取实验的测量数据和物理参数,将测量数据以及物理参数代入BWBN模型并求解,确定待辨识参数;对待辨识参数进行初始化,确定取值范围和初始值,假定各个待辨识参数满足高斯分布,分别计算似然函数确定各个待辨识参数的初始先验分布;分别自每个待辨识参数的先验分布中抽取样本并基于样本更新各个待辨识参数的估算值,重复此步骤,直至满足预设置的终止条件;输出每个待辨识参数的估算值。与现有技术相比,本发明以测量数据为驱动,基于iTMCMC采样方法估计BWBN非线性迟滞模型的参数,具有较高通用性,可应用于各类迟滞阻尼振动近似满足BWBN模型的辨识问题中。
The invention relates to a method and system for estimating parameters of a BWBN model. The method includes: acquiring measurement data and physical parameters of an experiment, substituting the measurement data and physical parameters into a BWBN model and solving, and determining parameters to be identified; initializing the parameters to be identified, and determining Value range and initial value, assuming that each parameter to be identified satisfies the Gaussian distribution, calculate the likelihood function to determine the initial prior distribution of each parameter to be identified; draw samples from the prior distribution of each parameter to be identified and update based on the sample For the estimated value of each parameter to be identified, this step is repeated until the preset termination condition is met; the estimated value of each parameter to be identified is output. Compared with the prior art, the present invention is driven by measurement data and estimates the parameters of the BWBN nonlinear hysteresis model based on the iTMCMC sampling method. .
Description
技术领域technical field
本发明涉及振动控制领域,尤其是涉及一种BWBN模型的参数估计方法及系统。The invention relates to the field of vibration control, in particular to a parameter estimation method and system of a BWBN model.
背景技术Background technique
随着现代工业化和社会的发展,抑制或至少衰减可能影响系统或结构的不良振动,对建筑桥梁的安全性、加工的精度、设备的工作稳定性、交通工具乘坐的舒适性有重大意义。振动控制通常使用被动、半主动或主动系统来实现,其中每个系统都有相当大的滞回性能。Bouc-Wen-Baber-Noori(BWBN)模型可有效用于分析描述多系统滞回性能,捕获一系列滞回循环模式。With the development of modern industrialization and society, suppressing or at least attenuating undesirable vibrations that may affect the system or structure is of great significance to the safety of building bridges, the accuracy of processing, the working stability of equipment, and the comfort of vehicles. Vibration control is typically accomplished using passive, semi-active, or active systems, each of which has considerable hysteresis. The Bouc-Wen-Baber-Noori (BWBN) model can be effectively used to analyze and describe the hysteretic performance of multiple systems, capturing a series of hysteretic loop modes.
Bouc-Wen-Baber-Noori滞回模型在经典Bouc-Wen滞回模型基础上进一步发展,考虑强度、刚度退化和捏拢效应。许多工程结构在动荷载作用下会进入非弹性状态而表现出滞回特性。滞回特性也称为弹塑性。滞回一般来自材料的非线性特性、接触面的摩擦特性和结合面之间的接触变形等。在荷载作用下结构的恢复力与位移之间存在滞回关系,当荷载具有周期性时,由于结构进入弹塑性变形,塑性变形的位移不可全部恢复,使得曲线沿不同路径变化,形成滞回环。结构的实际滞回曲线十分复杂,难以应用于分析结构的非线性特性,因而需要建立既便于数学描述又能反映结构滞回特性的滞回模型来预测工程结构非线性动力响应。The Bouc-Wen-Baber-Noori hysteresis model is further developed on the basis of the classical Bouc-Wen hysteresis model, considering strength, stiffness degradation and pinching effect. Many engineering structures will enter an inelastic state and exhibit hysteretic properties under dynamic loads. Hysteretic properties are also known as elastoplasticity. Hysteresis generally comes from the nonlinear characteristics of the material, the friction characteristics of the contact surface and the contact deformation between the joint surfaces. There is a hysteretic relationship between the restoring force and the displacement of the structure under the action of the load. When the load is periodic, because the structure enters the elastic-plastic deformation, the displacement of the plastic deformation cannot be fully recovered, so that the curve changes along different paths, forming a hysteretic loop. The actual hysteresis curve of the structure is very complex, and it is difficult to apply it to analyze the nonlinear characteristics of the structure. Therefore, it is necessary to establish a hysteresis model that is convenient for mathematical description and can reflect the hysteresis characteristics of the structure to predict the nonlinear dynamic response of engineering structures.
BWBN模型改进了Bouc-Wen模型无法描述捏缩滞回现象的问题,同时带来的问题是参数维度较大,需要BWBN模型描述系统的滞回性能,就需要确定模型中的多项参数。现有的参数估计方法均需要用到不同的滤波器,传统MCMC方法容易落入单峰陷阱,且面对高纬度参数估计时有失效风险。而TMCMC适用于不确定参数很少的问题,如果不确定参数的数量很大,结果可能会有很大偏差,同时统计估计的效率较低。The BWBN model improves the problem that the Bouc-Wen model cannot describe the pinch-shrink hysteresis phenomenon. At the same time, the problem is that the parameter dimension is large. If the BWBN model is needed to describe the hysteretic performance of the system, it is necessary to determine several parameters in the model. The existing parameter estimation methods all need to use different filters, the traditional MCMC method is easy to fall into the single-peak trap, and there is a risk of failure in the face of high-latitude parameter estimation. However, TMCMC is suitable for problems with few uncertain parameters. If the number of uncertain parameters is large, the results may be greatly biased, and the efficiency of statistical estimation is low.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种BWBN模型的参数估计方法及系统。The purpose of the present invention is to provide a method and system for estimating parameters of a BWBN model in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
根据本发明的第一方面,提供了一种BWBN模型的参数估计方法,包括以下步骤:According to a first aspect of the present invention, a parameter estimation method of a BWBN model is provided, comprising the following steps:
获取实验的测量数据,所述测量数据包括力和位移,确定实验的物理参数,建立BWBN模型,将测量数据以及物理参数代入BWBN模型,求解BWBN模型,确定BWBN模型中的W个待辨识参数;Obtain the measurement data of the experiment, the measurement data includes force and displacement, determine the physical parameters of the experiment, establish a BWBN model, substitute the measurement data and the physical parameters into the BWBN model, solve the BWBN model, and determine the W parameters in the BWBN model to be identified;
分别对每个待辨识参数进行初始化,确定其最大值、最小值和初始值,假定各个待辨识参数满足高斯分布,分别计算各个待辨识参数的似然函数,得到各个待辨识参数的初始先验分布,将初始先验分布作为待辨识参数的先验分布,将初始值作为待辨识参数的估算值;Initialize each parameter to be identified, determine its maximum value, minimum value and initial value. Assuming that each parameter to be identified satisfies the Gaussian distribution, calculate the likelihood function of each parameter to be identified separately, and obtain the initial prior of each parameter to be identified. distribution, take the initial prior distribution as the prior distribution of the parameter to be identified, and take the initial value as the estimated value of the parameter to be identified;
分别自每个待辨识参数的先验分布中抽取样本并基于样本更新各个待辨识参数的估算值,完成一轮优化,重复此步骤,直至满足预设置的终止条件,停止迭代;Samples are drawn from the prior distribution of each parameter to be identified and the estimated value of each parameter to be identified is updated based on the sample, a round of optimization is completed, and this step is repeated until the preset termination condition is met, and the iteration is stopped;
输出每个待辨识参数的估算值。An estimate of each parameter to be identified is output.
进一步地,第j轮优化中自第s个待辨识参数的先验分布中抽取样本并基于样本更新第s个待辨识参数的估算值,其中,j=1、2、…,s=1、2、…、W,具体为:Further, in the j-th round of optimization, samples are drawn from the prior distribution of the s-th parameter to be identified, and the estimated value of the s-th parameter to be identified is updated based on the samples, where j=1, 2, ..., s=1, 2, ..., W, specifically:
从第s个待辨识参数的先验分布中抽取Nj,s个样本:Nj,s为预设置的第j轮优化中第s个待辨识参数的样本抽取值;Draw N j,s samples from the prior distribution of the s-th parameter to be identified: N j,s is the preset sample extraction value of the s-th parameter to be identified in the j-th round of optimization;
计算第j轮优化的渐变系数,计算公式如下:Calculate the gradient coefficient of the jth round of optimization, the calculation formula is as follows:
其中,表示第j轮优化中第s个待辨识参数的样本变异系数;in, Represents the sample variation coefficient of the sth parameter to be identified in the jth round of optimization;
分别计算每个样本的加权系数,计算公式如下:Calculate the weighting coefficient of each sample separately, the calculation formula is as follows:
表示第j轮优化中第s个待辨识参数的第k个样本的加权系数,D表示实验的测量数据; represents the weighting coefficient of the k-th sample of the s-th parameter to be identified in the j-th round of optimization, and D represents the experimental measurement data;
计算Nj,s个样本的加权系数的平均值,计算公式如下:Calculate the average value of the weighting coefficients of N j, s samples, and the calculation formula is as follows:
其中,Sej,s表示第j轮优化中第s个待辨识参数的样本加权系数平均值;Among them, Se j,s represents the average value of the sample weighting coefficient of the s-th parameter to be identified in the j-th round of optimization;
计算协方差矩阵,计算公式如下:Calculate the covariance matrix, the calculation formula is as follows:
其中,∑j,s表示第j轮优化中第s个待辨识参数的Nj,s个样本的协方差矩阵,表示第j轮优化中第s个待辨识参数的Nj,s个样本的均值,T表示矩阵转置,ξj表示预设置的第j轮优化中的自适应缩放因子;Among them, ∑ j,s represents the covariance matrix of N j,s samples of the sth parameter to be identified in the jth round of optimization, represents the mean value of N j, s samples of the s-th parameter to be identified in the j-th round of optimization, T represents the matrix transposition, and ξ j represents the preset adaptive scaling factor in the j-th round of optimization;
从中随机生成索引l,按照概率从中选择样本将以为中心的高斯分布和协方差矩阵∑j,s作为一个假设的μc的建议分布,得到μc作为初始样本分布开始的马尔可夫链;若其中,r为从0到1的均匀分布中的样本,则令更新第s个待辨识参数的先验分布和初始值,否则,重复此步骤。from The index l is randomly generated in , according to the probability from select sample will be centered Gaussian distribution and covariance matrix ∑ j,s as a proposed distribution for a hypothetical μ c , obtaining μ c as a Markov chain starting with the initial sample distribution; if where r is a sample in a uniform distribution from 0 to 1, then let Update the prior distribution and initial value of the s-th parameter to be identified, otherwise, repeat this step.
进一步地,每轮优化开始时,确定自适应缩放因子ξj的值,其计算公式为:Further, at the beginning of each round of optimization, the value of the adaptive scaling factor ξ j is determined, and its calculation formula is:
其中,W表示待辨识参数的总数,pr表示样本接受率,tr表示目标接受率,Na表示需要调整的链条数,即第j轮优化中的马尔可夫链的数量。Among them, W represents the total number of parameters to be identified, pr represents the sample acceptance rate, t r represents the target acceptance rate, and Na represents the number of chains to be adjusted, that is, in the jth round of optimization the number of Markov chains.
进一步地,预设置的终止条件为第j轮优化的渐变系数qj等于1,认为每个待辨识参数均找到最优的估算值,停止迭代。Further, the preset termination condition is that the gradient coefficient q j of the jth round of optimization is equal to 1, and it is considered that each parameter to be identified has found the optimal estimated value, and the iteration is stopped.
进一步地,实验的物理参数包括质量和初始刚度,BWBN模型如下:Further, the physical parameters of the experiment include mass and initial stiffness, and the BWBN model is as follows:
v(t)=1.0+δvε(t)v(t)=1.0+δ v ε(t)
η(t)=1.0+δηε(t)η(t)=1.0+δ η ε(t)
其中,m表示质量,x表示位移,c表示阻尼系数,ke表示刚度,z表示阻尼位移,F(t)表示力,h(z)体现捏缩效应,v(t)表示强度退化,η(t)表示刚度退化,ε(t)表示滞回耗散能量,n、a、β、γ、δv、δη为待辨识参数,和表示x的一阶导数和二阶导数,表示z的一阶导数。where m represents mass, x represents displacement, c represents damping coefficient, ke represents stiffness, z represents damping displacement, F(t) represents force, h(z) represents pinch effect, v(t) represents strength degradation, η (t) represents stiffness degradation, ε(t) represents hysteretic dissipation energy, n, a, β, γ, δ v , δ η are parameters to be identified, and represents the first and second derivatives of x, represents the first derivative of z.
进一步地,使用四阶龙格库塔求解BWBN恢复力测量模型中的微分方程,如下:Further, use the fourth-order Runge-Kutta to solve the differential equation in the BWBN restoring force measurement model, as follows:
K1=f(xn,yn)K 1 =f(x n ,y n )
K4=f(xn+h,yn+hK3)K 4 =f(x n +h,y n +hK 3 )
其中,f()表示BWBN模型的微分方程,xn为测量数据中的位移,yn=F(t)为测量数据中的力,h为龙格库塔时间步长,K1,K2,K3,K4为龙格库塔中的传递参数。where f() represents the differential equation of the BWBN model, x n is the displacement in the measurement data, y n =F(t) is the force in the measurement data, h is the Runge-Kutta time step, K 1 , K 2 , K 3 , K 4 are the transfer parameters in Runge-Kutta.
进一步地,似然函数的建立原理为:Further, the establishment principle of the likelihood function is:
ln P3=ln P1+ln P2 ln P 3 =ln P 1 +ln P 2
其中,σ1表示位移预测误差的未知方差,σ2表示总耗散能量预测误差的未知方差,表示x的平均值,N()表示高斯分布。where σ 1 represents the unknown variance of the displacement prediction error, σ 2 represents the unknown variance of the total dissipated energy prediction error, represents the mean of x, and N() represents a Gaussian distribution.
进一步地,计算各个待辨识参数的似然函数时,需要对预测误差耗散能量进行归一化处理,计算公式为:Further, when calculating the likelihood function of each parameter to be identified, it is necessary to normalize the dissipated energy of the prediction error, and the calculation formula is:
其中,L=ln P3,θg为待辨识参数组成的相邻,下标g为测量数据中力和位移的索引,Nj,s为预设置的第j轮优化中第s个待辨识参数的样本抽取值。Among them, L=ln P 3 , θ g is the neighbor composed of the parameters to be identified, the subscript g is the index of the force and displacement in the measured data, N j,s is the preset jth round of optimization to be identified in the sth The sample draw value for the parameter.
进一步地,计算似然函数之前,需要从测量数据的滞回曲线中确定总耗散能量。Further, before calculating the likelihood function, the total dissipated energy needs to be determined from the hysteresis curve of the measured data.
根据本发明的第二方面,提供了一种BWBN模型的参数估计系统,包括:According to a second aspect of the present invention, a parameter estimation system of a BWBN model is provided, comprising:
数据获取模块,用于获取实验的测量数据和物理参数,所述测量数据包括力和位移;a data acquisition module for acquiring experimental measurement data and physical parameters, the measurement data including force and displacement;
BWBN模型模块,用于建立BWBN模型,将测量数据以及物理参数代入BWBN模型,求解BWBN模型,确定BWBN模型中的W个待辨识参数;The BWBN model module is used to establish the BWBN model, substitute the measurement data and physical parameters into the BWBN model, solve the BWBN model, and determine the W parameters to be identified in the BWBN model;
初始化模块,用于对每个待辨识参数进行初始化,确定其最大值、最小值和初始值,假定各个待辨识参数满足高斯分布,分别计算各个待辨识参数的似然函数,得到各个待辨识参数的初始先验分布,将初始先验分布作为待辨识参数的先验分布,将初始值作为待辨识参数的估算值;The initialization module is used to initialize each parameter to be identified, determine its maximum value, minimum value and initial value, and assume that each parameter to be identified satisfies the Gaussian distribution, calculate the likelihood function of each parameter to be identified, and obtain each parameter to be identified. The initial prior distribution of , takes the initial prior distribution as the prior distribution of the parameter to be identified, and takes the initial value as the estimated value of the parameter to be identified;
迭代优化模块,用于执行至少一轮优化操作,并在满足预设置的终止条件,停止迭代,每轮优化操作中分别自每个待辨识参数的先验分布中抽取样本并基于样本更新各个待辨识参数的估算值;The iterative optimization module is used to perform at least one round of optimization operations, and stop the iteration when the preset termination conditions are met. In each round of optimization operations, samples are drawn from the prior distribution of each parameter to be identified and updated based on the samples. Estimated values of identification parameters;
输出模块,用于输出每个待辨识参数的估算值。The output module is used to output the estimated value of each parameter to be identified.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本申请引入了可变的自适应调整参数,在每个需调整的马尔可夫链后均进行样本加权系数的调整,从而调整目标分布,提高了算法的性能,减少估计值中的偏差,让样本平均值和方差值估计偏差小,加快搜寻速度,利用过渡马尔科夫链蒙特卡洛方法本身的优势,可有效解决多峰或极平坦单峰问题的采样,同时应用BWBN模型所具有捏缩挤压功能,让系统具有更高的通用性。The application introduces variable adaptive adjustment parameters, and adjusts the sample weighting coefficient after each Markov chain to be adjusted, so as to adjust the target distribution, improve the performance of the algorithm, reduce the deviation in the estimated value, and make the The estimated deviation of the sample mean and variance value is small, the search speed is accelerated, and the advantages of the transitional Markov chain Monte Carlo method can be used to effectively solve the sampling of multi-peak or extremely flat single-peak problems. The shrinking and squeezing function makes the system more versatile.
附图说明Description of drawings
图1为本发明的流程图;Fig. 1 is the flow chart of the present invention;
图2为实施例中归一化耗能图;2 is a normalized energy consumption diagram in an embodiment;
图3为实施例中各个待辨识参数的概率分布图;Fig. 3 is the probability distribution diagram of each parameter to be identified in the embodiment;
图4为实施例中的滞回曲线图。FIG. 4 is a hysteresis curve diagram in the embodiment.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. This embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner and a specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
实施例1:Example 1:
针对现有技术中BWBN模型的参数估计方法的缺陷,申请人指出,iTMCMC算法自适应调整建议分布,并在每个MCMC步骤后调整样本权重,所以在平均值和标准偏差偏差以及有效样本数采样方面优于原始TMCMC方法,可更好地应用于多维参数估计问题,故对iTMCMC算法进行改进,使用iTMCMC算法进行BWBN模型的参数估计。In view of the defects of the parameter estimation method of the BWBN model in the prior art, the applicant pointed out that the iTMCMC algorithm adaptively adjusts the proposal distribution, and adjusts the sample weight after each MCMC step, so the mean and standard deviation deviation and the number of valid samples are sampled It is better than the original TMCMC method and can be better applied to the multi-dimensional parameter estimation problem. Therefore, the iTMCMC algorithm is improved, and the iTMCMC algorithm is used to estimate the parameters of the BWBN model.
根据本发明的第一方面,提供了一种BWBN模型的参数估计方法,如图1所示,包括以下步骤:According to the first aspect of the present invention, a method for estimating parameters of a BWBN model is provided, as shown in FIG. 1 , including the following steps:
S1、获取实验的测量数据,测量数据包括力F(t)和位移x,确定实验的物理参数,建立BWBN模型,将测量数据以及物理参数代入BWBN模型,求解BWBN模型,确定BWBN模型中的W个待辨识参数;S1. Obtain the measurement data of the experiment, including force F(t) and displacement x, determine the physical parameters of the experiment, establish a BWBN model, substitute the measurement data and physical parameters into the BWBN model, solve the BWBN model, and determine the W in the BWBN model parameters to be identified;
其中,本实施例中测量数据即滞回力实验中采集的数据,也可以使用数值模拟数据,需要注意的是,测量数据或数值模拟数据表示的滞回图像需符合或近似BWBN模型,这样才能使用BWBN模型对测量数据进行描述。Among them, the measured data in this embodiment is the data collected in the hysteretic force experiment, and numerical simulation data can also be used. It should be noted that the hysteretic image represented by the measured data or numerical simulation data must conform to or approximate the BWBN model, so that it can be used The BWBN model describes the measurement data.
BWBN恢复力测量模型是一种较成熟的数学模型,对其原理和建立过程不再赘述,相关从业人员可以理解。建立的BWBN恢复力测量模型如下:The BWBN resilience measurement model is a relatively mature mathematical model, its principle and establishment process will not be repeated, and relevant practitioners can understand it. The established BWBN resilience measurement model is as follows:
v(t)=1.0+δvε(t)v(t)=1.0+δ v ε(t)
η(t)=1.0+δηε(t)η(t)=1.0+δ η ε(t)
其中,m表示质量,x表示位移,c表示阻尼系数,ke表示刚度,z表示阻尼位移,F(t)表示力,h(z)体现捏缩效应,v(t)表示强度退化,η(t)表示刚度退化,ε(t)表示滞回耗散能量,n、a、β、γ、δv、δη为待辨识参数,和表示x的一阶导数和二阶导数,表示z的一阶导数。where m represents mass, x represents displacement, c represents damping coefficient, ke represents stiffness, z represents damping displacement, F(t) represents force, h(z) represents pinch effect, v(t) represents strength degradation, η (t) represents stiffness degradation, ε(t) represents hysteretic dissipation energy, n, a, β, γ, δ v , δ η are parameters to be identified, and represents the first and second derivatives of x, represents the first derivative of z.
即BWBN模型中的微分方程,实验中的物理参数包括质量和初始刚度等,不再赘述。 That is, the differential equation in the BWBN model, the physical parameters in the experiment include mass and initial stiffness, etc., which will not be repeated.
将已知值和测量数据代入BWBN模型后,可由四阶龙格库塔求解,如下:After substituting known values and measurement data into the BWBN model, the fourth-order Runge-Kutta can be solved as follows:
K1=f(xn,yn)K 1 =f(x n ,y n )
K4=f(xn+h,yn+hK3)K 4 =f(x n +h,y n +hK 3 )
其中,f()表示BWBN模型的微分方程,xn为测量数据中的位移,yn=F(t)为测量数据中的力,h为龙格库塔时间步长,K1,K2,K3,K4为龙格库塔中的传递参数。where f() represents the differential equation of the BWBN model, x n is the displacement in the measurement data, y n =F(t) is the force in the measurement data, h is the Runge-Kutta time step, K 1 , K 2 , K 3 , K 4 are the transfer parameters in Runge-Kutta.
S2、分别对每个待辨识参数进行初始化,确定其最大值、最小值和初始值,假定各个待辨识参数满足高斯分布,分别计算各个待辨识参数的似然函数,得到各个待辨识参数的初始先验分布,将初始先验分布作为待辨识参数的先验分布,将初始值作为待辨识参数的估算值;S2, respectively initialize each parameter to be identified, determine its maximum value, minimum value and initial value, assume that each parameter to be identified satisfies the Gaussian distribution, calculate the likelihood function of each parameter to be identified separately, and obtain the initial value of each parameter to be identified Prior distribution, the initial prior distribution is taken as the prior distribution of the parameter to be identified, and the initial value is taken as the estimated value of the parameter to be identified;
四阶龙格库塔求解微分方程后,相当于得到每个待辨识参数的表示,具体的,在BWBN模型中有17个待定参数,并引入2个参数描述输入噪音,因此总计19个待辨识参数。其他应用场景下,根据需要,可以设置不同数量的待辨识参数,如7个、21个等等。按照经验,设置其取值范围和初始值,如下表所示:After the fourth-order Runge-Kutta solves the differential equation, it is equivalent to obtaining the representation of each parameter to be identified. Specifically, there are 17 parameters to be determined in the BWBN model, and 2 parameters are introduced to describe the input noise, so a total of 19 parameters to be identified parameter. In other application scenarios, different numbers of parameters to be identified, such as 7, 21, etc., can be set as required. According to experience, set its value range and initial value, as shown in the following table:
表1待辨识参数的初始化Table 1 Initialization of parameters to be identified
计算出系统固有频率,并假设未知的待辨识参数满足高斯分布,计算出似然函数,得到其初始先验分布;似然函数具体建立过程如下,建立以位移均值为均值,总耗能预测误差为方差的高斯分布N(),建立如下的似然函数:Calculate the natural frequency of the system, and assume that the unknown parameter to be identified satisfies the Gaussian distribution, calculate the likelihood function, and obtain its initial prior distribution; the specific establishment process of the likelihood function is as follows, the establishment takes the displacement mean as the mean value, and the total energy consumption prediction error For the Gaussian distribution of variance N(), the following likelihood function is established:
ln P3=ln P1+ln P2 ln P 3 =ln P 1 +ln P 2
其中,σ1表示位移预测误差的未知方差,σ2表示总耗散能预测误差的未知方差,表示x的平均值,N()表示高斯分布;where σ 1 represents the unknown variance of the displacement prediction error, σ 2 represents the unknown variance of the total dissipated energy prediction error, Represents the mean value of x, and N() represents a Gaussian distribution;
再偏导求解参数值,从而通过计算各个待辨识参数的似然函数,得到各个待辨识参数的初始先验分布。Then the partial derivative is used to solve the parameter value, so that the initial prior distribution of each parameter to be identified can be obtained by calculating the likelihood function of each parameter to be identified.
在计算各个待辨识参数的似然函数时,需要对预测误差耗散能量进行归一化处理,图2给出了归一化耗能图的示例,计算公式为:When calculating the likelihood function of each parameter to be identified, the prediction error dissipation energy needs to be normalized. Figure 2 shows an example of the normalized energy dissipation map. The calculation formula is:
其中,L=ln P3,θg为待辨识参数组成的相邻,下标g为测量数据中力和位移的索引,Nj,s为预设置的第j轮优化中第s个待辨识参数的样本抽取值。Among them, L=ln P 3 , θ g is the neighbor composed of the parameters to be identified, the subscript g is the index of the force and displacement in the measured data, N j,s is the preset jth round of optimization to be identified in the sth The sample draw value for the parameter.
在计算似然函数之前,需要从测量数据的滞回曲线中确定总耗散能量,其计算方法为本领域公知常识,不再赘述。Before calculating the likelihood function, it is necessary to determine the total dissipated energy from the hysteresis curve of the measurement data, and the calculation method thereof is common knowledge in the art, and will not be repeated here.
S3、分别自每个待辨识参数的先验分布中抽取样本并基于样本更新各个待辨识参数的估算值,完成一轮优化,重复此步骤,直至满足预设置的终止条件,停止迭代;S3, extract samples from the prior distribution of each parameter to be identified and update the estimated value of each parameter to be identified based on the sample, complete a round of optimization, and repeat this step until the preset termination condition is met, and the iteration is stopped;
以第j轮优化中自第s个待辨识参数的先验分布中抽取样本并基于样本更新第s个待辨识参数的估算值为例,对迭代优化过程进行说明,其中,j=1、2、…,s=1、2、…、W,具体为:Taking samples from the prior distribution of the s-th parameter to be identified in the j-th round of optimization and updating the estimated value of the s-th parameter to be identified based on the samples as an example, the iterative optimization process is described, where j=1, 2 , ..., s = 1, 2, ..., W, specifically:
(1)从第s个待辨识参数的先验分布中抽取Nj,s个样本:Nj,s为预设置的第j轮优化中第s个待辨识参数的样本抽取值,每个待辨识参数在每轮优化中的样本抽取值可以各不相同,本实施例中,为了便于计算,统一规定Nj,s=1000;(1) Extract N j,s samples from the prior distribution of the s-th parameter to be identified: N j,s is the preset sample extraction value of the sth parameter to be identified in the jth round of optimization, and the sample extraction value of each parameter to be identified in each round of optimization may be different. In this embodiment, for convenience Calculate, uniformly stipulate N j,s =1000;
(2)计算第j轮优化的渐变系数,预设置的终止条件为第j轮优化的渐变系数qj等于1,认为每个待辨识参数均找到最优的估算值,因此,在此步骤中,如果计算出的渐变系数为0,则停止迭代,完成优化,执行步骤S4。此外,可以设置最大迭代次数作为终止条件。渐变系数的计算公式如下:(2) Calculate the gradient coefficient of the jth round of optimization, the preset termination condition is that the gradient coefficient q j of the jth round of optimization is equal to 1, and it is considered that each parameter to be identified finds the optimal estimated value. Therefore, in this step , if the calculated gradient coefficient is 0, stop the iteration, complete the optimization, and execute step S4. Also, a maximum number of iterations can be set as a termination condition. The formula for calculating the gradient coefficient is as follows:
q0=0,qj=min(|CV(τj,s)-1|,s=1、2、...、W)q 0 =0, q j =min(|CV(τ j,s )-1|, s=1, 2, . . . , W)
其中,CV(τj,s)表示第j轮优化中第s个待辨识参数的样本变异系数,min(|CV(τj,s)-1|,s=1、2、...、W)即表示计算第j轮中19个待辨识参数的样本变异系数,并从中选取与1的差值最小的样本变异系数作为第j轮优化的渐变系数,样本变异系数是本领域常用技术手段,其计算公式和原理不再赘述,相关从业人员可以理解;Among them, CV(τ j,s ) represents the sample variation coefficient of the sth parameter to be identified in the jth round of optimization, min(|CV(τ j,s )-1|, s=1, 2,..., W) means to calculate the sample variation coefficient of the 19 parameters to be identified in the jth round, and select the sample variation coefficient with the smallest difference from 1 as the gradient coefficient of the jth round optimization, and the sample variation coefficient is a common technical means in this field. , its calculation formula and principle will not be repeated, and relevant practitioners can understand;
(3)分别计算每个样本的加权系数,计算公式如下:(3) Calculate the weighting coefficient of each sample separately, and the calculation formula is as follows:
表示第j轮优化中第s个待辨识参数的第k个样本的加权系数,D表示实验的测量数据; represents the weighting coefficient of the k-th sample of the s-th parameter to be identified in the j-th round of optimization, and D represents the experimental measurement data;
(4)计算Nj,s个样本的加权系数的平均值,计算公式如下:(4) Calculate the average value of the weighting coefficients of N j, s samples, and the calculation formula is as follows:
其中,Sej,s表示第j轮优化中第s个待辨识参数的样本加权系数平均值;Among them, Se j,s represents the average value of the sample weighting coefficient of the s-th parameter to be identified in the j-th round of optimization;
(5)计算协方差矩阵,计算公式如下:(5) Calculate the covariance matrix, the calculation formula is as follows:
其中,∑j,s表示第j轮优化中第s个待辨识参数的Nj,s个样本的协方差矩阵,表示第j轮优化中第s个待辨识参数的Nj,s个样本的均值,T表示矩阵转置,ξj表示预设置的第j轮优化中的自适应缩放因子;Among them, ∑ j,s represents the covariance matrix of N j,s samples of the sth parameter to be identified in the jth round of optimization, represents the mean value of N j, s samples of the s-th parameter to be identified in the j-th round of optimization, T represents the matrix transposition, and ξ j represents the preset adaptive scaling factor in the j-th round of optimization;
(6)从中随机生成索引l,按照概率从中选择样本将以为中心的高斯分布和协方差矩阵∑j,s作为一个假设的μc的建议分布,得到μc作为初始样本分布开始的马尔可夫链;若其中,r为从0到1的均匀分布中的样本,则令更新第s个待辨识参数的先验分布和初始值,否则,重复此步骤。(6) From The index l is randomly generated in , according to the probability from select sample will be centered Gaussian distribution and covariance matrix ∑ j,s as a proposed distribution for a hypothetical μ c , obtaining μ c as a Markov chain starting with the initial sample distribution; if where r is a sample in a uniform distribution from 0 to 1, then let Update the prior distribution and initial value of the s-th parameter to be identified, otherwise, repeat this step.
生成从0到1的均匀分布,主要是用于评判此次采样的概率分布是否小于分布,如果均匀分布的概率大于采样的样本概率,即说明此次采样的链条是错误的,可以放弃,重新生成索引l,如果说明可以接受此次采样,继而使用μc更新第s个待辨识参数的先验分布和初始值。Generating a uniform distribution from 0 to 1 is mainly used to judge whether the probability distribution of this sampling is smaller than the distribution. If the probability of the uniform distribution is greater than the sample probability of the sampling, that is It means that the sampling chain is wrong, you can give up and regenerate the index l, if It shows that this sampling can be accepted, and then use μ c to update the prior distribution and initial value of the s-th parameter to be identified.
完成上述步骤(1)-(6)后,即完成了第j轮优化中自第s个待辨识参数的先验分布和估算值更新,再令s+1,再次执行步骤(1)-(6),完成下一个待辨识参数在第j轮的优化。完成全部19个待辨识参数的优化后,由于没有满足预设置的终止条件,令j+1,开始下一轮的迭代优化。After completing the above steps (1)-(6), the prior distribution and estimated value update of the s-th parameter to be identified in the j-th round of optimization is completed, and then let s+1, and execute steps (1)-( 6), to complete the optimization of the next parameter to be identified in the jth round. After completing the optimization of all 19 parameters to be identified, since the preset termination conditions are not met, let j+1, and start the next round of iterative optimization.
在步骤(5)中,自适应缩放因子ξj是在每轮优化开始时确定的,其计算公式为:In step (5), the adaptive scaling factor ξ j is determined at the beginning of each round of optimization, and its calculation formula is:
其中,W表示待辨识参数的总数,pr表示样本接受率,tr表示目标接受率,Na表示需要调整的链条数,即第j轮优化中的马尔可夫链的数量。Among them, W represents the total number of parameters to be identified, pr represents the sample acceptance rate, t r represents the target acceptance rate, and Na represents the number of chains to be adjusted, that is, in the jth round of optimization the number of Markov chains.
S4、输出每个待辨识参数的估算值,以及概率密度函数pdf,其中,本实施例中待辨识参数的概率分布如图3所示。S4 , output the estimated value of each parameter to be identified, and the probability density function pdf, wherein the probability distribution of the parameter to be identified in this embodiment is shown in FIG. 3 .
本实施例中,经过多轮优化后,得到19个待辨识参数的估算值和方差值,如下表所示:In this embodiment, after multiple rounds of optimization, the estimated values and variance values of 19 parameters to be identified are obtained, as shown in the following table:
表2待辨识参数的估算值Table 2 Estimated values of parameters to be identified
本实施例中,得到BWBN模型中各个参数的估算值后,就可以将其代回BWBN模型,再次将实验的测量数据和物理参数代入BWBN模型,求解出实验的滞回曲线,模拟滞回曲线图如图4所示。In this embodiment, after obtaining the estimated value of each parameter in the BWBN model, it can be substituted back into the BWBN model, and the measured data and physical parameters of the experiment are substituted into the BWBN model again, the hysteresis curve of the experiment is solved, and the hysteresis curve is simulated The diagram is shown in Figure 4.
根据本发明的第二方面,提供了一种BWBN模型的参数估计系统,包括:According to a second aspect of the present invention, a parameter estimation system of a BWBN model is provided, comprising:
数据获取模块,用于获取实验的测量数据和物理参数,测量数据包括力和位移;The data acquisition module is used to acquire the measurement data and physical parameters of the experiment, and the measurement data includes force and displacement;
BWBN模型模块,用于建立BWBN模型,将测量数据以及物理参数代入BWBN模型,求解BWBN模型,确定BWBN模型中的W个待辨识参数;The BWBN model module is used to establish the BWBN model, substitute the measurement data and physical parameters into the BWBN model, solve the BWBN model, and determine the W parameters to be identified in the BWBN model;
初始化模块,用于对每个待辨识参数进行初始化,确定其最大值、最小值和初始值,假定各个待辨识参数满足高斯分布,分别计算各个待辨识参数的似然函数,得到各个待辨识参数的初始先验分布,将初始先验分布作为待辨识参数的先验分布,将初始值作为待辨识参数的估算值;The initialization module is used to initialize each parameter to be identified, determine its maximum value, minimum value and initial value, and assume that each parameter to be identified satisfies the Gaussian distribution, calculate the likelihood function of each parameter to be identified, and obtain each parameter to be identified. The initial prior distribution of , takes the initial prior distribution as the prior distribution of the parameter to be identified, and takes the initial value as the estimated value of the parameter to be identified;
迭代优化模块,用于执行至少一轮优化操作,并在满足预设置的终止条件,停止迭代,每轮优化操作中分别自每个待辨识参数的先验分布中抽取样本并基于样本更新各个待辨识参数的估算值;The iterative optimization module is used to perform at least one round of optimization operations, and stop the iteration when the preset termination conditions are met. In each round of optimization operations, samples are drawn from the prior distribution of each parameter to be identified and updated based on the samples. Estimated values of identification parameters;
输出模块,用于输出每个待辨识参数的估算值。The output module is used to output the estimated value of each parameter to be identified.
iTMCMC采样方法基于贝叶斯模型更新技术,应用iTMCMC采样方法估计BWBN非线性迟滞模型的参数,可以估计除非敏感滞后振幅参数A以外的多维参数向量,返回参数后验分布、估算值和方差。相较于MCMC采样方法,本申请调整每个MCMC采样步骤后的样本权重,以降低模型证据估计的平均偏差,在MCMC步骤中应用老化期,以改善后验近似,自适应选择MCMC算法的建议目标分布区间,以实现接近最优的接受率。因此,本申请在克服了已有算法的缺点同时保留了MCMC采样的优点。The iTMCMC sampling method is based on the Bayesian model update technology. The iTMCMC sampling method is used to estimate the parameters of the BWBN nonlinear hysteresis model, which can estimate multi-dimensional parameter vectors other than the non-sensitive lag amplitude parameter A, and return the parameter posterior distribution, estimated value and variance. Compared with the MCMC sampling method, the present application adjusts the sample weight after each MCMC sampling step to reduce the average deviation of the model evidence estimation, applies an aging period in the MCMC step to improve the posterior approximation, and adaptively selects the MCMC algorithm suggestions Target distribution interval to achieve near-optimal acceptance rates. Therefore, the present application retains the advantages of MCMC sampling while overcoming the shortcomings of the existing algorithms.
应用本申请可带来以下优点:The application of this application can bring the following advantages:
采样的独立样本有效数量多,采样效率高,平均值与方差值估计偏差较小,可有效解决多峰或极平坦单峰问题的采样,适用范围广,可很好模拟有捏缩滞回现象的滞回图像,实现简便,不需要滤波器实现有噪声影响的参数估计,可提供BWBN模型参数的概率分布,对模型选择的评估有重要意义。The effective number of independent samples to be sampled is large, the sampling efficiency is high, and the estimated deviation between the average value and the variance value is small, which can effectively solve the sampling of multi-peak or extremely flat single-peak problems. The hysteresis image of the phenomenon is easy to implement and does not require a filter to achieve parameter estimation with noise effects, and can provide the probability distribution of the parameters of the BWBN model, which is of great significance to the evaluation of model selection.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make numerous modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210770940.3A CN115183969A (en) | 2022-06-30 | 2022-06-30 | Method and system for estimating BWBN model parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210770940.3A CN115183969A (en) | 2022-06-30 | 2022-06-30 | Method and system for estimating BWBN model parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115183969A true CN115183969A (en) | 2022-10-14 |
Family
ID=83514573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210770940.3A Pending CN115183969A (en) | 2022-06-30 | 2022-06-30 | Method and system for estimating BWBN model parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115183969A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117216846A (en) * | 2023-09-12 | 2023-12-12 | 华南理工大学 | Reinforced concrete member hysteresis curve prediction method, system, equipment and medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106909738A (en) * | 2017-02-24 | 2017-06-30 | 北京工商大学 | A kind of model parameter identification method |
-
2022
- 2022-06-30 CN CN202210770940.3A patent/CN115183969A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106909738A (en) * | 2017-02-24 | 2017-06-30 | 北京工商大学 | A kind of model parameter identification method |
Non-Patent Citations (3)
Title |
---|
GILBERTO A. ORTIZ 等: "Identification of Bouc–Wen type models using the Transitional Markov Chain Monte Carlo method", COMPUTERS AND STRUCTURES, vol. 146, 6 November 2014 (2014-11-06), pages 252 - 269 * |
ZHAO LU 等: "Simulation Study of New Buckling Restraint Bracing Based on Bayesian Optimization Algorithm to Identify the Parameters of Modified Bouc–Wen Model", ADVANCES IN CIVIL ENGINEERING, vol. 2023, 3 January 2023 (2023-01-03), pages 1 - 12 * |
赵露: "新型摩擦阻尼器的设计与性能研究", 工程科技Ⅱ, 18 May 2023 (2023-05-18), pages 1 - 65 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117216846A (en) * | 2023-09-12 | 2023-12-12 | 华南理工大学 | Reinforced concrete member hysteresis curve prediction method, system, equipment and medium |
CN117216846B (en) * | 2023-09-12 | 2024-04-19 | 华南理工大学 | Method, system, equipment and medium for predicting hysteresis curve of reinforced concrete components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111913803B (en) | Service load fine granularity prediction method based on AKX hybrid model | |
CN113391211B (en) | A method for predicting the remaining life of lithium batteries under the condition of small samples | |
CN108090621B (en) | Short-term wind speed prediction method and system based on staged overall optimization | |
KR20170056687A (en) | Actually-measured marine environment data assimilation method based on sequence recursive filtering three-dimensional variation | |
CN108445759B (en) | A Random Fault Detection Method for Networked Systems Under Sensor Saturation Constraints | |
CN113240170A (en) | Air quality prediction method based on seasonal cyclic neural network | |
CN116500454A (en) | A method, system, device, and medium for estimating the state of health of a lithium-ion battery based on a multi-feature input time-series model | |
CN108304685A (en) | A kind of non-linear degradation equipment method for predicting residual useful life and system | |
CN110677297A (en) | Combined network flow prediction method based on autoregressive moving average model and extreme learning machine | |
CN113852432A (en) | RCS-GRU model-based spectrum prediction sensing method | |
CN108734287A (en) | Compression method and device, terminal, the storage medium of deep neural network model | |
CN112086100A (en) | Quantization error entropy based urban noise identification method of multilayer random neural network | |
CN111460692B (en) | Method and system for predicting remaining life of equipment considering mutual influence of degradation rates | |
CN102063524A (en) | Performance reliability simulation method based on improved self-adaption selective sampling | |
CN108734268A (en) | Compression method and device, terminal, the storage medium of deep neural network model | |
CN110471768B (en) | FastPCA-ARIMA-based load prediction method | |
CN118114118A (en) | A typical weapon equipment fault diagnosis method based on CNDT | |
CN115183969A (en) | Method and system for estimating BWBN model parameters | |
CN116227324B (en) | Fractional order memristor neural network estimation method under variance limitation | |
CN118189870A (en) | A bridge displacement prediction and early warning method and system | |
CN113837443A (en) | Transformer substation line load prediction method based on depth BilSTM | |
CN109978138A (en) | The structural reliability methods of sampling based on deeply study | |
CN111325308A (en) | A Nonlinear System Identification Method | |
CN119202604A (en) | A method and system for rapid prediction of ship cabin noise based on convolutional neural network | |
CN118535851A (en) | A sparse regular graph pooling network sensor optimization configuration method for diesel engine vibration monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 200437 No. 99, Handan Road, Shanghai, Hongkou District Applicant after: Shanghai Material Research Institute Co.,Ltd. Address before: 200437 No. 99, Handan Road, Shanghai, Hongkou District Applicant before: SHANGHAI Research Institute OF MATERIALS |
|
CB02 | Change of applicant information |