CN115181568B - Synthesis of a multilayer core-shell structured composite nanostructured dual-mode luminescent material - Google Patents

Synthesis of a multilayer core-shell structured composite nanostructured dual-mode luminescent material Download PDF

Info

Publication number
CN115181568B
CN115181568B CN202210706079.4A CN202210706079A CN115181568B CN 115181568 B CN115181568 B CN 115181568B CN 202210706079 A CN202210706079 A CN 202210706079A CN 115181568 B CN115181568 B CN 115181568B
Authority
CN
China
Prior art keywords
sio
microsphere
rare earth
gdvo
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210706079.4A
Other languages
Chinese (zh)
Other versions
CN115181568A (en
Inventor
宝金荣
杨云江
朱晓伟
刘心如
高晋融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN202210706079.4A priority Critical patent/CN115181568B/en
Publication of CN115181568A publication Critical patent/CN115181568A/en
Application granted granted Critical
Publication of CN115181568B publication Critical patent/CN115181568B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种稀土下转换红光‑上转换绿光的多层核‑壳结构纳米发光材料及其制备方法,首先利用尿素均相沉淀法将稀土离子Gd3+和Eu3+均匀包覆在SiO2微球表面,再通过正硅酸乙酯弱碱性水解的方法包覆SiO2壳层,高温煅烧后获得核‑壳结构前驱体SiO2@Gd2O3:Eu@SiO2;再利用尿素水解法在前驱体表面包覆稀土离子Gd3+、Yb3+、Er3+,继续通过正硅酸乙酯弱碱性水解的方法包覆SiO2壳层,所得产物分散在H2O和乙二醇的混合溶液中,加入偏钒酸铵,使VO4 3+与内层RE3+(RE=Gd3+,Yb3+,Er3+)结合,最终高温煅烧得到多层核‑壳结构SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2微球。制备的发光微球具有粒径均匀、发光强、分散性好等特征,节约稀土资源,成本低,并且具有制备方法环境友好、设备简单、转化率高、易于工业化生产等特点。The invention discloses a rare earth down-converting red light-upconverting green light multilayer core-shell structure nano luminescent material and a preparation method thereof. Firstly, rare earth ions Gd 3+ and Eu 3+ are uniformly coated on the surface of SiO 2 microspheres by using a urea homogeneous precipitation method, and then the SiO 2 shell layer is coated by a method of weak alkaline hydrolysis of tetraethyl orthosilicate, and a core-shell structure precursor SiO 2 @Gd 2 O 3 :Eu@SiO 2 is obtained after high-temperature calcination; rare earth ions Gd 3+ , Yb 3+ , and Er 3+ are coated on the surface of the precursor by using a urea hydrolysis method, and the SiO 2 shell layer is further coated by a method of weak alkaline hydrolysis of tetraethyl orthosilicate, and the obtained product is dispersed in a mixed solution of H 2 O and ethylene glycol, and ammonium metavanadate is added to make VO 4 3+ and inner layer RE 3+ (RE=Gd 3+ , Yb 3+ , Er 3+ ) and finally calcined at high temperature to obtain multilayer core-shell structure SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 microspheres. The prepared luminescent microspheres have the characteristics of uniform particle size, strong luminescence, good dispersibility, etc., saving rare earth resources, low cost, and environmentally friendly preparation method, simple equipment, high conversion rate, easy industrial production, etc.

Description

一种多层核-壳结构复合纳米双模发光材料的合成Synthesis of a multilayer core-shell structured composite nano dual-mode luminescent material

技术领域Technical Field

本发明属于稀土氧化物-钒酸盐复合纳米发光材料领域,涉及一种多层核-壳结构SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2复合纳米发光材料的复合合成方法(其中Gd2O3:Eu为立方相、GdVO4:Yb,Er为正方相结构),特别是采用低温、低成本、环境友好方法合成同时具有下转换(DC)红光立方相Gd2O3:Eu以及上转换(UC)绿光正方相GdVO4:Yb,Er的核-壳结构纳米级复合发光材料的方法。The present invention belongs to the field of rare earth oxide-vanadate composite nano-luminescent materials, and relates to a composite synthesis method of a multi-layer core-shell structured SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 composite nano-luminescent material (wherein Gd 2 O 3 :Eu is a cubic phase and GdVO 4 :Yb,Er is a tetragonal phase structure), in particular to a method for synthesizing a core-shell structured nano-scale composite luminescent material having both down-conversion (DC) red light cubic phase Gd 2 O 3 :Eu and up-conversion (UC) green light tetragonal phase GdVO 4 :Yb,Er by a low-temperature, low-cost, environmentally friendly method.

背景技术Background technique

由于稀土元素具有独特的电子层结构,稀土化合物表现出许多优异的光、电、磁功能,尤其是稀土元素具有一般元素所无法比拟的光谱学性质。稀土氧化物和钒酸盐由于具有较高的热稳定性、化学稳定性和机械稳定性,在光电通信、玻璃制造工业、显示照明、催化、荧光探针等领域应用广泛。最近核-壳结构多级纳米材料由于同时具有核材料和壳材料的性质、可通过调控其核和壳材料的尺寸和组成来提高其磁性、光学、机械、热、电、催化性能以应用在各个领域中。稀土氧化物和钒酸盐核-壳结构多级纳米/微米材料的研究具有潜在的应用前景。目前,稀土氧化物和钒酸盐核-壳结构多模发光材料的报道较少,主要集中在将多种具有UC和DC性质的稀土元素均匀地混入同一材料中以制得双模发光材料的合成上。合成主要采用有机模板剂或有机溶剂高温水热合成,如T. Vairapperumal, M.Lakshmi, R. V. Kumar, S. K. J, M. A. Kumar, J. Lumin. 2020, 217, 116761;L.Wang, H. Chen, D. Zhang, D. Zhao, W. Qin, Mater. Lett. 2011, 65, 504-506;P.Kumar, J. Dwivedi, B. K. Gupta, J. Mater. Chem. C. 2014, 2, 10468-10475;A. K.Singh, S. K. Singh, B. K. Gupta, R. Prakash, S. B. Rai, Dalton. Trans.2013,42, 1065-1072. 等文献中的报道。这些方法存在合成方法复杂或原料不能重复利用、原料价格高、污染环境;而且具有UC和DC性质的稀土元素均匀地混入同一材料中以制得双模发光材料,导致镧系元素间发生交叉弛豫,使发光强度下降等缺点,不利于规模化生产及应用。将具有DC和UC性质的稀土元素分别掺入到核壳结构的内层或外层,中间使用SiO2壳隔离以避免镧系元素间交叉弛豫的发生从而提高发光强度。SiO2无毒,价格低廉,采用SiO2作为核材料,可以节约资源;以SiO2作为壳材料,不仅可以保护稀土发光中心免受环境的干扰,提高光效,还可以减少稀土离子间的浓度猝灭,并提高样品的生物相容性。因此开发低温、低成本、环境友好方法合成以SiO2作为核及壳材料的核-壳结构多模发光性能的纳米/微米多级结构的氧化物和钒酸盐复合材料方法意义重大。Due to the unique electronic layer structure of rare earth elements, rare earth compounds exhibit many excellent optical, electrical and magnetic functions, especially rare earth elements have spectral properties that are unmatched by general elements. Rare earth oxides and vanadates are widely used in optoelectronic communications, glass manufacturing industry, display lighting, catalysis, fluorescent probes and other fields due to their high thermal stability, chemical stability and mechanical stability. Recently, core-shell multi-level nanomaterials have the properties of both core materials and shell materials, and their magnetic, optical, mechanical, thermal, electrical and catalytic properties can be improved by regulating the size and composition of their core and shell materials for application in various fields. The research on rare earth oxide and vanadate core-shell multi-level nano/micro materials has potential application prospects. At present, there are few reports on rare earth oxide and vanadate core-shell multi-mode luminescent materials, which mainly focus on the synthesis of dual-mode luminescent materials by uniformly mixing multiple rare earth elements with UC and DC properties into the same material. The synthesis mainly adopts high-temperature hydrothermal synthesis using organic templates or organic solvents, such as reported in T. Vairapperumal, M.Lakshmi, RV Kumar, SK J, MA Kumar, J. Lumin . 2020, 217 , 116761; L.Wang, H. Chen, D. Zhang, D. Zhao, W. Qin, Mater. Lett . 2011, 65 , 504-506; P.Kumar, J. Dwivedi, BK Gupta, J. Mater. Chem. C. 2014, 2 , 10468-10475; AKSingh, SK Singh, BK Gupta, R. Prakash, SB Rai, Dalton. Trans. 2013, 42 , 1065-1072. and other literature. These methods have the disadvantages of complex synthesis methods or non-reusable raw materials, high raw material prices, and environmental pollution; and the rare earth elements with UC and DC properties are uniformly mixed into the same material to obtain dual-mode luminescent materials, resulting in cross relaxation between lanthanide elements, which reduces the luminescence intensity and other disadvantages, which are not conducive to large-scale production and application. Rare earth elements with DC and UC properties are respectively doped into the inner layer or outer layer of the core-shell structure, and SiO2 shells are used in the middle to avoid cross relaxation between lanthanide elements and thus improve the luminescence intensity. SiO2 is non-toxic and inexpensive. Using SiO2 as a core material can save resources; using SiO2 as a shell material can not only protect the rare earth luminescence center from environmental interference and improve the light efficiency, but also reduce the concentration quenching between rare earth ions and improve the biocompatibility of the sample. Therefore, it is of great significance to develop a low-temperature, low-cost, and environmentally friendly method to synthesize nano/micron multi-level structure oxide and vanadate composite materials with multi-mode luminescence performance of core-shell structure using SiO2 as core and shell materials.

发明内容Summary of the invention

本发明的目的是提供无毒、低成本及粒径可调的SiO2作为核及壳材料的稀土氧化物和钒酸盐核-壳结构SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2复合纳米发光材料的合成方法,材料同时具有下转换红光及上转换绿光发射。The purpose of the present invention is to provide a method for synthesizing a non-toxic, low-cost and size-adjustable rare earth oxide and vanadate core-shell structure SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 composite nano-luminescent material with SiO 2 as core and shell materials, wherein the material has both down-conversion red light and up-conversion green light emission.

核-壳结构SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2复合纳米发光材料的制备的具体步骤为:The specific steps for preparing the core-shell structure SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 composite nanoluminescent material are as follows:

1. SiO2微球的制备:在100 mL圆底烧瓶中加入4 mL H2O、35 mL无水乙醇,用氨水调节pH值为8~9。在油浴锅中持续搅拌使温度保持在50 ºC,然后滴加1.7 mL正硅酸乙酯。反应6~8小时后将反应液离心分离,60~80 ºC烘干4~8小时后,即得到直径为~105 nm的SiO2微球。1. Preparation of SiO2 microspheres : Add 4 mL H2O and 35 mL anhydrous ethanol to a 100 mL round-bottom flask, and adjust the pH to 8-9 with aqueous ammonia. Stir continuously in an oil bath to keep the temperature at 50 ºC, then drop 1.7 mL of ethyl orthosilicate. After 6-8 hours of reaction, centrifuge the reaction solution and dry it at 60-80 ºC for 4-8 hours to obtain SiO2 microspheres with a diameter of ~105 nm.

2. SiO2@Gd2O3:Eu@SiO2微球的制备:称取0.2 g上述制得的SiO2微球于100 mL圆底烧瓶中,加入一定量的去离子H2O和无水乙醇后超声分散8~10 min,以95%:5%的摩尔比加入一定量的Gd(NO3)3·6H2O和Eu(NO3)3·6H2O,搅拌5 min,然后加入0.3 g尿素,搅20~30 min使其充分溶解,在油浴锅中85 ºC回流反应12~18 h,将反应液离心分离,所得产物在60~80°C温度范围烘干4~8小时后,即得到前驱体SiO2@RE。然后称取0.2 g前驱体SiO2@RE白色粉末于100 mL烧杯中,加入一定量的去离子H2O和无水乙醇超声分散3-5min,调节pH值8~9,转入油浴锅中搅拌,滴加一定量的正硅酸乙酯,常温下反应3 h后离心分离,产物放入马弗炉中900 ºC煅烧4 h,得到SiO2@Gd2O3:Eu@SiO2微球。2. Preparation of SiO 2 @Gd 2 O 3 :Eu@SiO 2 microspheres: Weigh 0.2 g of the SiO 2 microspheres prepared above into a 100 mL round-bottom flask, add a certain amount of deionized H 2 O and anhydrous ethanol, and then ultrasonically disperse for 8~10 min, add a certain amount of Gd(NO 3 ) 3 ·6H 2 O and Eu(NO 3 ) 3 ·6H 2 O in a molar ratio of 95%:5%, stir for 5 min, then add 0.3 g of urea, stir for 20~30 min to fully dissolve it, reflux in an oil bath at 85 ºC for 12~18 h, centrifuge the reaction solution, and dry the product at a temperature range of 60~80°C for 4~8 hours to obtain the precursor SiO 2 @RE. Then weigh 0.2 g of the precursor SiO 2 @RE white powder into a 100 mL beaker, add a certain amount of deionized H 2 O and anhydrous ethanol for ultrasonic dispersion for 3-5 minutes, adjust the pH value to 8~9, transfer to an oil bath and stir, add a certain amount of tetraethyl orthosilicate dropwise, react at room temperature for 3 hours, and then centrifuge and separate. The product is placed in a muffle furnace and calcined at 900 ºC for 4 hours to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 microspheres.

3. SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2微球的制备:称取0.2 g制得的SiO2@Gd2O3:Eu@SiO2微球于100 mL圆底烧瓶中,加入一定量的去离子H2O和无水乙醇后超声分散10 min,然后依次加入0.78 mmol Gd(NO3)3·6H2O、0.20 mmol Yb(NO3)3·6H2O、0.02 mmolEr(NO3)3·6H2O及0.3 g尿素,搅拌溶解后,在油浴锅中85 ºC回流反应12 h。反应完成后将得到反应液离心分离,60 ºC烘干得到SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)微球。3. Preparation of SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 microspheres: Weigh 0.2 g of the prepared SiO 2 @Gd 2 O 3 :Eu@SiO 2 microspheres into a 100 mL round-bottom flask, add a certain amount of deionized H 2 O and anhydrous ethanol, and then ultrasonically disperse for 10 min. Then, add 0.78 mmol Gd(NO 3 ) 3 ·6H 2 O, 0.20 mmol Yb(NO 3 ) 3 ·6H 2 O, 0.02 mmolEr(NO 3 ) 3 ·6H 2 O and 0.3 g urea in sequence, stir to dissolve, and reflux in an oil bath at 85 ºC for 12 h. After the reaction was completed, the reaction solution was centrifuged and dried at 60°C to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE=Gd 3+ ,Yb 3+ ,Er 3+ ) microspheres.

称取SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)微球0.2 g于100 mL烧杯中,加入4 mL H2O、30 mL无水乙醇和0.6 mL氨水,超声分散后滴加100 μL正硅酸乙酯,常温下反应3h后离心分离,水洗醇洗后烘干得到SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)@SiO2前驱体微球。Weigh 0.2 g of SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE = Gd 3+ , Yb 3+ , Er 3+ ) microspheres into a 100 mL beaker, add 4 mL H 2 O, 30 mL anhydrous ethanol and 0.6 mL ammonia water, add 100 μL of tetraethyl orthosilicate after ultrasonic dispersion, react at room temperature for 3 h, then centrifuge and separate, wash with water and alcohol, and then dry to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE = Gd 3+ , Yb 3+ , Er 3+ )@SiO 2 precursor microspheres.

称取得到的SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)@SiO2前驱体微球0.2 g于100 mL圆底烧瓶中,加入15 mL H2O和20 mL乙二醇后超声分散10 min,然后加入一定量的偏钒酸铵,在油浴锅中100~125 ºC回流反应6~12 h。反应完成后将得到的棕黄色悬浊液离心分离,60 ºC烘干。最后将烘干后的粉末放入马弗炉中900 ºC煅烧4 h得到SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2微球。(本发明专利所使用水均为去离子水)Weigh 0.2 g of the obtained SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE = Gd 3+ , Yb 3+ , Er 3+ )@SiO 2 precursor microspheres into a 100 mL round-bottom flask, add 15 mL H 2 O and 20 mL ethylene glycol, and then ultrasonically disperse for 10 min, then add a certain amount of ammonium metavanadate, and reflux in an oil bath at 100~125 ºC for 6~12 h. After the reaction is completed, the obtained brown-yellow suspension is centrifuged and dried at 60 ºC. Finally, the dried powder is placed in a muffle furnace and calcined at 900 ºC for 4 h to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 microspheres. (The water used in the patent of this invention is deionized water)

本发明材料制备方法环境友好,设备简单,合成步骤简便;原料价格低廉,无需昂贵的表面活性剂作模板剂;具有不使用有毒有害有机溶剂、不污染环境、节省能源、转化率高、易于工业化生产等特点,是一种理想的绿色工艺;重复性好。The material preparation method of the present invention is environmentally friendly, has simple equipment and simple synthesis steps; the raw materials are inexpensive and no expensive surfactant is required as a template; it has the characteristics of not using toxic and harmful organic solvents, not polluting the environment, saving energy, having a high conversion rate, and being easy for industrial production, and is an ideal green process with good repeatability.

附图说明:Description of the drawings:

图1a,b分别为实施例一对应的SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2产物的XRD图谱及TEM图。图1c,d分别为实施例二对应的SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2产物的XRD图谱及TEM图。XRD图中红线和蓝线分别为立方相Gd2O3标准卡片JCPDS No. 12-0797,以及正方相GdVO4标准卡片JCPDS No. 17-0260,从图中可以看出两种实施例获得的样品均为立方相Gd2O3和正方相GdVO4的混相,且结晶度较好。TEM图显示两种实施例获得的样品均具有清晰的多层核-壳结构,且分散性较好。Figures 1a and 1b are the XRD spectra and TEM images of the SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 product corresponding to Example 1, respectively. Figures 1c and 1d are the XRD spectra and TEM images of the SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 product corresponding to Example 2, respectively. The red and blue lines in the XRD graph are the cubic phase Gd 2 O 3 standard card JCPDS No. 12-0797 and the square phase GdVO 4 standard card JCPDS No. 17-0260, respectively. It can be seen from the figure that the samples obtained in the two embodiments are mixed phases of cubic phase Gd 2 O 3 and square phase GdVO 4 , and the crystallinity is good. The TEM image shows that the samples obtained in the two embodiments have a clear multilayer core-shell structure and good dispersibility.

图2为合成SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2样品的上转换发射光谱图,从此图中可以看出合成的样品具有良好的上转换发光性能,最强发射峰位于552nm处,为绿光发射。Figure 2 is the up-conversion emission spectrum of the synthesized SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 sample. From this figure, it can be seen that the synthesized sample has good up-conversion luminescence performance, and the strongest emission peak is located at 552nm, which is green light emission.

图3为合成SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2样品的下转换荧光光谱图,从此图中可以看出合成的样品具有良好的下转换荧光性能,最强发射峰位于619nm处,为红光发射。Figure 3 is the down-conversion fluorescence spectrum of the synthesized SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 sample. From this figure, it can be seen that the synthesized sample has good down-conversion fluorescence performance, and the strongest emission peak is located at 619nm, which is red light emission.

图4为合成SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2样品的CIE色度坐标及样品水分散液发光照片,从此图中可以看出样品具有良好的上转换绿光、下转换红光发光性能。Figure 4 shows the CIE chromaticity coordinates of the synthesized SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 sample and the luminescence photograph of the sample water dispersion. From this figure, it can be seen that the sample has good up-conversion green light and down-conversion red light luminescence performance.

具体实施方式:Detailed ways:

实施例一Embodiment 1

(1)在100 mL圆底烧瓶中加入4 mL H2O、35 mL无水乙醇,用氨水调节pH值为8~9。在油浴锅中持续搅拌使温度保持在50 ºC,然后滴加1.7 mL正硅酸乙酯。反应6~8小时后将反应液离心分离,水和无水乙醇洗3次后60~80 ºC烘干4~8小时后,即得到直径为~105 nm的SiO2微球。(1) Add 4 mL of H 2 O and 35 mL of anhydrous ethanol to a 100 mL round-bottom flask, and adjust the pH value to 8-9 with aqueous ammonia. Stir continuously in an oil bath to keep the temperature at 50 ºC, then add 1.7 mL of ethyl orthosilicate dropwise. After reacting for 6-8 hours, centrifuge the reaction solution, wash it with water and anhydrous ethanol three times, and dry it at 60-80 ºC for 4-8 hours to obtain SiO 2 microspheres with a diameter of ~105 nm.

(2)称取0.2g直径~105nm的SiO2微球分散在20 mL H2O和15 mL无水乙醇中,加入0.3g尿素,0.95 mmol Gd(NO3)3·6H2O和0.05 mmol Eu(NO3)3·6H2O,常温搅拌30 min溶解后,在85°C油浴中反应12小时后离心分离,水和无水乙醇洗3次后60 ºC烘干即得到SiO2@RE前驱体。称取0.2 g SiO2@RE前驱体,加入4 mL H2O、30 mL无水乙醇和0.6 mL氨水,超声分散后滴加100 μL正硅酸乙酯,常温下反应3 h后离心,水和无水乙醇洗3次后60 ºC烘干即得到SiO2@RE@SiO2前驱体。将SiO2@RE@SiO2前驱体放入马弗炉中从室温以9°C/min的升温速率升温至900°C煅烧4 h得到SiO2@Gd2O3:Eu@SiO2微球。(2) Weigh 0.2 g of SiO 2 microspheres with a diameter of ~105 nm and disperse them in 20 mL H 2 O and 15 mL anhydrous ethanol, add 0.3 g of urea, 0.95 mmol Gd(NO 3 ) 3 ·6H 2 O and 0.05 mmol Eu(NO 3 ) 3 ·6H 2 O, stir at room temperature for 30 min to dissolve, react in an oil bath at 85°C for 12 hours, centrifuge, wash with water and anhydrous ethanol three times, and dry at 60 ºC to obtain SiO 2 @RE precursor. Weigh 0.2 g of SiO 2 @RE precursor, add 4 mL H 2 O, 30 mL anhydrous ethanol and 0.6 mL ammonia water, ultrasonically disperse, add 100 μL of tetraethyl orthosilicate, react at room temperature for 3 h, centrifuge, wash with water and anhydrous ethanol three times, and dry at 60 ºC to obtain SiO 2 @RE@SiO 2 precursor. The SiO 2 @RE@SiO 2 precursor was placed in a muffle furnace and heated from room temperature to 900°C at a heating rate of 9°C/min and calcined for 4 h to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 microspheres.

(3)称取0.2 g SiO2@Gd2O3:Eu@SiO2微球于100 mL圆底烧瓶中,加入20 mL H2O和15mL无水乙醇后超声分散10 min,然后依次加入0.78 mmol Gd(NO3)3·6H2O、0.20 mmol Yb(NO3)3·6H2O、0.02 mmol Er(NO3)3·6H2O及0.3 g尿素,搅拌溶解后,油浴85 ºC回流反应12h后离心分离,水和无水乙醇洗3次后60 ºC烘干得到SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)微球。取SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)微球0.2 g于100 mL烧杯中,加入4mL H2O、30 mL无水乙醇和0.6 mL氨水,超声分散后滴加100 μL正硅酸乙酯,常温下反应3 h后离心分离,水和无水乙醇洗3次后60 ºC烘干得到SiO2@Gd2O3:Eu@SiO2@RE@SiO2(RE=Gd3+,Yb3+,Er3+)前驱体微球。(3) Weigh 0.2 g SiO 2 @Gd 2 O 3 :Eu@SiO 2 microspheres into a 100 mL round-bottom flask, add 20 mL H 2 O and 15 mL anhydrous ethanol, and disperse under ultrasonication for 10 min. Then add 0.78 mmol Gd(NO 3 ) 3 ·6H 2 O, 0.20 mmol Yb(NO 3 ) 3 ·6H 2 O, 0.02 mmol Er(NO 3 ) 3 ·6H 2 O and 0.3 g urea in sequence. Stir and dissolve. Reverse the reaction in an oil bath at 85 ºC for 12 h, then centrifuge and wash with water and anhydrous ethanol three times. Then dry at 60 ºC to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE = Gd 3+ , Yb 3+ , Er 3+ ) microspheres. Take 0.2 g of SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE=Gd 3+ ,Yb 3+ ,Er 3+ ) microspheres in a 100 mL beaker, add 4 mL H 2 O, 30 mL anhydrous ethanol and 0.6 mL ammonia water, add 100 μL of tetraethyl orthosilicate after ultrasonic dispersion, react at room temperature for 3 h, then centrifuge and wash three times with water and anhydrous ethanol, then dry at 60 ºC to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE@SiO 2 (RE=Gd 3+ ,Yb 3+ ,Er 3+ ) precursor microspheres.

称取0.2 g SiO2@Gd2O3:Eu@SiO2@RE@SiO2(RE=Gd3+,Yb3+,Er3+)前驱体微球于100 mL圆底烧瓶中,加入15 mL H2O和20 mL乙二醇后超声分散10 min,然后加入0.15 g偏钒酸铵,油浴125 ºC回流反应6 h后离心分离,水和无水乙醇洗3次后60 ºC烘干。将烘干样品放入马弗炉中从室温以9 °C/min的升温速率升温至900°C煅烧4 h得到SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2微球。0.2 g of SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE@SiO 2 (RE=Gd 3+ ,Yb 3+ ,Er 3+ ) precursor microspheres were weighed into a 100 mL round-bottom flask, 15 mL of H 2 O and 20 mL of ethylene glycol were added, and ultrasonic dispersion was performed for 10 min. Then 0.15 g of ammonium metavanadate was added, and the mixture was refluxed in an oil bath at 125 ºC for 6 h, centrifuged, washed with water and anhydrous ethanol for 3 times, and dried at 60 ºC. The dried sample was placed in a muffle furnace and heated from room temperature to 900°C at a heating rate of 9 °C/min for 4 h to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 microspheres.

实施例二Embodiment 2

(1)在100 mL圆底烧瓶中加入4 mL H2O、35 mL无水乙醇,用氨水调节pH值为8~9。在油浴锅中持续搅拌使温度保持在50 ºC,然后滴加1.7 mL正硅酸乙酯。反应6~8小时后将反应液离心分离,水和无水乙醇洗3次后60~80 ºC烘干4~8小时后,即得到直径为~105 nm的SiO2微球。(1) Add 4 mL of H 2 O and 35 mL of anhydrous ethanol to a 100 mL round-bottom flask, and adjust the pH value to 8-9 with aqueous ammonia. Stir continuously in an oil bath to keep the temperature at 50 ºC, then add 1.7 mL of ethyl orthosilicate dropwise. After reacting for 6-8 hours, centrifuge the reaction solution, wash it with water and anhydrous ethanol three times, and dry it at 60-80 ºC for 4-8 hours to obtain SiO 2 microspheres with a diameter of ~105 nm.

(2)称取0.2g直径~105nm的SiO2微球分散在25 mL H2O和10 mL无水乙醇中,加入0.3g尿素,0.475 mmol Gd(NO3)3·6H2O和0.025 mmol Eu(NO3)3·6H2O,常温搅拌20 min溶解后,在85°C油浴中反应18小时后离心分离,水和无水乙醇3次洗后80 ºC烘干即得到SiO2@RE前驱体。称取0.2 g SiO2@RE前驱体,加入2 mL H2O、30 mL无水乙醇和0.6 mL氨水,超声分散后滴加100 μL正硅酸乙酯,常温下反应6 h后离心,水和无水乙醇洗3次后80 ºC烘干即得到SiO2@RE@SiO2前驱体。将SiO2@RE@SiO2前驱体放入马弗炉中从室温以9°C/min的升温速率升温至900°C煅烧4 h得到SiO2@Gd2O3:Eu@SiO2微球。(2) Weigh 0.2 g of SiO 2 microspheres with a diameter of ~105 nm and disperse them in 25 mL H 2 O and 10 mL anhydrous ethanol, add 0.3 g of urea, 0.475 mmol Gd(NO 3 ) 3 ·6H 2 O and 0.025 mmol Eu(NO 3 ) 3 ·6H 2 O, stir at room temperature for 20 min to dissolve, react in an oil bath at 85°C for 18 hours, centrifuge, wash with water and anhydrous ethanol three times, and dry at 80 ºC to obtain SiO 2 @RE precursor. Weigh 0.2 g of SiO 2 @RE precursor, add 2 mL H 2 O, 30 mL anhydrous ethanol and 0.6 mL ammonia water, ultrasonically disperse, add 100 μL of tetraethyl orthosilicate, react at room temperature for 6 h, centrifuge, wash with water and anhydrous ethanol three times, and dry at 80 ºC to obtain SiO 2 @RE@SiO 2 precursor. The SiO 2 @RE@SiO 2 precursor was placed in a muffle furnace and heated from room temperature to 900°C at a heating rate of 9°C/min and calcined for 4 h to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 microspheres.

(3)称取0.2 g SiO2@Gd2O3:Eu@SiO2微球于100 mL圆底烧瓶中,加入20 mL H2O和15mL无水乙醇后超声分散10 min,然后依次加入0.78 mmol Gd(NO3)3·6H2O、0.20 mmol Yb(NO3)3·6H2O、0.02 mmol Er(NO3)3·6H2O及0.3 g尿素,搅拌溶解后,油浴85 ºC回流反应12h后离心分离,水和无水醇洗3次后80 ºC烘干得到SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3 +)微球。称取SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)微球0.2 g于100 mL烧杯中,加入4mL H2O、30 mL无水乙醇和0.6 mL氨水,超声分散后滴加100 μL正硅酸乙酯,常温下反应3 h后离心分离,水和无水乙醇洗3次后80 ºC烘干得到SiO2@Gd2O3:Eu@SiO2@RE@SiO2(RE=Gd3+,Yb3+,Er3+)前驱体微球。(3) Weigh 0.2 g SiO 2 @Gd 2 O 3 :Eu@SiO 2 microspheres into a 100 mL round-bottom flask, add 20 mL H 2 O and 15 mL anhydrous ethanol, and disperse under ultrasonication for 10 min. Then add 0.78 mmol Gd(NO 3 ) 3 ·6H 2 O, 0.20 mmol Yb(NO 3 ) 3 ·6H 2 O, 0.02 mmol Er(NO 3 ) 3 ·6H 2 O and 0.3 g urea in sequence. Stir and dissolve. Reverse the reaction in an oil bath at 85 ºC for 12 h, and then centrifuge. Wash the mixture three times with water and anhydrous alcohol, and then dry it at 80 ºC to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE ( RE = Gd 3+ , Yb 3+ , Er 3+ ) microspheres. Weigh 0.2 g of SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE=Gd 3+ ,Yb 3+ ,Er 3+ ) microspheres into a 100 mL beaker, add 4 mL of H 2 O, 30 mL of anhydrous ethanol and 0.6 mL of ammonia water, add 100 μL of tetraethyl orthosilicate after ultrasonic dispersion, react at room temperature for 3 h and then centrifuge. Wash three times with water and anhydrous ethanol and then dry at 80 ºC to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE@SiO 2 (RE=Gd 3+ ,Yb 3+ ,Er 3+ ) precursor microspheres.

称取0.2 g SiO2@Gd2O3:Eu@SiO2@RE(RE=Gd3+,Yb3+,Er3+)@SiO2前驱体微球于100 mL圆底烧瓶中,加入15 mL H2O和20 mL乙二醇后超声分散10 min,然后加入0.10 g偏钒酸铵,油浴100 ºC回流反应12 h后离心,水和无水乙醇洗3次后60 ºC烘干。将烘干样品放入马弗炉中从室温以9 °C/min的升温速率升温至900°C煅烧4 h得到SiO2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2微球。0.2 g SiO 2 @Gd 2 O 3 :Eu@SiO 2 @RE (RE = Gd 3+ , Yb 3+ , Er 3+ ) @SiO 2 precursor microspheres were weighed into a 100 mL round-bottom flask, 15 mL H 2 O and 20 mL ethylene glycol were added, and ultrasonic dispersion was performed for 10 min. Then 0.10 g ammonium metavanadate was added, and the mixture was refluxed in an oil bath at 100 ºC for 12 h, centrifuged, washed with water and anhydrous ethanol three times, and dried at 60 ºC. The dried sample was placed in a muffle furnace and heated from room temperature to 900°C at a heating rate of 9 °C/min for 4 h to obtain SiO 2 @Gd 2 O 3 :Eu@SiO 2 @GdVO 4 :Yb,Er@SiO 2 microspheres.

Claims (3)

1. A synthetic method of a SiO 2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2 composite nano luminescent material with a multilayer core-shell structure capable of emitting down-converted red light and up-converted green light is characterized in that: (1) By means ofSynthesizing SiO 2 microsphere with a core diameter of 105nm by a method, depositing rare earth ions Gd 3+ and Eu 3+ on the surface of the SiO 2 microsphere by a urea hydrolysis coprecipitation method, and coating a SiO 2 shell layer with a thickness of 8nm by an ethyl orthosilicate hydrolysis method to obtain the SiO 2@RE@SiO2 microsphere; (2) Then, rare earth ions Gd 3+、Yb3+ and Er 3+ are deposited on the surface of the SiO 2@RE@SiO2 microsphere by utilizing a urea hydrolysis coprecipitation method, and SiO 2 shell layers with the thickness of 8nm are coated; (3) The GdVO 4:Yb and Er layers are formed by combining VO 4 3- ions with inner rare earth ions Gd 3+、Yb3+ and Er 3+, gdVO 4:Yb and Er layers are obtained by calcining at 900 ℃ to obtain the multi-layer core-shell structure SiO 2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2 composite nano luminescent material with down-conversion red light emission Gd 2O3:Eu layers and up-conversion green light emission, and the specific process conditions are as follows:
(1) Adding 4mL of H 2 O and 35mL of absolute ethyl alcohol into a 100mL round-bottom flask, regulating the pH value to 8-9 by ammonia water, continuously stirring in an oil bath kettle to keep the temperature at 50 ℃, then dropwise adding 1.7mL of tetraethoxysilane, centrifugally separating reaction liquid after reacting for 6-8 hours, washing water and absolute ethyl alcohol for 3 times, and drying at 60-80 ℃ for 4-8 hours to obtain SiO 2 microspheres with the diameter of 105 nm;
(2) 0.2g of SiO 2 microsphere with the diameter of 105nm is weighed and dispersed in 20mL of H 2 O and 15mL of absolute ethyl alcohol, 0.3g of urea and 0.95mmol of Gd (NO 3)3·6H2 O and 0.05mmol of Eu (NO 3)3·6H2 O are added, stirred and dissolved at normal temperature, reacted in an oil bath at 85 ℃ for 12 hours, centrifugally separated, washed by water and absolute ethyl alcohol for 3 times and dried at 60 ℃, 0.2g of dried sample is weighed, 4mL of H 2 O, 30mL of absolute ethyl alcohol and 0.6mL of ammonia water are added, 100 mu L of tetraethoxysilane is added after ultrasonic dispersion, centrifugally separated after reaction for 3 hours at normal temperature, washed by water and absolute ethyl alcohol for 3 times and dried to obtain a precursor of SiO 2@Gd3+,Eu3+@SiO2, and then the precursor is calcined at 900 ℃ for 4 hours in a muffle furnace to obtain SiO 2@Gd2O3:Eu@SiO2 microsphere;
(3) Weighing 0.2g of SiO 2@Gd2O3:Eu@SiO2 microsphere into a 100mL round bottom flask, adding 20mL of H 2 O and 15mL of absolute ethyl alcohol, performing ultrasonic dispersion for 10min, sequentially adding 0.78mmol Gd(NO3)3·6H2O、0.20mmol Yb(NO3)3·6H2O、0.02mmol Er(NO3)3·6H2O and 0.3g of urea, stirring for dissolution, performing reflux reaction at 85 ℃ in an oil bath for 12H, performing centrifugal separation, washing with water and absolute ethyl alcohol for 3 times, and drying at 60 ℃ to obtain SiO 2@Gd2O3:Eu@SiO2@Gd3+,Yb3+,Er3+ microsphere; weighing 0.2g of SiO 2@Gd2O3:Eu@SiO2@Gd3+,Yb3+,Er3+ microsphere in a 100mL beaker, adding 4mL of H 2 O, 30mL of absolute ethyl alcohol and 0.6mL of ammonia water, performing ultrasonic dispersion, then dropwise adding 100 mu L of tetraethoxysilane, reacting at normal temperature for 3H, centrifuging, washing with water and absolute ethyl alcohol for 3 times, and drying at 60 ℃ to obtain SiO 2@Gd2O3:Eu@SiO2@Gd3+,Yb3+,Er3+@SiO2 precursor microsphere; and weighing 0.2g SiO2@Gd2O3:Eu@SiO2@Gd3+,Yb3+,Er3+@SiO2 precursor microspheres in a 100mL round-bottom flask, adding 15mL of H 2 O and 20mL of ethylene glycol, performing ultrasonic dispersion for 10min, adding 0.15g of ammonium metavanadate, performing reflux reaction at 125 ℃ in an oil bath for 6H, centrifuging, washing with water and absolute ethyl alcohol for 3 times, drying at 60 ℃, and finally placing the dried powder in a muffle furnace, heating to 900 ℃ from room temperature at a heating rate of 9 ℃/min, and calcining for 4H to obtain the SiO 2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2 microspheres.
2. The method for synthesizing the SiO 2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2 composite nano luminescent material with the multilayer core-shell structure capable of emitting down-converted red light and up-converted green light, which is characterized in that: the diameter of the SiO 2 core used is 105nm; the SiO 2 microsphere surface is deposited with rare earth ions Gd 3+ and Eu 3+, and then the surface is coated with a SiO 2 shell layer with the thickness of 8nm, so as to avoid fluorescence quenching caused by cross relaxation phenomenon with the rare earth ions Gd 3+、Yb3+ and Er 3+ coated subsequently.
3. The method for synthesizing the SiO 2@Gd2O3:Eu@SiO2@GdVO4:Yb,Er@SiO2 composite nano luminescent material with the multilayer core-shell structure capable of emitting down-converted red light and up-converted green light, which is characterized in that: after rare earth ions Gd 3+、Yb3+ and Er 3+ are deposited on the surface of SiO 2@Gd2O3:Eu@SiO2 microsphere by urea hydrolysis, siO 2 shell layer with the thickness of 8nm is coated, and GdVO 4:Yb and Er are coated on the surface of SiO 2@Gd2O3:Eu@SiO2 microsphere by ammonium metavanadate substitution reaction to obtain the multilayer core-shell structure product.
CN202210706079.4A 2022-06-21 2022-06-21 Synthesis of a multilayer core-shell structured composite nanostructured dual-mode luminescent material Active CN115181568B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210706079.4A CN115181568B (en) 2022-06-21 2022-06-21 Synthesis of a multilayer core-shell structured composite nanostructured dual-mode luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210706079.4A CN115181568B (en) 2022-06-21 2022-06-21 Synthesis of a multilayer core-shell structured composite nanostructured dual-mode luminescent material

Publications (2)

Publication Number Publication Date
CN115181568A CN115181568A (en) 2022-10-14
CN115181568B true CN115181568B (en) 2024-06-07

Family

ID=83515097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210706079.4A Active CN115181568B (en) 2022-06-21 2022-06-21 Synthesis of a multilayer core-shell structured composite nanostructured dual-mode luminescent material

Country Status (1)

Country Link
CN (1) CN115181568B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074374A (en) * 2006-05-19 2007-11-21 中国科学院理化技术研究所 Rare earth nano fluorescent particle with core-shell structure and preparation method and application thereof
CN101941676A (en) * 2010-08-26 2011-01-12 吉林大学 Preparation method of Ln2O3:RE3+ and Ln2O3:RE3+@SiO2 monodisperse rare earth nanoparticles
CN103756668A (en) * 2014-01-08 2014-04-30 上海大学 Core-shell type rare earth up-conversion composite nanoparticle and preparation method thereof
CN106939162A (en) * 2016-01-04 2017-07-11 内蒙古大学 SiO2The synthetic method of@Tb (phen-Si) L nuclear shell structure nano luminescent composites
CN109158062A (en) * 2018-09-19 2019-01-08 新疆维吾尔自治区产品质量监督检验研究院 Silicon dioxide colloid compound rare-earth core-shell type microballoon and preparation method thereof
CN112300788A (en) * 2020-11-02 2021-02-02 中山大学 Core-point shell structure photomagnetic nanoprobe and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006113998A1 (en) * 2005-04-26 2006-11-02 University Of Victoria Innovation And Development Corporation Production of light from sol-gel derived thin films made with lanthanide doped nanoparticles, and preparation thereof
SG175647A1 (en) * 2006-10-17 2011-11-28 Univ Singapore Upconversion fluorescent nano-structured material and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074374A (en) * 2006-05-19 2007-11-21 中国科学院理化技术研究所 Rare earth nano fluorescent particle with core-shell structure and preparation method and application thereof
CN101941676A (en) * 2010-08-26 2011-01-12 吉林大学 Preparation method of Ln2O3:RE3+ and Ln2O3:RE3+@SiO2 monodisperse rare earth nanoparticles
CN103756668A (en) * 2014-01-08 2014-04-30 上海大学 Core-shell type rare earth up-conversion composite nanoparticle and preparation method thereof
CN106939162A (en) * 2016-01-04 2017-07-11 内蒙古大学 SiO2The synthetic method of@Tb (phen-Si) L nuclear shell structure nano luminescent composites
CN109158062A (en) * 2018-09-19 2019-01-08 新疆维吾尔自治区产品质量监督检验研究院 Silicon dioxide colloid compound rare-earth core-shell type microballoon and preparation method thereof
CN112300788A (en) * 2020-11-02 2021-02-02 中山大学 Core-point shell structure photomagnetic nanoprobe and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High-efficient fabrication of core-shell structured SiO2@GdPo4:Tb@SiO2 nanoparticles with improved luminescence;He Bai et al.;Royal Society Open Science;第7卷(第5期);192235 *
双模多层核壳结构稀土复合发光微球的制备、表征及其荧光防伪应用研究;杨云江;中国优秀硕士学位论文全文数据库 工程科技I辑(第01期);B020-875 *

Also Published As

Publication number Publication date
CN115181568A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
CN107151029B (en) A kind of sol-gel self-combustion synthesis preparation process of tetra phase barium titanate powder
Huang et al. Self-assembled three-dimensional NaY (WO4) 2: Ln3+ architectures: hydrothermal synthesis, growth mechanism and luminescence properties
CN102071027B (en) A kind of water-soluble rare earth terbium ion doped cerium fluoride nanocrystal and preparation method thereof
CN106520121B (en) Preparation method of rare earth doped gadolinium oxysulfide and gadolinium oxysulfate upconversion phosphor
CN102226084B (en) Synthesis method of flower-like Y2O3:Eu<3+> microspheres
CN101456570B (en) Method for preparing cerium doped yttrium aluminum garnet
CN101597494A (en) Low temperature preparation method of yttrium aluminum garnet rare earth phosphor
Zhu et al. Design of core–shell phosphors with tunable luminescence and improved thermal stability by coating with gC 3 N 4
CN114381260B (en) Green synthesis method of tetravalent manganese ion activated fluoride red luminescent material
CN115181568B (en) Synthesis of a multilayer core-shell structured composite nanostructured dual-mode luminescent material
CN102807858B (en) Method for preparing orange nitrogen oxide phosphor material
CN102994084B (en) Submicron rodlike calcium scandate-based up-conversion luminescent material and preparation method thereof
CN105084418A (en) Preparation method of nanometer lanthanum vanadate hollow microspheres
CN109158062A (en) Silicon dioxide colloid compound rare-earth core-shell type microballoon and preparation method thereof
CN108130083B (en) Red-green color-changing adjustable rare earth oxy-hydrogen fluoride luminescent material and preparation method thereof
CN109810706A (en) A kind of preparation method of hydrangea-like europium-doped calcium molybdate powder
CN102031108A (en) Method for preparing barium zirconate-doped cerium BaZrO3:Ce nano-luminescent material by microemulsion method
CN106929019B (en) A kind of preparation method of multiple spectra response luminescent material
CN108300478B (en) A kind of water-soluble terbium-doped lanthanum fluoride nanoparticles and preparation method thereof
CN109911937B (en) A kind of preparation method of self-sacrificing template of NaRE(MoO4)2
CN109133140A (en) A method of preparing cerium oxide nanoparticles
CN101974330A (en) Preparation method of lanthanum europium molybdate red luminescent powder
CN105199734A (en) A preparation method of Y2O3/Y2O2S:Eu3+ composite nanoparticles
CN106824166B (en) A kind of preparation method of micron flower/flaky bismuth oxide photocatalytic material
CN111171804A (en) Based on WO3Preparation method of quick-response composite photosensitive nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant