CN115173953A - Method for improving performance of hybrid HACO-OFDM (hybrid automatic repeat-orthogonal frequency division multiplexing) by applying predistortion technology - Google Patents
Method for improving performance of hybrid HACO-OFDM (hybrid automatic repeat-orthogonal frequency division multiplexing) by applying predistortion technology Download PDFInfo
- Publication number
- CN115173953A CN115173953A CN202210773144.5A CN202210773144A CN115173953A CN 115173953 A CN115173953 A CN 115173953A CN 202210773144 A CN202210773144 A CN 202210773144A CN 115173953 A CN115173953 A CN 115173953A
- Authority
- CN
- China
- Prior art keywords
- pam
- ofdm
- aco
- dmt
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005516 engineering process Methods 0.000 title claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 230000009466 transformation Effects 0.000 claims description 11
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000007476 Maximum Likelihood Methods 0.000 claims description 2
- 230000021615 conjugation Effects 0.000 claims 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000000969 carrier Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5161—Combination of different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于可见光通信学科领域,具体涉及一种运用预失真技术提升混合非对称限幅光正交频分复用(HACO-OFDM)性能的方法。The invention belongs to the field of visible light communication, and in particular relates to a method for improving the performance of a hybrid asymmetric clipping optical orthogonal frequency division multiplexing (HACO-OFDM) by using a predistortion technology.
背景技术Background technique
混合HACO-OFDM是一种结合非对称限幅光正交频分复用系统(AsymmetricallyClipped Optical-Orthogonal Frequency Division Multiplexing,简称ACO-OFDM)和脉冲幅度调制-离散多音(Pulse Amplitude Modulation-Discrete MultiTone,简称PAM-DMT)的技术,它的主要思想是利用奇数载波进行ACO-OFDM调制、偶数载波进行PAM-DMT调制,目的是平衡功率效率和频谱利用率。但是由于ACO-OFDM与PAM-DMT之间存在相互干扰,导致对系统性能造成极大的影响。为了减少这种影响,传统方案采用串行干扰消除(SIC)技术抵消ACO-OFDM对PAM-DMT的干扰,但是SIC技术同样也带来了复杂度高、额外延迟和误码传播等问题。如何在降低系统复杂度的同时,还能有效解决ACO-OFDM与PAM-DMT之间的相互干扰,正是本发明要解决的一个问题。Hybrid HACO-OFDM is a combination of Asymmetrically Clipped Optical-Orthogonal Frequency Division Multiplexing (ACO-OFDM) and Pulse Amplitude Modulation-Discrete MultiTone. PAM-DMT for short) technology, its main idea is to use odd-numbered carriers for ACO-OFDM modulation and even-numbered carriers for PAM-DMT modulation, in order to balance power efficiency and spectrum utilization. However, due to the mutual interference between ACO-OFDM and PAM-DMT, the system performance is greatly affected. In order to reduce this effect, the traditional scheme uses serial interference cancellation (SIC) technology to cancel the interference of ACO-OFDM to PAM-DMT, but SIC technology also brings problems such as high complexity, extra delay and bit error propagation. How to effectively solve the mutual interference between ACO-OFDM and PAM-DMT while reducing the system complexity is a problem to be solved by the present invention.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题:HACO-OFDM由于ACO-OFDM与PAM-DMT之间存在相互干扰,导致对系统性能造成极大的影响。为了减少这种影响,传统方案采用SIC技术抵消ACO-OFDM对PAM-DMT的干扰,但是SIC技术同样也带来了复杂度高、额外延迟和误码传播等问题。如何在降低系统复杂度的同时,还能有效解决ACO-OFDM与PAM-DMT之间的相互干扰,正是本发明要解决的一个问题。The technical problem to be solved by the present invention: HACO-OFDM has a great influence on system performance due to mutual interference between ACO-OFDM and PAM-DMT. In order to reduce this impact, the traditional scheme uses SIC technology to offset the interference of ACO-OFDM to PAM-DMT, but SIC technology also brings problems such as high complexity, extra delay and bit error propagation. How to effectively solve the mutual interference between ACO-OFDM and PAM-DMT while reducing the system complexity is a problem to be solved by the present invention.
本发明采用的技术方案:The technical scheme adopted in the present invention:
一种运用预失真技术提升混合HACO-OFDM性能的方法,包括:A method for improving the performance of hybrid HACO-OFDM using predistortion technology, comprising:
在ACO-OFDM时域信号与PAM-DMT时域信号叠加形成HACO-OFDM时域信号之前,首先将限幅后的ACO-OFDM时域信号重新进行快速傅里叶变换(Fast Fourier transform,简称FFT),获得ACO-OFDM频域信号,提取其偶数子载波中虚部位置的干扰噪声,然后运用预失真技术,在偶数子载波的位置将PAM-DMT的频域数据减去ACO-OFDM的频域干扰噪声,获得PAM-DMT预失真后的频域数据,然后对其进行快速傅里叶逆变换(Inverse Fast FourierTransform,简称IFFT)得到PAM-DMT预失真后的时域信号,最后将PAM-DMT预失真后的时域信号与ACO-OFDM时域信号叠加形成HACO-OFDM时域信号,以此来消除ACO-OFDM调制对PAM-DMT的干扰。Before the ACO-OFDM time-domain signal and the PAM-DMT time-domain signal are superimposed to form the HACO-OFDM time-domain signal, the clipped ACO-OFDM time-domain signal is re-Fast Fourier transform (FFT for short). ), obtain the ACO-OFDM frequency domain signal, extract the interference noise at the position of the imaginary part in the even subcarriers, and then use the predistortion technique to subtract the frequency domain data of the ACO-OFDM from the frequency domain data of the PAM-DMT at the position of the even subcarriers. domain interference noise, obtain the frequency domain data after PAM-DMT predistortion, and then perform Inverse Fast Fourier Transform (IFFT) on it to obtain the time domain signal after PAM-DMT predistortion. The time-domain signal predistorted by DMT and the ACO-OFDM time-domain signal are superimposed to form a HACO-OFDM time-domain signal, so as to eliminate the interference of ACO-OFDM modulation to PAM-DMT.
进一步地,所述方法包括如下步骤:Further, the method includes the steps:
步骤1)对信源进行数据分层,其中第一层数据进行ACO-OFDM调制,调制数据对应放在奇数子载波位置;第二层数据进行PAM-DMT调制,调制数据对应放在偶数子载波位置;Step 1) Data layering is performed on the source, wherein the first layer of data is subjected to ACO-OFDM modulation, and the modulated data is correspondingly placed in the odd-numbered subcarrier position; the second layer of data is subjected to PAM-DMT modulation, and the modulated data is correspondingly placed in the even-numbered subcarriers Location;
步骤2)对ACO-OFDM时域信号重新进行FFT变换,运用预失真技术,在偶数子载波的位置将PAM-DMT的频域数据减去ACO-OFDM的频域干扰噪声,获得PAM-DMT预失真后的频域数据,接着对PAM-DMT预失真后的频域数据进行IFFT变换,得到PAM-DMT预失真后的时域信号,然后将PAM-DMT预失真后的时域信号与ACO-OFDM时域信号叠加形成HACO-OFDM时域信号,以此来消除ACO-OFDM调制对PAM-DMT的干扰;Step 2) Perform FFT transformation on the ACO-OFDM time domain signal again, and use the predistortion technology to subtract the frequency domain interference noise of ACO-OFDM from the frequency domain data of the PAM-DMT at the position of the even subcarrier to obtain the PAM-DMT predistortion noise. The distorted frequency domain data, and then perform IFFT transformation on the PAM-DMT predistorted frequency domain data to obtain the PAM-DMT predistorted time domain signal, and then combine the PAM-DMT predistorted time domain signal with the ACO- The OFDM time domain signal is superimposed to form the HACO-OFDM time domain signal, so as to eliminate the interference of ACO-OFDM modulation to PAM-DMT;
步骤3)叠加后的HACO-OFDM时域信号添加循环前缀(Cyclic Prefix,简称CP),经过DA数模转换,Bias Tee耦合电路,由光电强度调制器发送出去;Step 3) Add a cyclic prefix (Cyclic Prefix, CP for short) to the superimposed HACO-OFDM time-domain signal, go through DA digital-to-analog conversion, Bias Tee coupling circuit, and send it out by the photoelectric intensity modulator;
步骤4)调制的光信号达到接收端,接收端对接收信号进行光电转换,滤波放大和AD模数转换,得到HACO-OFDM待解调信号;Step 4) The modulated optical signal reaches the receiving end, and the receiving end performs photoelectric conversion on the received signal, filter amplification and AD analog-to-digital conversion to obtain the HACO-OFDM signal to be demodulated;
步骤5)对HACO-OFDM待解调信号进行HACO-OFDM解调,其中第一层数据进行ACO-OFDM解调,因为在发送端消除了第一层ACO-OFDM调制对第二层PAM-DMT的干扰,所以第二层数据可以直接进行PAM-DMT解调,最后将解调恢复的二进制数据发回信宿。Step 5) Perform HACO-OFDM demodulation on the HACO-OFDM signal to be demodulated, wherein the first layer data is subjected to ACO-OFDM demodulation, because the first layer ACO-OFDM modulation is eliminated at the transmitting end to the second layer PAM-DMT Therefore, the second-layer data can be directly demodulated by PAM-DMT, and finally the demodulated and recovered binary data is sent back to the sink.
本发明的技术特点和显著效果为:The technical characteristics and remarkable effects of the present invention are:
本发明首次提出了一种运用预失真技术提升混合HACO-OFDM性能的方法,该方法与传统HACO-OFDM的处理方法不同,前者是在发送端从频域的角度消除ACO-OFDM调制对PAM-DMT的相互干扰,后者在接收端从时域的角度利用SIC技术抵消ACO-OFDM调制对PAM-DMT的相互干扰。本发明提出的方法具有复杂度低、可靠性强、误码率性能高的优点,由于在发送端消除了ACO-OFDM调制对PAM-DMT的干扰,接收端可以直接对数据进行并行解调,不再需要进行SIC处理,不但有效避免了传统采用SIC串行消除干扰带来的复杂度高、额外延迟和误码传播等问题,而且本发明在误码率性能上要优于采用SIC的HACO-OFDM方案,可为运用预失真技术提升混合HACO-OFDM性能提供一定的参考价值。The present invention proposes a method for improving the performance of hybrid HACO-OFDM by using predistortion technology for the first time. This method is different from the traditional HACO-OFDM processing method. Mutual interference of DMT, the latter uses SIC technology to cancel the mutual interference of ACO-OFDM modulation to PAM-DMT from the perspective of time domain at the receiving end. The method proposed by the invention has the advantages of low complexity, strong reliability and high bit error rate performance. Since the interference of ACO-OFDM modulation on PAM-DMT is eliminated at the transmitting end, the receiving end can directly demodulate the data in parallel. SIC processing is no longer required, which not only effectively avoids the problems of high complexity, extra delay and bit error propagation caused by traditional SIC serial elimination of interference, but also the present invention is superior to HACO using SIC in terms of bit error rate performance -OFDM scheme, which can provide a certain reference value for improving the performance of hybrid HACO-OFDM using predistortion technology.
附图说明Description of drawings
图1为实施例中运用预失真技术提升混合HACO-OFDM性能的方法的流程图。FIG. 1 is a flowchart of a method for improving the performance of a hybrid HACO-OFDM using a predistortion technique in an embodiment.
具体实施方式Detailed ways
下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present invention and should not be construed as limiting the present invention.
实施例:Example:
一种运用预失真技术提升混合HACO-OFDM性能的方法,包括:A method for improving the performance of hybrid HACO-OFDM using predistortion technology, comprising:
在ACO-OFDM时域信号与PAM-DMT时域信号叠加形成HACO-OFDM时域信号之前,首先将限幅后的ACO-OFDM时域信号重新进行FFT变换,获得ACO-OFDM频域信号,提取其偶数子载波中虚部位置的干扰噪声,然后运用预失真技术,在偶数子载波的位置将PAM-DMT的频域数据减去ACO-OFDM的频域干扰噪声,获得PAM-DMT预失真后的频域数据,然后对其进行IFFT变换得到PAM-DMT预失真后的时域信号,最后将PAM-DMT预失真后的时域信号与ACO-OFDM时域信号叠加形成HACO-OFDM时域信号,以此来消除ACO-OFDM调制对PAM-DMT的干扰。Before the ACO-OFDM time-domain signal and the PAM-DMT time-domain signal are superimposed to form the HACO-OFDM time-domain signal, the clipped ACO-OFDM time-domain signal is re-FFT transformed to obtain the ACO-OFDM frequency-domain signal. The interference noise at the imaginary part of the even-numbered sub-carriers, and then using the predistortion technique to subtract the frequency-domain interference noise of ACO-OFDM from the frequency-domain data of PAM-DMT at the position of the even-numbered sub-carriers to obtain the PAM-DMT predistortion The frequency-domain data is then transformed by IFFT to obtain the time-domain signal after PAM-DMT predistortion. Finally, the time-domain signal after PAM-DMT predistortion is superimposed with the ACO-OFDM time-domain signal to form a HACO-OFDM time-domain signal. , so as to eliminate the interference of ACO-OFDM modulation to PAM-DMT.
如图1所示,所述方法包括如下步骤:As shown in Figure 1, the method includes the following steps:
步骤1)对信源进行数据分层,其中第一层数据进行ACO-OFDM调制,调制数据对应放在奇数子载波位置;第二层数据进行PAM-DMT调制,调制数据对应放在偶数子载波位置;Step 1) Data layering is performed on the source, wherein the first layer of data is subjected to ACO-OFDM modulation, and the modulated data is correspondingly placed in the odd-numbered subcarrier position; the second layer of data is subjected to PAM-DMT modulation, and the modulated data is correspondingly placed in the even-numbered subcarriers Location;
步骤1)包括如下步骤:Step 1) includes the following steps:
1-1)假设信源数据每帧发送N/2-1个数据,其中数据的序号分别从X1到XN/2-1,则(X1,XN/2-1)中的奇数序号的数据划分到第一层,进行正交幅度调制(Quadrature AmplitudeModulation,简称QAM),得到XACO,k1,其中k1=(1,2,…,N/4)为奇数;而(X1,XN/2-1)中的偶数序号的数据划分到第二层,进行脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),得到XPAM,k2,其中k2=(1,2,...,N/4-1);1-1) Assuming that the source data sends N/2-1 pieces of data per frame, where the serial numbers of the data are respectively from X 1 to X N/2-1 , then the odd number in (X 1 , X N/2-1 ) The serial number data is divided into the first layer, and quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM for short) is performed to obtain X ACO,k1 , where k1=(1,2,...,N/4) is an odd number; and (X 1 , The even-numbered data in X N/2-1 ) is divided into the second layer, and pulse amplitude modulation (Pulse Amplitude Modulation, PAM for short) is performed to obtain X PAM,k2 , where k2=(1,2,..., N/4-1);
1-2)对第一层的QAM映射数据XACO,k1进行Hermitian共轭对称,得到共轭数据X* ACO,k1,将映射数据XACO,k1和共轭数据X* ACO,k1按照共轭对称的要求映射如下:1-2) Perform Hermitian conjugate symmetry on the QAM mapping data X ACO,k1 of the first layer to obtain the conjugate data X * ACO,k1 , and map the data X ACO,k1 and the conjugate data X * ACO,k1 according to the common The requirements for yoke symmetry are mapped as follows:
Xodd=[0,XACO,1,0,XACO,2,0,XACO,3,...,XACO,N/4,0,X* ACO,N/4,...,X* ACO,3,0,X* ACO,2,0,X* ACO,1]X odd = [0,X ACO,1 ,0,X ACO,2 ,0,X ACO,3 ,...,X ACO,N/4 ,0,X * ACO,N/4 ,..., X * ACO,3,0, X * ACO,2,0 ,X * ACO,1 ]
1-3)对满足Hermitian对称的数据Xodd进行IFFT变换,产生符合强度调制直接检测系统(Intensity Modulation/Direct Detection,简称IM/DD)传输的ACO-OFDM实数信号xACO-OFDM:1-3) Perform IFFT transformation on the data X odd that satisfies the Hermitian symmetry to generate an ACO-OFDM real number signal x ACO-OFDM that is transmitted by an intensity modulation direct detection system (Intensity Modulation/Direct Detection, IM/DD for short):
xACO-OFDM=IFFT(Xodd)x ACO-OFDM =IFFT(X odd )
1-4)对第二层的PAM映射数据XPAM,k2进行Hermitian共轭对称得到X* PAM,k2,然后将原值XPAM,k2和共轭数据X* PAM,k2按照共轭对称的要求映射如下:1-4) Perform Hermitian conjugate symmetry on the PAM mapping data X PAM,k2 of the second layer to obtain X * PAM,k2 , and then convert the original value X PAM,k2 and the conjugate data X * PAM,k2 according to the conjugate symmetry The requirements are mapped as follows:
Xeven=[0,0,XPAM,1,0,XPAM,2,0,XPAM,3,...,XPAM,N/4-1,0,0,0,X* PAM,N/4-1,...,X* PAM,3,0,X* PAM,2,0,X* PAM,1];X even = [0,0, XPAM, 1,0,XPAM,2,0, XPAM,3 ,..., XPAM,N/ 4-1,0,0,0,X * PAM , N/4-1 ,...,X * PAM,3,0 ,X * PAM,2,0 ,X * PAM,1 ];
步骤2)对ACO-OFDM时域信号重新进行FFT变换,运用预失真技术,在偶数子载波的位置将PAM-DMT的频域数据减去ACO-OFDM的频域干扰噪声,获得PAM-DMT预失真后的频域数据,接着对PAM-DMT预失真后的频域数据X'PAM-DMT进行IFFT变换,得到PAM-DMT预失真后的时域信号x'PAM-DMT,对PAM-DMT预失真后的时域信号x'PAM-DMT进行“过零限幅”得到x”PAM-DMT,最后将“过零限幅”后的数据x”PAM-DMT与ACO-OFDM时域信号x'ACO-OFDM叠加形成HACO-OFDM时域信号xHACO-OFDM,以此来消除ACO-OFDM调制对PAM-DMT的干扰;Step 2) Perform FFT transformation on the ACO-OFDM time domain signal again, and use the predistortion technology to subtract the frequency domain interference noise of ACO-OFDM from the frequency domain data of the PAM-DMT at the position of the even subcarrier to obtain the PAM-DMT predistortion noise. The distorted frequency domain data is then subjected to IFFT transformation on the frequency domain data X' PAM- DMT predistorted by PAM-DMT to obtain the time domain signal x' PAM- DMT predistorted by PAM-DMT. The distorted time domain signal x' PAM-DMT is subjected to "zero-cross clipping" to obtain x" PAM-DMT , and finally the "zero-cross clipping" data x" PAM-DMT and ACO-OFDM time domain signal x' ACO-OFDM is superimposed to form a HACO-OFDM time domain signal x HACO-OFDM , so as to eliminate the interference of ACO-OFDM modulation to PAM-DMT;
步骤2)包括如下步骤:Step 2) includes the following steps:
2-1)将第一层传输的ACO-OFDM实数信号xACO-OFDM进行“过零限幅”,去掉ACO-OFDM实数信号中的负值信号,得到x'ACO-OFDM,2-1) Perform "zero-crossing clipping" on the ACO-OFDM real number signal x ACO-OFDM transmitted in the first layer, remove the negative value signal in the ACO-OFDM real number signal, and obtain x' ACO-OFDM ,
2-2)接着对x'ACO-OFDM进行FFT变换,得到ACO-OFDM新的频域信号X'ACO-OFDM,然后提取其偶数子载波中虚部位置的干扰噪声;2-2) Next, perform FFT transformation on x' ACO-OFDM to obtain a new frequency domain signal X' ACO-OFDM of ACO-OFDM , and then extract the interference noise at the position of the imaginary part in its even-numbered subcarriers;
2-3)在偶数子载波的位置将PAM-DMT的频域数据减去ACO-OFDM的频域干扰噪声,获得PAM-DMT预失真后的频域数据X'PAM-DMT,2-3) Subtract the frequency domain interference noise of ACO-OFDM from the frequency domain data of PAM-DMT at the position of the even-numbered subcarriers to obtain the frequency domain data X' PAM-DMT after PAM-DMT predistortion,
其中XPAM-DMT表示PAM-DMT的频域数据,2*imag(X'ACO-OFDM)表示对信号X'ACO-OFDM取虚部的数据并乘以2倍,i表示复数;Wherein X PAM-DMT represents the frequency domain data of PAM-DMT, 2*imag(X' ACO-OFDM ) represents the data of the imaginary part of the signal X' ACO-OFDM and multiplied by 2 times, i represents a complex number;
2-4)对PAM-DMT预失真后的频域数据X'PAM-DMT进行IFFT变换,得到PAM-DMT预失真后的时域信号x'PAM-DMT,2-4) Perform IFFT transformation on the frequency-domain data X' PAM-DMT after the PAM-DMT predistortion, to obtain the time-domain signal x' PAM-DMT after the PAM-DMT predistortion,
x'PAM-DMT=IFFT(X'PAM-DMT)=(x'PAM-DMT,0,x'PAM-DMT,1,...,x'PAM-DMT,j,...,x'PAM-DMT,N-1) x'PAM-DMT =IFFT( X'PAM-DMT )=( x'PAM-DMT,0 , x'PAM-DMT,1 ,..., x'PAM-DMT,j ,...,x' PAM-DMT,N-1 )
其中x'PAM-DMT,j,j=(0,N-1)表示IFFT输出的第j个PAM-DMT时域信号;Wherein x' PAM-DMT,j ,j=(0,N-1) represents the jth PAM-DMT time domain signal output by IFFT;
2-5)对PAM-DMT预失真后的时域信号x'PAM-DMT进行“过零限幅”操作,去掉PAM-DMT中的负值部分,得到x”PAM-DMT:2-5) Perform a "zero-crossing clipping" operation on the time-domain signal x' PAM-DMT after the PAM-DMT predistortion, remove the negative value part in the PAM-DMT, and obtain x" PAM-DMT :
2-6)将PAM-DMT预失真后的时域信号x”PAM-DMT与ACO-OFDM时域信号x'ACO-OFDM叠加,得到HACO-OFDM时域信号xHACO-OFDM,以此来消除ACO-OFDM调制对PAM-DMT的干扰;2-6) Superimpose the time domain signal x'' PAM-DMT and the ACO-OFDM time domain signal x' ACO-OFDM to obtain the HACO-OFDM time domain signal x HACO-OFDM , in order to eliminate The interference of ACO-OFDM modulation to PAM-DMT;
xHACO-OFDM=x”PAM-DMT+x'ACO-OFDM;x HACO-OFDM =x” PAM-DMT + x’ACO-OFDM ;
步骤3)叠加后的HACO-OFDM时域信号添加循环前缀,经过DA数模转换,Bias Tee耦合电路,由光电强度调制器发送出去;Step 3) adding a cyclic prefix to the superimposed HACO-OFDM time-domain signal, after DA digital-to-analog conversion, Bias Tee coupling circuit, and sent out by the photoelectric intensity modulator;
步骤3包括如下步骤:Step 3 includes the following steps:
3-1)对HACO-OFDM时域信号xHACO-OFDM插入循环前缀,得到HACO-OFDM的调制数据;3-1) Insert a cyclic prefix into the HACO-OFDM time domain signal x HACO-OFDM to obtain modulated data of HACO-OFDM;
3-2)HACO-OFDM的调制数据经过DA数模转换后,与DC直流偏置一起加入Bias Tee耦合电路,驱动光发射机完成电信号到光信号的转换;3-2) After DA digital-to-analog conversion, the modulated data of HACO-OFDM is added to the Bias Tee coupling circuit together with the DC bias to drive the optical transmitter to complete the conversion of electrical signals to optical signals;
3-3)光信号在可见光通信(Visible Light Communication,简称VLC)信道经过直射、散射、反射路径到达接收端,然后送入下一个步骤处理;3-3) The optical signal reaches the receiving end through direct, scattering and reflection paths in the visible light communication (Visible Light Communication, VLC for short) channel, and then is sent to the next step for processing;
步骤4)调制的光信号达到接收端,接收端对接收信号进行光电转换,滤波放大和AD模数转换,得到HACO-OFDM待解调信号;Step 4) The modulated optical signal reaches the receiving end, and the receiving end performs photoelectric conversion on the received signal, filter amplification and AD analog-to-digital conversion to obtain the HACO-OFDM signal to be demodulated;
步骤5)对HACO-OFDM待解调信号进行HACO-OFDM解调,其中第一层数据进行ACO-OFDM解调,因为在发送端消除了第一层ACO-OFDM调制对第二层PAM-DMT的干扰,所以第二层数据可以直接进行PAM-DMT解调,最后将解调恢复的二进制数据发回信宿;Step 5) Perform HACO-OFDM demodulation on the HACO-OFDM signal to be demodulated, wherein the first layer data is subjected to ACO-OFDM demodulation, because the first layer ACO-OFDM modulation is eliminated at the transmitting end to the second layer PAM-DMT Therefore, the second layer data can be directly demodulated by PAM-DMT, and finally the binary data recovered by demodulation is sent back to the sink;
步骤5包括如下步骤:Step 5 includes the following steps:
5-1)接收到HACO-OFDM待解调信号后,首先移除循环前缀(CP)信号,得到N点原始HACO-OFDM的信号;5-1) After receiving the HACO-OFDM signal to be demodulated, first remove the cyclic prefix (CP) signal to obtain the original HACO-OFDM signal at N points;
5-2)对N点HACO-OFDM信号进行FFT变换,重新得到N点的复数数据;5-2) Perform FFT transformation on the N-point HACO-OFDM signal to obtain the complex data of N-points again;
5-3)取出FFT输出的第一层ACO-OFDM待解调数据X'1,ACO-OFDM和第二层PAM-DMT待解调数据X'2,PAM-DMT;5-3) Take out the first layer ACO-OFDM data to be demodulated X' 1 of FFT output, ACO-OFDM and the second layer PAM-DMT data to be demodulated X' 2, PAM-DMT ;
5-4)对第一层待解调数据X'1,ACO-OFDM和第二层待解调数据X'2,PAM-DMT进行解调,采用最大似然比算法,判断收到的星座点与理论星座点之间的最小欧式距离,恢复出第一层的解调二进制数据X(1)和恢复出第二层的解调二进制数据X(2);5-4) demodulate the data X' 1 to be demodulated in the first layer, ACO-OFDM and the data X' 2 to be demodulated in the second layer, PAM-DMT , adopt the maximum likelihood ratio algorithm, and judge the received constellation The minimum Euclidean distance between the point and the theoretical constellation point, recovers the demodulated binary data X (1) of the first layer and recovers the demodulated binary data X (2) of the second layer;
5-5)对第一层解调后的二进制数据X(1)和第二层解调后的二进制数据X(2)进行位置调整,然后发回信宿。5-5) Adjust the position of the binary data X (1) after demodulation of the first layer and the binary data X (2) after demodulation of the second layer, and then send them back to the sink.
通过上述实施案例,本方法优势体现在:步骤2),利用PAM-DMT的频域数据减去ACO-OFDM的频域干扰噪声,获得PAM-DMT预失真后的频域数据,对PAM-DMT预失真后的频域数据重新进行FFT变换,获得PAM-DMT预失真后的时域信号,然后将限幅后的ACO-OFDM时域信号与PAM-DMT时域信号叠加,获得HACO-OFDM预失真后的时域信号,通过以上步骤在发送端消除了ACO-OFDM调制对PAM-DMT的干扰,接收端可以直接对数据进行并行解调,不再需要进行SIC处理,不但有效避免了传统采用SIC串行消除干扰带来的复杂度高、额外延迟和误码传播等问题,而且所提的方法在误码率性能上要优于采用SIC的HACO-OFDM方案。综上所述,本发明有效提升了混合HACO-OFDM的系统性能。Through the above implementation cases, the advantages of this method are reflected in: step 2), using the frequency domain data of PAM-DMT to subtract the frequency domain interference noise of ACO-OFDM, to obtain the frequency domain data after PAM-DMT predistortion, for PAM-DMT The predistorted frequency domain data is re-FFT transformed to obtain the time domain signal after the PAM-DMT predistortion, and then the sliced ACO-OFDM time domain signal and the PAM-DMT time domain signal are superimposed to obtain the HACO-OFDM predistortion signal. For the distorted time-domain signal, the interference of ACO-OFDM modulation on PAM-DMT is eliminated at the transmitting end through the above steps, and the receiving end can directly demodulate the data in parallel without SIC processing, which not only effectively avoids the traditional use of SIC serially eliminates the problems of high complexity, extra delay and bit error propagation caused by interference, and the proposed method is better than the HACO-OFDM scheme using SIC in terms of bit error rate performance. To sum up, the present invention effectively improves the system performance of the hybrid HACO-OFDM.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的保护范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of protection of the present invention is defined by the appended claims and their equivalents.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210773144.5A CN115173953B (en) | 2022-07-01 | 2022-07-01 | A method to improve the performance of hybrid HACO-OFDM using predistortion technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210773144.5A CN115173953B (en) | 2022-07-01 | 2022-07-01 | A method to improve the performance of hybrid HACO-OFDM using predistortion technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115173953A true CN115173953A (en) | 2022-10-11 |
CN115173953B CN115173953B (en) | 2024-04-02 |
Family
ID=83489729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210773144.5A Active CN115173953B (en) | 2022-07-01 | 2022-07-01 | A method to improve the performance of hybrid HACO-OFDM using predistortion technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115173953B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115834317A (en) * | 2022-11-24 | 2023-03-21 | 南京信息工程大学 | An Enhanced Distortion Cancellation Hybrid O-OFDM Transmission Method |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080123767A1 (en) * | 2006-11-28 | 2008-05-29 | Samsung Electro-Mechanics Co., Ltd. | Ofdm receiver using time-domain and frequency-domain equalizing and time domain equalizer |
US20100226464A1 (en) * | 2009-03-03 | 2010-09-09 | Shenzhen Huawei Communicati Technologies Co., Ltd. | Method and apparatus for eliminating frequency-domain interference signals |
WO2011082713A2 (en) * | 2010-01-05 | 2011-07-14 | Hany Abdelmonem Mohamed Elgala | Nonlinearity compensation in optical communication systems via iterative signal clipping and a multiple led transmitter |
CN104618296A (en) * | 2015-02-09 | 2015-05-13 | 东南大学 | Symbol detecting method of PAM (pulse-amplitude modulation)-DMT (discrete multi-tone modulation) system |
WO2015172565A1 (en) * | 2014-05-15 | 2015-11-19 | 东南大学 | Low peak-to-average ratio wireless optical transmission method by means of clipping migration |
CN106330310A (en) * | 2016-08-29 | 2017-01-11 | 东南大学 | An Optical OFDM Method for Simultaneous Transmission of Three Signals |
WO2017185665A1 (en) * | 2016-04-28 | 2017-11-02 | 清华大学 | Dimming control-oriented visible light communication method and device |
CN108833324A (en) * | 2018-06-08 | 2018-11-16 | 天津大学 | A HACO-OFDM system receiving method based on time-domain clipping noise elimination |
CN110212981A (en) * | 2019-05-30 | 2019-09-06 | 江南大学 | A kind of visible light communication transmission method mixing single carrier and multi-carrier modulation |
CN111525956A (en) * | 2020-04-29 | 2020-08-11 | 江南大学 | An interference-free HACO-OFDM modulation method based on IM-DD in a wireless optical communication system |
WO2021004773A1 (en) * | 2019-07-11 | 2021-01-14 | Signify Holding B.V. | A modulator for generating an orthogonal frequency division multiplexing, ofdm, signal |
WO2021004989A1 (en) * | 2019-07-11 | 2021-01-14 | Signify Holding B.V. | A modulator for generating an asymmetrically clipped optical, aco, orthogonal frequency division multiplexing, ofdm, signal as well as a corresponding demodulator |
CN113328964A (en) * | 2021-04-25 | 2021-08-31 | 南京信息工程大学 | VOOK-fused dimmable orthogonal hybrid ACO-OFDM method |
CN113422646A (en) * | 2021-05-31 | 2021-09-21 | 东北师范大学 | Zero value regression algorithm and device of HACO-OFDM modulation system |
CN113542179A (en) * | 2021-06-23 | 2021-10-22 | 南京信息工程大学 | Mixed light OFDM method based on time domain preprocessing |
-
2022
- 2022-07-01 CN CN202210773144.5A patent/CN115173953B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080123767A1 (en) * | 2006-11-28 | 2008-05-29 | Samsung Electro-Mechanics Co., Ltd. | Ofdm receiver using time-domain and frequency-domain equalizing and time domain equalizer |
US20100226464A1 (en) * | 2009-03-03 | 2010-09-09 | Shenzhen Huawei Communicati Technologies Co., Ltd. | Method and apparatus for eliminating frequency-domain interference signals |
WO2011082713A2 (en) * | 2010-01-05 | 2011-07-14 | Hany Abdelmonem Mohamed Elgala | Nonlinearity compensation in optical communication systems via iterative signal clipping and a multiple led transmitter |
WO2015172565A1 (en) * | 2014-05-15 | 2015-11-19 | 东南大学 | Low peak-to-average ratio wireless optical transmission method by means of clipping migration |
CN104618296A (en) * | 2015-02-09 | 2015-05-13 | 东南大学 | Symbol detecting method of PAM (pulse-amplitude modulation)-DMT (discrete multi-tone modulation) system |
WO2017185665A1 (en) * | 2016-04-28 | 2017-11-02 | 清华大学 | Dimming control-oriented visible light communication method and device |
CN106330310A (en) * | 2016-08-29 | 2017-01-11 | 东南大学 | An Optical OFDM Method for Simultaneous Transmission of Three Signals |
CN108833324A (en) * | 2018-06-08 | 2018-11-16 | 天津大学 | A HACO-OFDM system receiving method based on time-domain clipping noise elimination |
CN110212981A (en) * | 2019-05-30 | 2019-09-06 | 江南大学 | A kind of visible light communication transmission method mixing single carrier and multi-carrier modulation |
WO2021004773A1 (en) * | 2019-07-11 | 2021-01-14 | Signify Holding B.V. | A modulator for generating an orthogonal frequency division multiplexing, ofdm, signal |
WO2021004989A1 (en) * | 2019-07-11 | 2021-01-14 | Signify Holding B.V. | A modulator for generating an asymmetrically clipped optical, aco, orthogonal frequency division multiplexing, ofdm, signal as well as a corresponding demodulator |
US20220263699A1 (en) * | 2019-07-11 | 2022-08-18 | Signify Holding B.V. | A modulator for generating an orthogonal frequency division multiplexing, ofdm, signal |
CN111525956A (en) * | 2020-04-29 | 2020-08-11 | 江南大学 | An interference-free HACO-OFDM modulation method based on IM-DD in a wireless optical communication system |
CN113328964A (en) * | 2021-04-25 | 2021-08-31 | 南京信息工程大学 | VOOK-fused dimmable orthogonal hybrid ACO-OFDM method |
CN113422646A (en) * | 2021-05-31 | 2021-09-21 | 东北师范大学 | Zero value regression algorithm and device of HACO-OFDM modulation system |
CN113542179A (en) * | 2021-06-23 | 2021-10-22 | 南京信息工程大学 | Mixed light OFDM method based on time domain preprocessing |
Non-Patent Citations (5)
Title |
---|
周颖;李宝龙;李正权;: "融合VOOK的混合ACO-OFDM可见光通信技术研究", 光电子・激光, no. 05 * |
李超;静永健;: "基于DCO-OFDM与PAM-DMT的混合传输系统性能研究", 电视技术, no. 04, 17 April 2016 (2016-04-17) * |
路明丽;于宏毅;仵国锋;: "可见光通信单极性非对称限幅光OFDM技术研究", 光电子・激光, no. 09 * |
马春波, 童俊杰, 敖珺: "DCO-OFDM系统TFI-SLM峰均比抑制算法", 光通信技术, no. 08 * |
鲍晶晶;董华锋;: "可见光通信中的OFDM技术的改进与仿真", 现代电子技术, no. 16 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115834317A (en) * | 2022-11-24 | 2023-03-21 | 南京信息工程大学 | An Enhanced Distortion Cancellation Hybrid O-OFDM Transmission Method |
CN115834317B (en) * | 2022-11-24 | 2023-08-15 | 南京信息工程大学 | An Enhanced Distortion Cancellation Hybrid O-OFDM Transmission Method |
Also Published As
Publication number | Publication date |
---|---|
CN115173953B (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101232488B (en) | Communication method capable of reducing peak average power ratio of OFDM system | |
CN101222468B (en) | Method and device for peak-to-average ratio suppression in multi-carrier OFDM system | |
CN103457661B (en) | A kind of LED array visible light communication system and communication means thereof | |
CN102891824B (en) | Based on the noise diffusion suppressing method of radio frequency pilot tone in high-speed light DFT-S OFDM modulation system | |
CN112511238B (en) | Adaptive bias layered optical OFDM method based on IM/DD | |
CN1159911C (en) | Time Domain Synchronous Orthogonal Frequency Division Multiplexing Modulation Method with Low Peak-to-Average Power Ratio | |
CN102932289A (en) | Cyclic shifting-based method for estimating shifting number and channel response in orthogonal frequency division multiplexing (OFDM) system | |
CN108833324A (en) | A HACO-OFDM system receiving method based on time-domain clipping noise elimination | |
CN111865432A (en) | A Blind Phase Noise Compensation Method in CO-FBMC/OQAM System | |
CN103281265A (en) | Pilot sequence structure in MIMO-OFDM/OQAM (Multi-input Multi-output-Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation) system and channel estimation method | |
CN110661576A (en) | Adaptive bias OFDM modulation method based on IM-DD in wireless optical communication system | |
Zhou et al. | Non-orthogonal discrete multi-tone: toward higher spectral efficiency for optical networks | |
CN110149295A (en) | A method of companding transform United Technologies are spread and normalized based on DFT reduces P-OFDM system PAPR | |
CN107317784B (en) | Multi-band parallel filtering mixed carrier transmission method | |
CN115173953B (en) | A method to improve the performance of hybrid HACO-OFDM using predistortion technology | |
Hujijo et al. | Enhancing spectral efficiency with low complexity filtered‐orthogonal frequency division multiplexing in visible light communication system | |
CN111711593B (en) | OFDM/OQAM-based modulation method for visible light communication system | |
CN114726439A (en) | A single-carrier and multi-carrier modulation method for visible light communication based on KK relationship | |
CN102497351A (en) | Constant-envelop light OFDM-MSK (orthogonal frequency division multiplexing-minimum shift keying) modulation method | |
CN112039815B (en) | Interference elimination method applied to filter bank multi-carrier system and application thereof | |
CN117498935A (en) | Adaptive offset VLC-OFDM system and control method thereof | |
CN106027146A (en) | Optimization method for DCO-OFDM DC bias and subcarrier power | |
US11057261B2 (en) | Systems and methods for transmitting data via an electrical cable | |
CN110071889B (en) | A peak-to-average ratio suppression method suitable for multi-channel OFDM systems | |
CN113938207A (en) | Signal Processing Method Applied to Optical Non-Hermitian Symmetric OFDM Receiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |