CN115169544A - A short-term photovoltaic power generation power prediction method and system - Google Patents

A short-term photovoltaic power generation power prediction method and system Download PDF

Info

Publication number
CN115169544A
CN115169544A CN202211075827.XA CN202211075827A CN115169544A CN 115169544 A CN115169544 A CN 115169544A CN 202211075827 A CN202211075827 A CN 202211075827A CN 115169544 A CN115169544 A CN 115169544A
Authority
CN
China
Prior art keywords
domain
gru
data
photovoltaic power
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211075827.XA
Other languages
Chinese (zh)
Inventor
殷豪
张铮
孟安波
梁濡铎
陈黍
许炫淙
王陈恩
朱梓彬
冼梓康
张展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202211075827.XA priority Critical patent/CN115169544A/en
Publication of CN115169544A publication Critical patent/CN115169544A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种短期光伏发电功率预测方法及系统。首先获取目标域光伏发电站以及源域光伏发电站的特征数据,对数据进行预处理后划分出训练数据和测试数据,然后构建GRU‑DANN对抗迁移学习模型并对其进行训练,得到训练好的GRU‑DANN对抗迁移学习模型,最后将测试数据输入至训练好的GRU‑DANN对抗迁移学习模型中,得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列。本发明可从多样本光伏发电站的数据中自动提取出建立少样本光伏发电站功率预测模型所需要的特征,实现多样本光伏发电站对少样本光伏发电站的有效迁移,以提高少样本光伏发电站的功率预测精度。

Figure 202211075827

The invention discloses a short-term photovoltaic power generation power prediction method and system. First, the characteristic data of the target domain photovoltaic power station and the source domain photovoltaic power station are obtained, the data is preprocessed and divided into training data and test data, and then the GRU‑DANN adversarial transfer learning model is constructed and trained to obtain the trained GRU-DANN confrontation transfer learning model, and finally input the test data into the trained GRU-DANN confrontation transfer learning model to obtain the target power of the photovoltaic power station in the target domain, and generate the power time series corresponding to the target power according to the time series. The present invention can automatically extract the features required to establish a power prediction model of a few-sample photovoltaic power station from the data of the multi-sample photovoltaic power station, realize the effective migration of the multi-sample photovoltaic power station to the few-sample photovoltaic power station, and improve the efficiency of the few-sample photovoltaic power station. Power prediction accuracy for power plants.

Figure 202211075827

Description

一种短期光伏发电功率预测方法及系统A short-term photovoltaic power generation power prediction method and system

技术领域technical field

本发明涉及光伏发电站技术领域,尤其是涉及一种短期光伏发电功率预测方法及系统。The invention relates to the technical field of photovoltaic power stations, in particular to a short-term photovoltaic power generation power prediction method and system.

背景技术Background technique

太阳能作为一种新能源,其大规模并网给电力系统的经济、安全稳定运行带来了挑战。因此,准确的光伏发电功率预测对电力系统具有重要意义。As a new energy source, the large-scale grid connection of solar energy brings challenges to the economical, safe and stable operation of the power system. Therefore, accurate photovoltaic power generation power prediction is of great significance to the power system.

光伏发电具有随机性、间歇性和波动性的特点,光伏发电的预测模型需要大量的样本数据进行训练仿真。然而,新建光伏发电站由于原始数据匮乏的原因,导致光伏功率预测精度较低。有效地利用多数据光伏发电站来帮助少数据光伏发电站建立光伏功率预测模型,将能够进一步提升风电场功率预测的精度。迄今为止,已有的少数据光伏发电的预测方法均是利用简单的模型迁移或是参数迁移的方式来建立预测模型,这些简单的方法无法从多数据光伏发电站数据中自动提取出建立少数据光伏功率预测模型所需要的特征,容易出现负迁移的现象。Photovoltaic power generation has the characteristics of randomness, intermittency and volatility. The prediction model of photovoltaic power generation requires a large amount of sample data for training and simulation. However, due to the lack of raw data for newly built photovoltaic power stations, the prediction accuracy of photovoltaic power is low. Effective use of multi-data photovoltaic power stations to help low-data photovoltaic power stations to establish a photovoltaic power prediction model will further improve the accuracy of wind farm power prediction. So far, the existing low-data photovoltaic power generation prediction methods are all based on simple model migration or parameter migration to establish the prediction model. These simple methods cannot automatically extract from the multi-data photovoltaic power station data. The features required for photovoltaic power prediction models are prone to negative migration.

因此,如何实现多数据光伏发电站的有效迁移进而建立少数据光伏功率预测模型是一个亟需解决的问题。Therefore, how to realize the effective migration of multi-data photovoltaic power stations and then establish a small-data photovoltaic power prediction model is an urgent problem to be solved.

发明内容SUMMARY OF THE INVENTION

本发明提供了一种短期光伏发电功率预测方法及系统,以源域光伏发电站代表多样本光伏发电站、目标域光伏发电站代表少样板光伏发电站,可从多样本光伏发电站的数据中自动提取出建立少样本光伏发电站功率预测模型所需要的特征,实现多样本光伏发电站对少样本光伏发电站的有效迁移,以提高少样本光伏发电站的功率预测精度。The invention provides a short-term photovoltaic power generation power prediction method and system. The source domain photovoltaic power station represents a multi-sample photovoltaic power station, and the target domain photovoltaic power station represents a few-sample photovoltaic power station. Automatically extract the features required to establish a power prediction model of a few-sample photovoltaic power station, and realize the effective migration of a multi-sample photovoltaic power station to a few-sample photovoltaic power station, so as to improve the power prediction accuracy of the few-sample photovoltaic power station.

本发明的技术方案如下:The technical scheme of the present invention is as follows:

一种短期光伏发电功率预测方法,包括以下步骤:A short-term photovoltaic power generation power prediction method, comprising the following steps:

S1、获取目标域光伏发电站以及源域光伏发电站的特征数据,并进行数据预处理;S1. Obtain the characteristic data of the photovoltaic power station in the target domain and the photovoltaic power station in the source domain, and perform data preprocessing;

S2、将预处理后的目标域光伏发电站的特征数据划分为两部分,一部分与预处理后的源域光伏发电站的特征数据作为训练数据,另一部分作为测试数据;S2. Divide the preprocessed feature data of the target domain photovoltaic power station into two parts, one part and the preprocessed source domain photovoltaic power station feature data are used as training data, and the other part is used as test data;

S3、采用GRU特征提取器、回归预测器以及域分类器构建GRU-DANN对抗迁移学习模型,并输入训练数据对GRU-DANN对抗迁移学习模型进行训练,过程如下:S3. Use the GRU feature extractor, regression predictor and domain classifier to build a GRU-DANN adversarial transfer learning model, and input training data to train the GRU-DANN adversarial transfer learning model. The process is as follows:

S31、利用GRU特征提取器从训练数据中提取初始时间特征;S31, using the GRU feature extractor to extract initial time features from the training data;

S32、将提取的初始时间特征输入至回归预测器中,得到初始时间特征的光伏发电功率预测值,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数,当回归损失函数收敛时,将初始时间特征作为目标时间特征;S32. Input the extracted initial time feature into the regression predictor to obtain the predicted value of photovoltaic power generation of the initial time feature, and calculate the regression loss function by using the predicted value of photovoltaic power generation and the measured value of photovoltaic power generation. When the regression loss function converges, Take the initial time feature as the target time feature;

S33、将目标时间特征输入至域分类器中,通过域分类器确定目标时间特征的数据域来源,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失;S33, input the target time feature into the domain classifier, determine the data domain source of the target time feature through the domain classifier, and calculate the domain loss between the data domain source and the real domain source through the binary cross-entropy formula;

S34、根据GRU特征提取器与域分类器的对抗性域适配,不断更新GRU特征提取器及域分类器的参数,当域损失收敛时,GRU特征提取器从源域和目标域之间得到域不变特征,则GRU-DANN对抗迁移学习模型训练完成;S34. According to the adversarial domain adaptation between the GRU feature extractor and the domain classifier, the parameters of the GRU feature extractor and the domain classifier are continuously updated. When the domain loss converges, the GRU feature extractor obtains from the source domain and the target domain. Domain invariant features, the GRU-DANN adversarial transfer learning model training is completed;

S4、将测试数据输入至训练好的GRU-DANN对抗迁移学习模型中,得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列。S4. Input the test data into the trained GRU-DANN adversarial transfer learning model, obtain the target power of the photovoltaic power station in the target domain, and generate a power time series corresponding to the target power according to the time series.

本发明的基于门控循环神经网络和域对抗神经网络的短期光伏发电功率预测方法,通过门控循环神经网络(GRU)的特征提取器可以有效的提取源光伏发电站和目标光伏发电站数据中的时间特征,域对抗神经网络(DANN)能够在源域和目标域之间找到有效帮助目标域光伏发电站建立预测模型的域不变特征,本发明可以有效提高光伏发电功率的预测精度。The short-term photovoltaic power generation power prediction method based on the gated recurrent neural network and the domain confrontation neural network of the present invention can effectively extract the source photovoltaic power station and the target photovoltaic power station data through the feature extractor of the gated recurrent neural network (GRU). The domain adversarial neural network (DANN) can find the domain invariant features between the source domain and the target domain that can effectively help the target domain photovoltaic power station to establish a prediction model, and the present invention can effectively improve the prediction accuracy of photovoltaic power generation.

进一步,步骤S1中,特征数据包括功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速的数据;Further, in step S1, the characteristic data includes data of power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed;

对特征数据进行预处理的过程如下:The process of preprocessing feature data is as follows:

对功率、温度、湿度、太阳直接辐射强度、太阳散射强度以及风速数据进行min-max归一化处理,获得处理后的功率序列P、温度序列T、湿度序列H、太阳直接辐射强度序列D、太阳散射强度序列S以及风速序列W。Perform min-max normalization on the power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data to obtain the processed power sequence P, temperature sequence T, humidity sequence H, and direct solar radiation intensity sequence D, The solar scattering intensity sequence S and the wind speed sequence W.

进一步,步骤S2中,源域光伏发电站预处理后的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据全部作为训练数据,而目标域光伏发电站预处理后的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据则挑选出晴天、阴天、雨天三个不同气象日的数据作为测试数据,其余作为训练数据。Further, in step S2, the preprocessed power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data of the source domain photovoltaic power station are all used as training data, while the preprocessed power, temperature and wind speed data of the target domain photovoltaic power station are used as training data. , humidity, direct solar radiation intensity, solar scattering intensity and wind speed data, the data of three different meteorological days of sunny, cloudy and rainy days are selected as test data, and the rest are used as training data.

需要说明的是,功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速这6个参数的序列数据在某一时刻的数据形成一个数据串,即不同时刻下,可形成多个数据串,并将该多个数据串形成一个数据集,该数据集即为训练数据或测试数据集的构成形式。It should be noted that the sequence data of the six parameters of power, temperature, humidity, solar direct radiation intensity, solar scattering intensity and wind speed form a data string at a certain moment, that is, at different moments, multiple data strings can be formed. , and the multiple data strings form a data set, which is the form of training data or test data set.

进一步,步骤S3中,GRU-DANN对抗迁移学习模型的构建过程如下:Further, in step S3, the construction process of the GRU-DANN adversarial transfer learning model is as follows:

GRU-DANN对抗迁移学习模型采用GRU特征提取器,并在GRU特征提取器后面分别接入回归预测器和域分类器,其中GRU特征提取器与域分类器中间通过一个梯度反转层连接;The GRU-DANN adversarial transfer learning model uses the GRU feature extractor, and is connected to the regression predictor and the domain classifier after the GRU feature extractor, where the GRU feature extractor and the domain classifier are connected through a gradient reversal layer;

通过输入数据至GRU特征提取器得到时间特征,再将时间特征分别输入至回归预测器与域分类器,得到对应的光伏发电功率预测数据与域标签预测数据。The time features are obtained by inputting data to the GRU feature extractor, and then the time features are input to the regression predictor and the domain classifier respectively to obtain the corresponding photovoltaic power generation power prediction data and domain label prediction data.

进一步,步骤S3中,GRU特征抽取器包括两层GRU层以及激活函数Tanh,两层GRU层分别包括6个神经元和64个神经元;Further, in step S3, the GRU feature extractor includes two GRU layers and an activation function Tanh, and the two GRU layers include 6 neurons and 64 neurons respectively;

回归预测器包括三层全连接层,三层全连接层分别包括100个神经元、100个神经元和1个神经元;The regression predictor includes three fully connected layers, and the three fully connected layers include 100 neurons, 100 neurons and 1 neuron respectively;

域分类器包括两层全连接层,两层全连接层分别包括100个神经元和1个神经元。The domain classifier consists of two fully connected layers with 100 neurons and 1 neuron, respectively.

进一步,步骤S32中,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数的过程如下:Further, in step S32, the process of calculating the regression loss function through the predicted value of photovoltaic power generation and the measured value of photovoltaic power generation is as follows:

发电功率预测的回归损失定义为均方误差,即回归损失函数

Figure 251675DEST_PATH_IMAGE001
的公式如下:The regression loss of power generation prediction is defined as the mean square error, that is, the regression loss function
Figure 251675DEST_PATH_IMAGE001
The formula is as follows:

Figure 699974DEST_PATH_IMAGE002
Figure 699974DEST_PATH_IMAGE002

式中,

Figure 745290DEST_PATH_IMAGE003
表示训练数据的样本数量,
Figure 406079DEST_PATH_IMAGE004
Figure 236762DEST_PATH_IMAGE005
分别表示实测值和预测值。In the formula,
Figure 745290DEST_PATH_IMAGE003
represents the number of samples in the training data,
Figure 406079DEST_PATH_IMAGE004
and
Figure 236762DEST_PATH_IMAGE005
represent the measured and predicted values, respectively.

进一步,在步骤S33中,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失的过程如下:Further, in step S33, the process of calculating the domain loss between the data domain source and the real domain source through the binary cross-entropy formula is as follows:

域损失定义为二进制交叉熵,二进制交叉熵公式如下:Domain loss is defined as binary cross entropy, and the binary cross entropy formula is as follows:

Figure 324804DEST_PATH_IMAGE006
Figure 324804DEST_PATH_IMAGE006

式中,

Figure 857417DEST_PATH_IMAGE007
表示域损失,
Figure 321896DEST_PATH_IMAGE008
Figure 256354DEST_PATH_IMAGE009
分别表示实际域标签和预测域标签,其中,源域的域标签为0,目标域的域标签为1。In the formula,
Figure 857417DEST_PATH_IMAGE007
represents the domain loss,
Figure 321896DEST_PATH_IMAGE008
and
Figure 256354DEST_PATH_IMAGE009
represent the actual domain label and the predicted domain label, respectively, where the domain label of the source domain is 0 and the domain label of the target domain is 1.

进一步,步骤S34中,更新GRU特征提取器及域分类器的参数的过程如下:Further, in step S34, the process of updating the parameters of the GRU feature extractor and the domain classifier is as follows:

通过训练GRU特征提取器,提取出源域和目标域的特征,再将提取的特征输入到域分类器中,域分类器通过识别提取特征的域标签,区分特征来源于源域或者目标域,通过不断地训练GRU特征提取器提取源域与目标域之间的域不变特征,最终使得域分类器无法正确识别域标签,即无法区分提取的特征来自源域或目标域,此时域损失收敛, GRU特征提取器能够顺利提取出源域与目标域之间的域不变特征,则 GRU特征提取器及域分类器的参数更新完成,表示GRU-DANN对抗迁移学习模型的训练完成。By training the GRU feature extractor, the features of the source domain and the target domain are extracted, and then the extracted features are input into the domain classifier. By continuously training the GRU feature extractor to extract the domain-invariant features between the source domain and the target domain, the domain classifier cannot correctly identify the domain labels, that is, the extracted features cannot be distinguished from the source domain or the target domain. At this time, the domain loss Convergence, the GRU feature extractor can successfully extract the domain invariant features between the source domain and the target domain, then the parameter update of the GRU feature extractor and the domain classifier is completed, indicating that the training of the GRU-DANN adversarial transfer learning model is completed.

进一步,由于GRU特征提取器和域分类器在GRU-DANN对抗迁移学习模型的训练过程中对域损失的影响相反,特征提取器的目的在于使得域分类器无法区分出所提取特征的来源,即使得域损失最大化,而域分类器的目的是为准确区分出GRU特征提取器所提取特征的来源,即使得域损失最小化,这种最小-最大运算不能同时通过神经网络反向传播过程中的梯度更新直接实现,所以在GRU特征提取器和域分类器之间加入梯度反转层(GRL),梯度反转层的作用为将传入到梯度反转层的梯度乘上一个负数,使得在梯度反转层前后的网络的训练目标是相反的,梯度反转层用伪函数

Figure 515297DEST_PATH_IMAGE010
来表示,下式表示其正向和反向传播过程:Further, since the GRU feature extractor and the domain classifier have opposite effects on the domain loss during the training process of the GRU-DANN adversarial transfer learning model, the purpose of the feature extractor is to make the domain classifier unable to distinguish the source of the extracted features, even if the The domain loss is maximized, and the purpose of the domain classifier is to accurately distinguish the source of the features extracted by the GRU feature extractor, even if the domain loss is minimized, this min-max operation cannot simultaneously pass through the neural network backpropagation process. The gradient update is directly implemented, so a gradient reversal layer (GRL) is added between the GRU feature extractor and the domain classifier. The function of the gradient reversal layer is to multiply the gradient passed into the gradient reversal layer by a negative number, so that in the The training goals of the network before and after the gradient inversion layer are opposite, and the gradient inversion layer uses a pseudo function
Figure 515297DEST_PATH_IMAGE010
to express, the following formula expresses its forward and backward propagation process:

Figure 535206DEST_PATH_IMAGE011
Figure 535206DEST_PATH_IMAGE011

Figure 537797DEST_PATH_IMAGE012
Figure 537797DEST_PATH_IMAGE012

Figure 77494DEST_PATH_IMAGE013
Figure 77494DEST_PATH_IMAGE013

Figure 772917DEST_PATH_IMAGE014
Figure 772917DEST_PATH_IMAGE014

式中,

Figure 280122DEST_PATH_IMAGE015
代表单位矩阵,
Figure 86404DEST_PATH_IMAGE016
是用于实现回归损失和域损失之间权衡的超参数,
Figure 995454DEST_PATH_IMAGE017
代表当前批次数,
Figure 596200DEST_PATH_IMAGE018
代表当前迭代数,
Figure 590700DEST_PATH_IMAGE019
代表迭代总次数,
Figure 685827DEST_PATH_IMAGE020
表示源域和目标域的最小总批次数,
Figure 714962DEST_PATH_IMAGE021
为迭代进程相对值,即当前迭代次数与总迭代次数的比率,
Figure 752189DEST_PATH_IMAGE022
为常数10。In the formula,
Figure 280122DEST_PATH_IMAGE015
represents the identity matrix,
Figure 86404DEST_PATH_IMAGE016
are the hyperparameters used to achieve the trade-off between regression loss and domain loss,
Figure 995454DEST_PATH_IMAGE017
represents the current batch number,
Figure 596200DEST_PATH_IMAGE018
represents the current iteration number,
Figure 590700DEST_PATH_IMAGE019
represents the total number of iterations,
Figure 685827DEST_PATH_IMAGE020
represents the minimum total number of batches for the source and target domains,
Figure 714962DEST_PATH_IMAGE021
is the relative value of the iteration process, that is, the ratio of the current number of iterations to the total number of iterations,
Figure 752189DEST_PATH_IMAGE022
is the constant 10.

本发明还提供一种短期光伏发电功率预测系统,包括分别与控制中心通信连接的数据处理模块、构建模型模块、输出模块;The invention also provides a short-term photovoltaic power generation power prediction system, which includes a data processing module, a model building module and an output module respectively connected to the control center in communication;

所述数据处理模块用于获取目标域光伏发电站以及源域光伏发电站的特征数据,并进行数据预处理,然后将预处理后的目标域光伏发电站的特征数据划分为两部分,一部分与预处理后的源域光伏发电站的特征数据作为训练数据,另一部分作为测试数据,并将训练数据和测试数据输送给所述控制中心;The data processing module is used to obtain the characteristic data of the photovoltaic power station in the target domain and the photovoltaic power station in the source domain, perform data preprocessing, and then divide the preprocessed characteristic data of the photovoltaic power station in the target domain into two parts. The preprocessed feature data of the source-domain photovoltaic power station is used as training data, and the other part is used as test data, and the training data and test data are sent to the control center;

所述构建模型模块采用GRU特征提取器、回归预测器以及域分类器构建GRU-DANN对抗迁移学习模型,并从所述控制中心中获取训练数据,输入训练数据对GRU-DANN对抗迁移学习模型进行训练,过程如下:The model building module uses GRU feature extractor, regression predictor and domain classifier to build a GRU-DANN adversarial transfer learning model, and obtains training data from the control center, and inputs the training data to carry out the GRU-DANN adversarial transfer learning model. The training process is as follows:

利用GRU特征提取器从训练数据中提取初始时间特征;Extract initial temporal features from training data using GRU feature extractor;

将提取的初始时间特征输入至回归预测器中,得到初始时间特征的光伏发电功率预测值,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数,当回归损失函数收敛时,将初始时间特征作为目标时间特征;Input the extracted initial time feature into the regression predictor to obtain the predicted value of photovoltaic power generation of the initial time feature, and calculate the regression loss function through the predicted value of photovoltaic power generation power and the measured value of photovoltaic power generation power. When the regression loss function converges, the initial Temporal features as target temporal features;

将目标时间特征输入至域分类器中,通过域分类器确定目标时间特征的数据域来源,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失;Input the target time feature into the domain classifier, determine the data domain source of the target time feature through the domain classifier, and calculate the domain loss between the data domain source and the real domain source through the binary cross entropy formula;

根据GRU特征提取器与域分类器的对抗性域适配,不断更新GRU特征提取器及域分类器的参数,当域损失收敛时,GRU特征提取器从源域和目标域之间得到域不变特征,则GRU-DANN对抗迁移学习模型训练完成;According to the adversarial domain adaptation between the GRU feature extractor and the domain classifier, the parameters of the GRU feature extractor and the domain classifier are continuously updated. When the domain loss converges, the GRU feature extractor obtains the domain difference between the source domain and the target domain. If the feature is changed, the GRU-DANN adversarial transfer learning model training is completed;

所述构建模型模块将训练好的GRU-DANN对抗迁移学习模型输出到所述控制中心;The model building module outputs the trained GRU-DANN adversarial transfer learning model to the control center;

所述控制中心将测试数据输入到训练好的GRU-DANN对抗迁移学习模型中,输出得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列;The control center inputs the test data into the trained GRU-DANN adversarial transfer learning model, outputs the target power of the photovoltaic power station in the target domain, and generates a power time series corresponding to the target power according to the time sequence;

所述输出模块用于将预测得到的功率时间序列进行输出显示。The output module is used for outputting and displaying the predicted power time series.

与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

(1)、本发明提出的短期光伏发电功率预测方法,首次将深度学习和对抗域自适应的方法相结合用于光伏发电功率预测中,所提出的GRU-DANN对抗迁移学习模型可以显著提高光伏发电站发电功率预测性能。(1) The short-term photovoltaic power generation power prediction method proposed by the present invention combines deep learning and adversarial domain adaptation methods for photovoltaic power generation power prediction for the first time. The proposed GRU-DANN adversarial transfer learning model can significantly improve photovoltaic power generation. Predictive power generation performance of power stations.

(2)、本发明的GRU 特征提取器用于跨源域和目标域自动提取时间特征,DANN通过GRU特征提取器和域分类器的对抗性域适配,在源域和目标域之间找到域不变特征,从而完成对GRU-DANN对抗迁移学习模型的训练。本发明实现了多样本光伏发电站数据对少样本光伏发电站数据的有效迁移,训练好的模型可以直接应用于帮助预测目标光伏发电站的发电功率,而不会因域转移而导致预测性能下降,有效提高对少样本光伏发电站的功率预测精度,对短期光伏发电功率预测具有一定的实际意义。(2) The GRU feature extractor of the present invention is used to automatically extract temporal features across the source domain and the target domain. DANN finds the domain between the source domain and the target domain through the adversarial domain adaptation of the GRU feature extractor and the domain classifier. Invariant features, thus completing the training of the GRU-DANN adversarial transfer learning model. The invention realizes the effective migration of the multi-sample photovoltaic power station data to the few-sample photovoltaic power station data, and the trained model can be directly applied to help predict the power generation of the target photovoltaic power station without causing the prediction performance to decline due to domain transfer. , which can effectively improve the power prediction accuracy of few-sample photovoltaic power stations, and has certain practical significance for short-term photovoltaic power generation power prediction.

附图说明Description of drawings

图1为本发明短期光伏发电功率预测方法的流程图。FIG. 1 is a flow chart of the short-term photovoltaic power generation power prediction method of the present invention.

图2为本发明的GRU-DANN对抗迁移学习模型的框架图。FIG. 2 is a frame diagram of the GRU-DANN adversarial transfer learning model of the present invention.

图3为本发明短期光伏发电功率预测系统的框架图。FIG. 3 is a frame diagram of the short-term photovoltaic power generation power prediction system of the present invention.

图4为本发明短期光伏发电功率预测方法对晴天时的预测数据进行预测的效果图。FIG. 4 is an effect diagram of forecasting the forecast data on sunny days by the short-term photovoltaic power generation power forecasting method of the present invention.

图5为本发明短期光伏发电功率预测方法对阴天时的预测数据进行预测的效果图。FIG. 5 is an effect diagram of forecasting the forecast data in cloudy days by the short-term photovoltaic power generation power forecasting method of the present invention.

图6为本发明短期光伏发电功率预测方法对雨天时的预测数据进行预测的效果图。FIG. 6 is an effect diagram of predicting the prediction data in rainy days by the short-term photovoltaic power generation power prediction method of the present invention.

具体实施方式Detailed ways

附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。The accompanying drawings are for illustrative purposes only, and should not be construed as limitations on this patent; in order to better illustrate the present embodiment, some parts of the accompanying drawings may be omitted, enlarged or reduced, and do not represent the size of the actual product; for those skilled in the art It is understandable to the artisan that certain well-known structures and descriptions thereof may be omitted from the drawings. The positional relationships described in the drawings are only for exemplary illustration, and should not be construed as a limitation on the present patent.

实施例1:Example 1:

如图1和图2所示,本实施例提供一种短期光伏发电功率预测方法,包括以下步骤:As shown in FIG. 1 and FIG. 2 , this embodiment provides a short-term photovoltaic power generation power prediction method, which includes the following steps:

S1、获取目标域光伏发电站以及源域光伏发电站的特征数据,并进行数据预处理;S1. Obtain the characteristic data of the photovoltaic power station in the target domain and the photovoltaic power station in the source domain, and perform data preprocessing;

S2、将预处理后的目标域光伏发电站的特征数据划分为两部分,一部分与预处理后的源域光伏发电站的特征数据作为训练数据,另一部分作为测试数据;S2. Divide the preprocessed feature data of the target domain photovoltaic power station into two parts, one part and the preprocessed source domain photovoltaic power station feature data are used as training data, and the other part is used as test data;

S3、采用GRU特征提取器、回归预测器以及域分类器构建GRU-DANN对抗迁移学习模型,并输入训练数据对GRU-DANN对抗迁移学习模型进行训练,过程如下:S3. Use the GRU feature extractor, regression predictor and domain classifier to build a GRU-DANN adversarial transfer learning model, and input training data to train the GRU-DANN adversarial transfer learning model. The process is as follows:

S31、利用GRU特征提取器从训练数据中提取初始时间特征;S31, using the GRU feature extractor to extract initial time features from the training data;

S32、将提取的初始时间特征输入至回归预测器中,得到初始时间特征的光伏发电功率预测值,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数,当回归损失函数收敛时,将初始时间特征作为目标时间特征;S32. Input the extracted initial time feature into the regression predictor to obtain the predicted value of photovoltaic power generation of the initial time feature, and calculate the regression loss function by using the predicted value of photovoltaic power generation and the measured value of photovoltaic power generation. When the regression loss function converges, Take the initial time feature as the target time feature;

S33、将目标时间特征输入至域分类器中,通过域分类器确定目标时间特征的数据域来源,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失;S33, input the target time feature into the domain classifier, determine the data domain source of the target time feature through the domain classifier, and calculate the domain loss between the data domain source and the real domain source through the binary cross-entropy formula;

S34、根据GRU特征提取器与域分类器的对抗性域适配,不断更新GRU特征提取器及域分类器的参数,当域损失收敛时,GRU特征提取器从源域和目标域之间得到域不变特征,则GRU-DANN对抗迁移学习模型训练完成;S34. According to the adversarial domain adaptation between the GRU feature extractor and the domain classifier, the parameters of the GRU feature extractor and the domain classifier are continuously updated. When the domain loss converges, the GRU feature extractor obtains from the source domain and the target domain. Domain invariant features, the GRU-DANN adversarial transfer learning model training is completed;

S4、将测试数据输入至训练好的GRU-DANN对抗迁移学习模型中,得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列。S4. Input the test data into the trained GRU-DANN adversarial transfer learning model, obtain the target power of the photovoltaic power station in the target domain, and generate a power time series corresponding to the target power according to the time series.

本发明的基于门控循环神经网络和域对抗神经网络的短期光伏发电功率预测方法,通过门控循环神经网络(GRU)的特征提取器可以有效的提取源光伏发电站和目标光伏发电站数据中的时间特征,域对抗神经网络(DANN)能够在源域和目标域之间找到有效帮助目标域光伏发电站建立预测模型的域不变特征,本发明可以有效提高光伏发电功率的预测精度。The short-term photovoltaic power generation power prediction method based on the gated recurrent neural network and the domain confrontation neural network of the present invention can effectively extract the source photovoltaic power station and the target photovoltaic power station data through the feature extractor of the gated recurrent neural network (GRU). The domain adversarial neural network (DANN) can find the domain invariant features between the source domain and the target domain that can effectively help the target domain photovoltaic power station to establish a prediction model, and the present invention can effectively improve the prediction accuracy of photovoltaic power generation.

在本实施例的步骤S1中,特征数据包括功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速的数据;In step S1 of this embodiment, the characteristic data includes data of power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed;

对特征数据进行预处理的过程如下:The process of preprocessing feature data is as follows:

对功率、温度、湿度、太阳直接辐射强度、太阳散射强度以及风速数据进行min-max归一化处理,获得处理后的功率序列P、温度序列T、湿度序列H、太阳直接辐射强度序列D、太阳散射强度序列S以及风速序列W。Perform min-max normalization on the power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data to obtain the processed power sequence P, temperature sequence T, humidity sequence H, and direct solar radiation intensity sequence D, The solar scattering intensity sequence S and the wind speed sequence W.

在本实施例的步骤S2中,源域光伏发电站预处理后的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据全部作为训练数据,而目标域光伏发电站预处理后的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据则挑选出晴天、阴天、雨天三个不同气象日的数据作为测试数据,其余作为训练数据。In step S2 of this embodiment, the power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data preprocessed by the photovoltaic power station in the source domain are all used as training data, while the preprocessed data from the photovoltaic power station in the target domain are all used as training data. For power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data, the data of three different meteorological days of sunny, cloudy and rainy days are selected as test data, and the rest are used as training data.

需要说明的是,功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速这6个参数的序列数据在某一时刻的数据形成一个数据串,即不同时刻下,可形成多个数据串,并将该多个数据串形成一个数据集,该数据集即为训练数据或测试数据集的构成形式。It should be noted that the sequence data of the six parameters of power, temperature, humidity, solar direct radiation intensity, solar scattering intensity and wind speed form a data string at a certain moment, that is, at different moments, multiple data strings can be formed. , and the multiple data strings form a data set, which is the form of training data or test data set.

其中,训练数据是用于训练GRU-DANN对抗迁移学习模型的数据,GRU-DANN对抗迁移学习模型则为由门控循环神经网络(gate recurrent unit, GRU)特征提取器、回归预测器以及域分类器三者构建的模型,其用于自动提取多数据光伏发电站与少数据光伏发电站的共同特征,帮助少数据光伏发电站预测光伏发电功率。Among them, the training data is the data used to train the GRU-DANN adversarial transfer learning model, and the GRU-DANN adversarial transfer learning model is composed of the gate recurrent unit (GRU) feature extractor, regression predictor and domain classification The model constructed by the three devices is used to automatically extract the common features of the multi-data photovoltaic power station and the less-data photovoltaic power station, and help the less-data photovoltaic power station to predict the photovoltaic power generation.

在本实施例的步骤S3中,GRU-DANN对抗迁移学习模型的构建过程如下:In step S3 of this embodiment, the construction process of the GRU-DANN adversarial transfer learning model is as follows:

GRU-DANN对抗迁移学习模型采用GRU特征提取器,并在GRU特征提取器后面分别接入回归预测器和域分类器,其中GRU特征提取器与域分类器中间通过一个梯度反转层连接;The GRU-DANN adversarial transfer learning model uses the GRU feature extractor, and is connected to the regression predictor and the domain classifier after the GRU feature extractor, where the GRU feature extractor and the domain classifier are connected through a gradient reversal layer;

通过输入数据至GRU特征提取器得到时间特征,再将时间特征分别输入至回归预测器与域分类器,得到对应的光伏发电功率预测数据与域标签预测数据。The time features are obtained by inputting data to the GRU feature extractor, and then the time features are input to the regression predictor and the domain classifier respectively to obtain the corresponding photovoltaic power generation power prediction data and domain label prediction data.

在本实施例的步骤S3中,GRU特征抽取器包括两层GRU层以及激活函数Tanh,两层GRU层分别包括6个神经元和64个神经元;In step S3 of this embodiment, the GRU feature extractor includes two GRU layers and an activation function Tanh, and the two GRU layers include 6 neurons and 64 neurons respectively;

其中激活函数Tanh的公式如下:The formula of the activation function Tanh is as follows:

Figure 968406DEST_PATH_IMAGE023
Figure 968406DEST_PATH_IMAGE023

式中,

Figure 116491DEST_PATH_IMAGE024
Figure 734554DEST_PATH_IMAGE025
为重置门和更新门,
Figure 942681DEST_PATH_IMAGE026
为隐含层的状态,
Figure 393998DEST_PATH_IMAGE027
Figure 80194DEST_PATH_IMAGE028
为输入与输出,
Figure 818343DEST_PATH_IMAGE029
为上一个输出,
Figure 197372DEST_PATH_IMAGE030
Figure 653761DEST_PATH_IMAGE031
Figure 143648DEST_PATH_IMAGE032
Figure 470724DEST_PATH_IMAGE033
Figure 771387DEST_PATH_IMAGE034
Figure 449493DEST_PATH_IMAGE035
为权重参数矩阵,
Figure 743071DEST_PATH_IMAGE036
Figure 455812DEST_PATH_IMAGE037
Figure 911064DEST_PATH_IMAGE038
为偏置参数矩阵,
Figure 76466DEST_PATH_IMAGE039
为矩阵乘法,
Figure 908156DEST_PATH_IMAGE040
为Sigmod函数;In the formula,
Figure 116491DEST_PATH_IMAGE024
and
Figure 734554DEST_PATH_IMAGE025
To reset gates and update gates,
Figure 942681DEST_PATH_IMAGE026
is the state of the hidden layer,
Figure 393998DEST_PATH_IMAGE027
and
Figure 80194DEST_PATH_IMAGE028
for input and output,
Figure 818343DEST_PATH_IMAGE029
for the previous output,
Figure 197372DEST_PATH_IMAGE030
,
Figure 653761DEST_PATH_IMAGE031
,
Figure 143648DEST_PATH_IMAGE032
,
Figure 470724DEST_PATH_IMAGE033
,
Figure 771387DEST_PATH_IMAGE034
,
Figure 449493DEST_PATH_IMAGE035
is the weight parameter matrix,
Figure 743071DEST_PATH_IMAGE036
,
Figure 455812DEST_PATH_IMAGE037
,
Figure 911064DEST_PATH_IMAGE038
is the bias parameter matrix,
Figure 76466DEST_PATH_IMAGE039
for matrix multiplication,
Figure 908156DEST_PATH_IMAGE040
is the Sigmod function;

回归预测器包括三层全连接层,三层全连接层分别包括100个神经元、100个神经元和1个神经元;The regression predictor includes three fully connected layers, and the three fully connected layers include 100 neurons, 100 neurons and 1 neuron respectively;

域分类器包括两层全连接层,两层全连接层分别包括100个神经元和1个神经元。The domain classifier consists of two fully connected layers with 100 neurons and 1 neuron, respectively.

在本实施例的步骤S31中,GRU特征提取器从训练数据中分别提取出源域和目标域的初始时间特征;初始时间特征为功率序列P、温度序列T、湿度序列H、太阳直接辐射强度序列D、散射强度序列S以及风速序列W中的隐含数据信息,隐含数据信息指的是与功率相关的信息。In step S31 of this embodiment, the GRU feature extractor extracts the initial time features of the source domain and the target domain respectively from the training data; the initial time features are the power sequence P, the temperature sequence T, the humidity sequence H, and the direct solar radiation intensity. The implicit data information in the sequence D, the scattering intensity sequence S and the wind speed sequence W, the implicit data information refers to the information related to power.

在本实施例的步骤S32中,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数的过程如下:In step S32 of this embodiment, the process of calculating the regression loss function through the predicted value of photovoltaic power generation and the measured value of photovoltaic power generation is as follows:

发电功率预测的回归损失定义为均方误差,即回归损失函数

Figure 226136DEST_PATH_IMAGE001
的公式如下:The regression loss of power generation prediction is defined as the mean square error, that is, the regression loss function
Figure 226136DEST_PATH_IMAGE001
The formula is as follows:

Figure 852289DEST_PATH_IMAGE002
Figure 852289DEST_PATH_IMAGE002

式中,

Figure 504988DEST_PATH_IMAGE003
表示训练数据的样本数量,
Figure 405947DEST_PATH_IMAGE004
Figure 562122DEST_PATH_IMAGE005
分别表示实测值和预测值。In the formula,
Figure 504988DEST_PATH_IMAGE003
represents the number of samples in the training data,
Figure 405947DEST_PATH_IMAGE004
and
Figure 562122DEST_PATH_IMAGE005
represent the measured and predicted values, respectively.

在本实施例的步骤S33中,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失的过程如下:In step S33 of the present embodiment, the process of calculating the domain loss between the data domain source and the real domain source through the binary cross-entropy formula is as follows:

域损失定义为二进制交叉熵,二进制交叉熵公式如下:Domain loss is defined as binary cross entropy, and the binary cross entropy formula is as follows:

Figure 624756DEST_PATH_IMAGE006
Figure 624756DEST_PATH_IMAGE006

式中,

Figure 515483DEST_PATH_IMAGE007
表示域损失,
Figure 954555DEST_PATH_IMAGE008
Figure 230815DEST_PATH_IMAGE009
分别表示实际域标签和预测域标签,其中,源域的域标签为0,目标域的域标签为1。In the formula,
Figure 515483DEST_PATH_IMAGE007
represents the domain loss,
Figure 954555DEST_PATH_IMAGE008
and
Figure 230815DEST_PATH_IMAGE009
represent the actual domain label and the predicted domain label, respectively, where the domain label of the source domain is 0 and the domain label of the target domain is 1.

在本实施例的步骤S34中,更新GRU特征提取器及域分类器的参数的过程如下:In step S34 of this embodiment, the process of updating the parameters of the GRU feature extractor and the domain classifier is as follows:

通过训练GRU特征提取器,提取出源域和目标域的特征,再将提取的特征输入到域分类器中,域分类器通过识别提取特征的域标签,区分特征来源于源域或者目标域,通过不断地训练GRU特征提取器提取源域与目标域之间的域不变特征,最终使得域分类器无法正确识别域标签,即无法区分提取的特征来自源域或目标域,此时域损失收敛, GRU特征提取器能够顺利提取出源域与目标域之间的域不变特征,则 GRU特征提取器及域分类器的参数更新完成,表示GRU-DANN对抗迁移学习模型的训练完成。By training the GRU feature extractor, the features of the source domain and the target domain are extracted, and then the extracted features are input into the domain classifier. By continuously training the GRU feature extractor to extract the domain-invariant features between the source domain and the target domain, the domain classifier cannot correctly identify the domain labels, that is, the extracted features cannot be distinguished from the source domain or the target domain. At this time, the domain loss Convergence, the GRU feature extractor can successfully extract the domain invariant features between the source domain and the target domain, then the parameter update of the GRU feature extractor and the domain classifier is completed, indicating that the training of the GRU-DANN adversarial transfer learning model is completed.

其中,由于GRU特征提取器和域分类器在GRU-DANN对抗迁移学习模型的训练过程中对域损失的影响相反,特征提取器的目的在于使得域分类器无法区分出所提取特征的来源,即使得域损失最大化,而域分类器的目的是为准确区分出GRU特征提取器所提取特征的来源,即使得域损失最小化,这种最小-最大运算不能同时通过神经网络反向传播过程中的梯度更新直接实现,所以在GRU特征提取器和域分类器之间加入梯度反转层(GRL),梯度反转层的作用为将传入到梯度反转层的梯度乘上一个负数,使得在梯度反转层前后的网络的训练目标是相反的,梯度反转层用伪函数

Figure 464350DEST_PATH_IMAGE010
来表示,下式表示其正向和反向传播过程:Among them, since the GRU feature extractor and the domain classifier have opposite effects on the domain loss during the training process of the GRU-DANN adversarial transfer learning model, the purpose of the feature extractor is to make the domain classifier unable to distinguish the source of the extracted features, even if the The domain loss is maximized, and the purpose of the domain classifier is to accurately distinguish the source of the features extracted by the GRU feature extractor, even if the domain loss is minimized, this min-max operation cannot simultaneously pass through the neural network backpropagation process. The gradient update is directly implemented, so a gradient reversal layer (GRL) is added between the GRU feature extractor and the domain classifier. The function of the gradient reversal layer is to multiply the gradient passed into the gradient reversal layer by a negative number, so that in the The training goals of the network before and after the gradient inversion layer are opposite, and the gradient inversion layer uses a pseudo function
Figure 464350DEST_PATH_IMAGE010
to express, the following formula expresses its forward and backward propagation process:

Figure 826062DEST_PATH_IMAGE011
Figure 826062DEST_PATH_IMAGE011

Figure 803245DEST_PATH_IMAGE012
Figure 803245DEST_PATH_IMAGE012

Figure 934012DEST_PATH_IMAGE013
Figure 934012DEST_PATH_IMAGE013

Figure 338448DEST_PATH_IMAGE014
Figure 338448DEST_PATH_IMAGE014

式中,

Figure 200838DEST_PATH_IMAGE015
代表单位矩阵,
Figure 716133DEST_PATH_IMAGE016
是用于实现回归损失和域损失之间权衡的超参数,
Figure 966985DEST_PATH_IMAGE017
代表当前批次数,
Figure 542323DEST_PATH_IMAGE018
代表当前迭代数,
Figure 878627DEST_PATH_IMAGE019
代表迭代总次数,
Figure 463192DEST_PATH_IMAGE020
表示源域和目标域的最小总批次数,
Figure 319283DEST_PATH_IMAGE021
为迭代进程相对值,即当前迭代次数与总迭代次数的比率,
Figure 65523DEST_PATH_IMAGE022
为常数10。In the formula,
Figure 200838DEST_PATH_IMAGE015
represents the identity matrix,
Figure 716133DEST_PATH_IMAGE016
are the hyperparameters used to achieve the trade-off between regression loss and domain loss,
Figure 966985DEST_PATH_IMAGE017
represents the current batch number,
Figure 542323DEST_PATH_IMAGE018
represents the current iteration number,
Figure 878627DEST_PATH_IMAGE019
represents the total number of iterations,
Figure 463192DEST_PATH_IMAGE020
represents the minimum total number of batches for the source and target domains,
Figure 319283DEST_PATH_IMAGE021
is the relative value of the iteration process, that is, the ratio of the current number of iterations to the total number of iterations,
Figure 65523DEST_PATH_IMAGE022
is the constant 10.

本发明提出的短期光伏发电功率预测方法,首次将深度学习和对抗域自适应的方法相结合用于光伏发电功率预测中,所提出的GRU-DANN对抗迁移学习模型可以显著提高光伏发电站发电功率预测性能。The short-term photovoltaic power generation power prediction method proposed by the present invention combines deep learning and adversarial domain adaptation methods for photovoltaic power generation power prediction for the first time. The proposed GRU-DANN confrontation transfer learning model can significantly improve the power generation power of photovoltaic power stations. Predictive performance.

实施例2:Example 2:

如图3所示,本实施例还提供一种短期光伏发电功率预测系统,用于实现上述实施例1中的短期光伏发电功率预测方法,系统包括分别与控制中心通信连接的数据处理模块、构建模型模块、输出模块;As shown in FIG. 3 , this embodiment also provides a short-term photovoltaic power generation power prediction system, which is used to realize the short-term photovoltaic power generation power prediction method in the above-mentioned embodiment 1. Model module, output module;

所述数据处理模块用于获取目标域光伏发电站以及源域光伏发电站的特征数据,并进行数据预处理,然后将预处理后的目标域光伏发电站的特征数据划分为两部分,一部分与预处理后的源域光伏发电站的特征数据作为训练数据,另一部分作为测试数据,并将训练数据和测试数据输送给所述控制中心;The data processing module is used to obtain the characteristic data of the photovoltaic power station in the target domain and the photovoltaic power station in the source domain, perform data preprocessing, and then divide the preprocessed characteristic data of the photovoltaic power station in the target domain into two parts. The preprocessed feature data of the source-domain photovoltaic power station is used as training data, and the other part is used as test data, and the training data and test data are sent to the control center;

所述构建模型模块采用GRU特征提取器、回归预测器以及域分类器构建GRU-DANN对抗迁移学习模型,并从所述控制中心中获取训练数据,输入训练数据对GRU-DANN对抗迁移学习模型进行训练,过程如下:The model building module uses GRU feature extractor, regression predictor and domain classifier to build a GRU-DANN adversarial transfer learning model, and obtains training data from the control center, and inputs the training data to carry out the GRU-DANN adversarial transfer learning model. The training process is as follows:

利用GRU特征提取器从训练数据中提取初始时间特征;Extract initial temporal features from training data using GRU feature extractor;

将提取的初始时间特征输入至回归预测器中,得到初始时间特征的光伏发电功率预测值,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数,当回归损失函数收敛时,将初始时间特征作为目标时间特征;Input the extracted initial time feature into the regression predictor to obtain the predicted value of photovoltaic power generation of the initial time feature, and calculate the regression loss function through the predicted value of photovoltaic power generation power and the measured value of photovoltaic power generation power. When the regression loss function converges, the initial Temporal features as target temporal features;

将目标时间特征输入至域分类器中,通过域分类器确定目标时间特征的数据域来源,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失;Input the target time feature into the domain classifier, determine the data domain source of the target time feature through the domain classifier, and calculate the domain loss between the data domain source and the real domain source through the binary cross entropy formula;

根据GRU特征提取器与域分类器的对抗性域适配,不断更新GRU特征提取器及域分类器的参数,当域损失收敛时,GRU特征提取器从源域和目标域之间得到域不变特征,则GRU-DANN对抗迁移学习模型训练完成;According to the adversarial domain adaptation between the GRU feature extractor and the domain classifier, the parameters of the GRU feature extractor and the domain classifier are continuously updated. When the domain loss converges, the GRU feature extractor obtains the domain difference between the source domain and the target domain. If the feature is changed, the GRU-DANN adversarial transfer learning model training is completed;

所述构建模型模块将训练好的GRU-DANN对抗迁移学习模型输出到所述控制中心;The model building module outputs the trained GRU-DANN adversarial transfer learning model to the control center;

所述控制中心将测试数据输入到训练好的GRU-DANN对抗迁移学习模型中,输出得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列;The control center inputs the test data into the trained GRU-DANN adversarial transfer learning model, outputs the target power of the photovoltaic power station in the target domain, and generates a power time series corresponding to the target power according to the time sequence;

所述输出模块用于将预测得到的功率时间序列进行输出显示。The output module is used for outputting and displaying the predicted power time series.

实施例3:Example 3:

本实施例以具体数据验证上述实施例1中的短期光伏发电功率预测方法的有效性,具体过程如下:This embodiment uses specific data to verify the validity of the short-term photovoltaic power generation power prediction method in the above-mentioned embodiment 1, and the specific process is as follows:

在步骤S1中,获取澳大利亚2018/01/01/0:00~2018/12/29/23:40的三个光伏发电站的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据作为源域光伏发电站的特征数据,获取同一澳大利亚时间段内的另一个光伏发电站的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据作为目标域光伏发电站的特征数据;In step S1, the power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data of the three photovoltaic power stations in Australia from 2018/01/01/0:00 to 2018/12/29/23:40 are obtained As the characteristic data of the photovoltaic power station in the source domain, obtain the power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data of another photovoltaic power station in the same Australian time period as the characteristic data of the photovoltaic power station in the target domain;

在步骤S2中,按实施例1中方式对数据进行处理,划分出训练数据和测试数据;In step S2, the data is processed according to the method in Embodiment 1, and training data and test data are divided;

在步骤S3中,按上述获取的训练数据对GRU-DANN对抗迁移学习模型进行训练,得到训练好的GRU-DANN对抗迁移学习模型;In step S3, the GRU-DANN confrontation transfer learning model is trained according to the training data obtained above, and the trained GRU-DANN confrontation transfer learning model is obtained;

在步骤S4中,将测试数据输入至训练好的GRU-DANN对抗迁移学习模型中,得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列;In step S4, the test data is input into the trained GRU-DANN adversarial transfer learning model, the target power of the photovoltaic power station in the target domain is obtained, and the power time series corresponding to the target power is generated according to the time sequence;

其中,输出的目标功率为每20分钟一个功率预测点,按照一天72个功率预测点生成72×1张量的光伏功率时间序列。Among them, the output target power is a power prediction point every 20 minutes, and a 72×1 tensor photovoltaic power time series is generated according to 72 power prediction points in a day.

如图4-图6所示,在本实施例中,分别获得输出目标域光伏发电站在晴天、阴天及雨天时的功率预测效果。可知,本发明有效提高了对少样本光伏发电站的功率预测精度。As shown in FIG. 4-FIG. 6, in this embodiment, the power prediction effects of the photovoltaic power station in the output target domain in sunny days, cloudy days and rainy days are obtained respectively. It can be seen that the present invention effectively improves the power prediction accuracy of a few-sample photovoltaic power station.

综上所述,本发明的GRU 特征提取器用于跨源域和目标域自动提取时间特征,DANN通过GRU特征提取器和域分类器的对抗性域适配,在源域和目标域之间找到域不变特征,从而完成对GRU-DANN对抗迁移学习模型的训练。To sum up, the GRU feature extractor of the present invention is used to automatically extract temporal features across the source domain and the target domain, and DANN finds between the source domain and the target domain through the adversarial domain adaptation of the GRU feature extractor and the domain classifier. Domain invariant features, thus completing the training of the GRU-DANN adversarial transfer learning model.

本发明实现了多样本光伏发电站数据对少样本光伏发电站数据的有效迁移,训练好的模型可以直接应用于帮助预测目标光伏发电站的发电功率,而不会因域转移而导致预测性能下降,有效提高对少样本光伏发电站的功率预测精度,对短期光伏发电功率预测具有一定的实际意义。The invention realizes the effective migration of the multi-sample photovoltaic power station data to the few-sample photovoltaic power station data, and the trained model can be directly applied to help predict the power generation of the target photovoltaic power station without causing the prediction performance to decline due to domain transfer. , which can effectively improve the power prediction accuracy of few-sample photovoltaic power stations, and has certain practical significance for short-term photovoltaic power generation power prediction.

显然,本发明的上述实施例仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.

Claims (10)

1.一种短期光伏发电功率预测方法,其特征在于,包括以下步骤:1. A short-term photovoltaic power generation power prediction method, comprising the following steps: S1、获取目标域光伏发电站以及源域光伏发电站的特征数据,并进行数据预处理;S1. Obtain the characteristic data of the photovoltaic power station in the target domain and the photovoltaic power station in the source domain, and perform data preprocessing; S2、将预处理后的目标域光伏发电站的特征数据划分为两部分,一部分与预处理后的源域光伏发电站的特征数据作为训练数据,另一部分作为测试数据;S2. Divide the preprocessed feature data of the target domain photovoltaic power station into two parts, one part and the preprocessed source domain photovoltaic power station feature data are used as training data, and the other part is used as test data; S3、采用GRU特征提取器、回归预测器以及域分类器构建GRU-DANN对抗迁移学习模型,并输入训练数据对GRU-DANN对抗迁移学习模型进行训练,过程如下:S3. Use the GRU feature extractor, regression predictor and domain classifier to build a GRU-DANN adversarial transfer learning model, and input training data to train the GRU-DANN adversarial transfer learning model. The process is as follows: S31、利用GRU特征提取器从训练数据中提取初始时间特征;S31, using the GRU feature extractor to extract initial time features from the training data; S32、将提取的初始时间特征输入至回归预测器中,得到初始时间特征的光伏发电功率预测值,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数,当回归损失函数收敛时,将初始时间特征作为目标时间特征;S32. Input the extracted initial time feature into the regression predictor to obtain the predicted value of photovoltaic power generation of the initial time feature, and calculate the regression loss function by using the predicted value of photovoltaic power generation and the measured value of photovoltaic power generation. When the regression loss function converges, Take the initial time feature as the target time feature; S33、将目标时间特征输入至域分类器中,通过域分类器确定目标时间特征的数据域来源,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失;S33, input the target time feature into the domain classifier, determine the data domain source of the target time feature through the domain classifier, and calculate the domain loss between the data domain source and the real domain source through the binary cross-entropy formula; S34、根据GRU特征提取器与域分类器的对抗性域适配,不断更新GRU特征提取器及域分类器的参数,当域损失收敛时,GRU特征提取器从源域和目标域之间得到域不变特征,则GRU-DANN对抗迁移学习模型训练完成;S34. According to the adversarial domain adaptation between the GRU feature extractor and the domain classifier, the parameters of the GRU feature extractor and the domain classifier are continuously updated. When the domain loss converges, the GRU feature extractor obtains from the source domain and the target domain. Domain invariant features, the GRU-DANN adversarial transfer learning model training is completed; S4、将测试数据输入至训练好的GRU-DANN对抗迁移学习模型中,得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列。S4. Input the test data into the trained GRU-DANN adversarial transfer learning model, obtain the target power of the photovoltaic power station in the target domain, and generate a power time series corresponding to the target power according to the time series. 2.根据权利要求1所述的一种短期光伏发电功率预测方法,其特征在于,步骤S1中,特征数据包括功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速的数据;2. A short-term photovoltaic power generation power prediction method according to claim 1, wherein in step S1, the characteristic data includes data of power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed; 对特征数据进行预处理的过程如下:The process of preprocessing feature data is as follows: 对功率、温度、湿度、太阳直接辐射强度、太阳散射强度以及风速数据进行min-max归一化处理,获得处理后的功率序列P、温度序列T、湿度序列H、太阳直接辐射强度序列D、太阳散射强度序列S以及风速序列W。Perform min-max normalization on the power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and wind speed data to obtain the processed power sequence P, temperature sequence T, humidity sequence H, and direct solar radiation intensity sequence D, The solar scattering intensity sequence S and the wind speed sequence W. 3.根据权利要求2所述的一种短期光伏发电功率预测方法,其特征在于,步骤S2中,源域光伏发电站预处理后的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据全部作为训练数据,而目标域光伏发电站预处理后的功率、温度、湿度、太阳直接辐射强度、太阳散射强度和风速数据则挑选出晴天、阴天、雨天三个不同气象日的数据作为测试数据,其余作为训练数据。3. A short-term photovoltaic power generation power prediction method according to claim 2, characterized in that, in step S2, the preprocessed power, temperature, humidity, direct solar radiation intensity, solar scattering intensity and The wind speed data are all used as training data, and the preprocessed power, temperature, humidity, solar direct radiation intensity, solar scattering intensity and wind speed data of the target domain photovoltaic power station are selected from three different meteorological days: sunny, cloudy and rainy days. as test data and the rest as training data. 4.根据权利要求1所述的一种短期光伏发电功率预测方法,其特征在于,步骤S3中,GRU-DANN对抗迁移学习模型的构建过程如下:4. A short-term photovoltaic power generation power prediction method according to claim 1, wherein in step S3, the construction process of the GRU-DANN confrontation transfer learning model is as follows: GRU-DANN对抗迁移学习模型采用GRU特征提取器,并在GRU特征提取器后面分别接入回归预测器和域分类器,其中GRU特征提取器与域分类器中间通过一个梯度反转层连接;The GRU-DANN adversarial transfer learning model uses the GRU feature extractor, and is connected to the regression predictor and the domain classifier after the GRU feature extractor, where the GRU feature extractor and the domain classifier are connected through a gradient reversal layer; 通过输入数据至GRU特征提取器得到时间特征,再将时间特征分别输入至回归预测器与域分类器,得到对应的光伏发电功率预测数据与域标签预测数据。The time features are obtained by inputting data to the GRU feature extractor, and then the time features are input to the regression predictor and the domain classifier respectively to obtain the corresponding photovoltaic power generation power prediction data and domain label prediction data. 5.根据权利要求1所述的一种短期光伏发电功率预测方法,其特征在于,步骤S3中,GRU特征抽取器包括两层GRU层以及激活函数Tanh,两层GRU层分别包括6个神经元和64个神经元;5. A short-term photovoltaic power generation power prediction method according to claim 1, wherein in step S3, the GRU feature extractor comprises two GRU layers and an activation function Tanh, and the two GRU layers respectively comprise 6 neurons and 64 neurons; 回归预测器包括三层全连接层,三层全连接层分别包括100个神经元、100个神经元和1个神经元;The regression predictor includes three fully connected layers, and the three fully connected layers include 100 neurons, 100 neurons and 1 neuron respectively; 域分类器包括两层全连接层,两层全连接层分别包括100个神经元和1个神经元。The domain classifier consists of two fully connected layers with 100 neurons and 1 neuron, respectively. 6.根据权利要求1所述的一种短期光伏发电功率预测方法,其特征在于,步骤S32中,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数的过程如下:6. A short-term photovoltaic power generation power prediction method according to claim 1, wherein in step S32, the process of calculating the regression loss function by the photovoltaic power generation power predicted value and the photovoltaic power generation power measured value is as follows: 发电功率预测的回归损失定义为均方误差,即回归损失函数
Figure 726589DEST_PATH_IMAGE001
的公式如下:
The regression loss of power generation prediction is defined as the mean square error, that is, the regression loss function
Figure 726589DEST_PATH_IMAGE001
The formula is as follows:
Figure 846992DEST_PATH_IMAGE002
Figure 846992DEST_PATH_IMAGE002
式中,
Figure 95571DEST_PATH_IMAGE003
表示训练数据的样本数量,
Figure 756359DEST_PATH_IMAGE004
Figure 773994DEST_PATH_IMAGE005
分别表示实测值和预测值。
In the formula,
Figure 95571DEST_PATH_IMAGE003
represents the number of samples in the training data,
Figure 756359DEST_PATH_IMAGE004
and
Figure 773994DEST_PATH_IMAGE005
represent the measured and predicted values, respectively.
7.根据权利要求1所述的一种短期光伏发电功率预测方法,其特征在于,在步骤S33中,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失的过程如下:7 . The short-term photovoltaic power generation power prediction method according to claim 1 , wherein, in step S33 , the process of calculating the domain loss between the data domain source and the real domain source through the binary cross-entropy formula is as follows: 8 . 域损失定义为二进制交叉熵,二进制交叉熵公式如下:Domain loss is defined as binary cross entropy, and the binary cross entropy formula is as follows:
Figure 862036DEST_PATH_IMAGE006
Figure 862036DEST_PATH_IMAGE006
式中,
Figure 83064DEST_PATH_IMAGE007
表示域损失,
Figure 547543DEST_PATH_IMAGE008
Figure 419684DEST_PATH_IMAGE009
分别表示实际域标签和预测域标签,其中,源域的域标签为0,目标域的域标签为1。
In the formula,
Figure 83064DEST_PATH_IMAGE007
represents the domain loss,
Figure 547543DEST_PATH_IMAGE008
and
Figure 419684DEST_PATH_IMAGE009
represent the actual domain label and the predicted domain label, respectively, where the domain label of the source domain is 0 and the domain label of the target domain is 1.
8.根据权利要求1所述的一种短期光伏发电功率预测方法,其特征在于,步骤S34中,更新GRU特征提取器及域分类器的参数的过程如下:8. The short-term photovoltaic power generation power prediction method according to claim 1, wherein in step S34, the process of updating the parameters of the GRU feature extractor and the domain classifier is as follows: 通过训练GRU特征提取器,提取出源域和目标域的特征,再将提取的特征输入到域分类器中,域分类器通过识别提取特征的域标签,区分特征来源于源域或者目标域,通过不断地训练GRU特征提取器提取源域与目标域之间的域不变特征,最终使得域分类器无法正确识别域标签,即无法区分提取的特征来自源域或目标域,此时域损失收敛, GRU特征提取器能够顺利提取出源域与目标域之间的域不变特征,则 GRU特征提取器及域分类器的参数更新完成,表示GRU-DANN对抗迁移学习模型的训练完成。By training the GRU feature extractor, the features of the source domain and the target domain are extracted, and then the extracted features are input into the domain classifier. By continuously training the GRU feature extractor to extract the domain-invariant features between the source domain and the target domain, the domain classifier cannot correctly identify the domain labels, that is, the extracted features cannot be distinguished from the source domain or the target domain. At this time, the domain loss Convergence, the GRU feature extractor can successfully extract the domain invariant features between the source domain and the target domain, then the parameter update of the GRU feature extractor and the domain classifier is completed, indicating that the training of the GRU-DANN adversarial transfer learning model is completed. 9.根据权利要求8所述的一种短期光伏发电功率预测方法,其特征在于,由于GRU特征提取器和域分类器在GRU-DANN对抗迁移学习模型的训练过程中对域损失的影响相反,特征提取器的目的在于使得域分类器无法区分出所提取特征的来源,即使得域损失最大化,而域分类器的目的是为准确区分出GRU特征提取器所提取特征的来源,即使得域损失最小化,这种最小-最大运算不能同时通过神经网络反向传播过程中的梯度更新直接实现,所以在GRU特征提取器和域分类器之间加入梯度反转层,梯度反转层的作用为将传入到梯度反转层的梯度乘上一个负数,使得在梯度反转层前后的网络的训练目标是相反的,梯度反转层用伪函数
Figure 678627DEST_PATH_IMAGE010
来表示,下式表示其正向和反向传播过程:
9. A short-term photovoltaic power generation power prediction method according to claim 8, wherein, since the GRU feature extractor and the domain classifier have opposite effects on the domain loss during the training process of the GRU-DANN adversarial transfer learning model, The purpose of the feature extractor is to make the domain classifier unable to distinguish the source of the extracted features, that is, to maximize the domain loss, while the purpose of the domain classifier is to accurately distinguish the source of the features extracted by the GRU feature extractor, that is, to obtain the domain loss. Minimization, this minimum-maximum operation cannot be directly implemented by the gradient update in the neural network backpropagation process at the same time, so a gradient inversion layer is added between the GRU feature extractor and the domain classifier. The function of the gradient inversion layer is Multiply the gradient passed to the gradient inversion layer by a negative number, so that the training goals of the network before and after the gradient inversion layer are opposite, and the gradient inversion layer uses a pseudo function
Figure 678627DEST_PATH_IMAGE010
to express, the following formula expresses its forward and backward propagation process:
Figure 636219DEST_PATH_IMAGE011
Figure 636219DEST_PATH_IMAGE011
Figure 638810DEST_PATH_IMAGE012
Figure 638810DEST_PATH_IMAGE012
Figure 365457DEST_PATH_IMAGE013
Figure 365457DEST_PATH_IMAGE013
Figure 60881DEST_PATH_IMAGE014
Figure 60881DEST_PATH_IMAGE014
式中,
Figure DEST_PATH_IMAGE015
代表单位矩阵,
Figure DEST_PATH_IMAGE016
是用于实现回归损失和域损失之间权衡的超参数,
Figure DEST_PATH_IMAGE017
代表当前批次数,
Figure DEST_PATH_IMAGE018
代表当前迭代数,
Figure DEST_PATH_IMAGE019
代表迭代总次数,
Figure DEST_PATH_IMAGE020
表示源域和目标域的最小总批次数,
Figure DEST_PATH_IMAGE021
为迭代进程相对值,即当前迭代次数与总迭代次数的比率,
Figure DEST_PATH_IMAGE022
为常数10。
In the formula,
Figure DEST_PATH_IMAGE015
represents the identity matrix,
Figure DEST_PATH_IMAGE016
are the hyperparameters used to achieve the trade-off between regression loss and domain loss,
Figure DEST_PATH_IMAGE017
represents the current batch number,
Figure DEST_PATH_IMAGE018
represents the current iteration number,
Figure DEST_PATH_IMAGE019
represents the total number of iterations,
Figure DEST_PATH_IMAGE020
represents the minimum total number of batches for the source and target domains,
Figure DEST_PATH_IMAGE021
is the relative value of the iteration process, that is, the ratio of the current number of iterations to the total number of iterations,
Figure DEST_PATH_IMAGE022
is the constant 10.
10.一种短期光伏发电功率预测系统,其特征在于,包括分别与控制中心通信连接的数据处理模块、构建模型模块、输出模块;10. A short-term photovoltaic power generation power prediction system, characterized in that it comprises a data processing module, a model building module and an output module respectively connected to a control center in communication; 所述数据处理模块用于获取目标域光伏发电站以及源域光伏发电站的特征数据,并进行数据预处理,然后将预处理后的目标域光伏发电站的特征数据划分为两部分,一部分与预处理后的源域光伏发电站的特征数据作为训练数据,另一部分作为测试数据,并将训练数据和测试数据输送给所述控制中心;The data processing module is used to obtain the characteristic data of the photovoltaic power station in the target domain and the photovoltaic power station in the source domain, perform data preprocessing, and then divide the preprocessed characteristic data of the photovoltaic power station in the target domain into two parts. The preprocessed feature data of the source-domain photovoltaic power station is used as training data, and the other part is used as test data, and the training data and test data are sent to the control center; 所述构建模型模块采用GRU特征提取器、回归预测器以及域分类器构建GRU-DANN对抗迁移学习模型,并从所述控制中心中获取训练数据,输入训练数据对GRU-DANN对抗迁移学习模型进行训练,过程如下:The model building module uses GRU feature extractor, regression predictor and domain classifier to build a GRU-DANN adversarial transfer learning model, and obtains training data from the control center, and inputs the training data to carry out the GRU-DANN adversarial transfer learning model. The training process is as follows: 利用GRU特征提取器从训练数据中提取初始时间特征;Extract initial temporal features from training data using GRU feature extractor; 将提取的初始时间特征输入至回归预测器中,得到初始时间特征的光伏发电功率预测值,通过光伏发电功率预测值以及光伏发电功率实测值计算回归损失函数,当回归损失函数收敛时,将初始时间特征作为目标时间特征;Input the extracted initial time feature into the regression predictor to obtain the predicted value of photovoltaic power generation of the initial time feature, and calculate the regression loss function through the predicted value of photovoltaic power generation power and the measured value of photovoltaic power generation power. When the regression loss function converges, the initial Temporal features as target temporal features; 将目标时间特征输入至域分类器中,通过域分类器确定目标时间特征的数据域来源,通过二进制交叉熵公式计算数据域来源与真实域来源之间的域损失;Input the target time feature into the domain classifier, determine the data domain source of the target time feature through the domain classifier, and calculate the domain loss between the data domain source and the real domain source through the binary cross entropy formula; 根据GRU特征提取器与域分类器的对抗性域适配,不断更新GRU特征提取器及域分类器的参数,当域损失收敛时,GRU特征提取器从源域和目标域之间得到域不变特征,则GRU-DANN对抗迁移学习模型训练完成;According to the adversarial domain adaptation between the GRU feature extractor and the domain classifier, the parameters of the GRU feature extractor and the domain classifier are continuously updated. When the domain loss converges, the GRU feature extractor obtains the domain difference between the source domain and the target domain. If the feature is changed, the GRU-DANN adversarial transfer learning model training is completed; 所述构建模型模块将训练好的GRU-DANN对抗迁移学习模型输出到所述控制中心;The model building module outputs the trained GRU-DANN adversarial transfer learning model to the control center; 所述控制中心将测试数据输入到训练好的GRU-DANN对抗迁移学习模型中,输出得到目标域光伏发电站的目标功率,并按照时序生成与目标功率对应的功率时间序列;The control center inputs the test data into the trained GRU-DANN adversarial transfer learning model, outputs the target power of the photovoltaic power station in the target domain, and generates a power time series corresponding to the target power according to the time sequence; 所述输出模块用于将预测得到的功率时间序列进行输出显示。The output module is used for outputting and displaying the predicted power time series.
CN202211075827.XA 2022-09-05 2022-09-05 A short-term photovoltaic power generation power prediction method and system Pending CN115169544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211075827.XA CN115169544A (en) 2022-09-05 2022-09-05 A short-term photovoltaic power generation power prediction method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211075827.XA CN115169544A (en) 2022-09-05 2022-09-05 A short-term photovoltaic power generation power prediction method and system

Publications (1)

Publication Number Publication Date
CN115169544A true CN115169544A (en) 2022-10-11

Family

ID=83481610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211075827.XA Pending CN115169544A (en) 2022-09-05 2022-09-05 A short-term photovoltaic power generation power prediction method and system

Country Status (1)

Country Link
CN (1) CN115169544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933531A (en) * 2023-01-09 2023-04-07 广东工业大学 Machine tool thermal error modeling method and system based on depth domain anti-migration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110766212A (en) * 2019-10-15 2020-02-07 哈尔滨工程大学 Ultra-short-term photovoltaic power prediction method for historical data missing electric field
CN112085108A (en) * 2020-09-11 2020-12-15 杭州华电下沙热电有限公司 Photovoltaic power station fault diagnosis algorithm based on automatic encoder and K-means clustering
CN113420492A (en) * 2021-04-30 2021-09-21 华北电力大学 Modeling method for frequency response model of wind-solar-fire coupling system based on GAN and GRU neural network
CN113902104A (en) * 2021-11-01 2022-01-07 南京工程学院 Non-invasive load monitoring method combining unsupervised domain self-adaptive strategy and attention mechanism
CN114239733A (en) * 2021-12-21 2022-03-25 华中科技大学 Machine tool response modeling method and system based on transfer learning and response prediction method
CN114692950A (en) * 2022-03-03 2022-07-01 内蒙古工业大学 Wind power prediction method
CN114970365A (en) * 2022-06-08 2022-08-30 昆明理工大学 Bearing residual life prediction model based on anti-migration learning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110766212A (en) * 2019-10-15 2020-02-07 哈尔滨工程大学 Ultra-short-term photovoltaic power prediction method for historical data missing electric field
CN112085108A (en) * 2020-09-11 2020-12-15 杭州华电下沙热电有限公司 Photovoltaic power station fault diagnosis algorithm based on automatic encoder and K-means clustering
CN113420492A (en) * 2021-04-30 2021-09-21 华北电力大学 Modeling method for frequency response model of wind-solar-fire coupling system based on GAN and GRU neural network
CN113902104A (en) * 2021-11-01 2022-01-07 南京工程学院 Non-invasive load monitoring method combining unsupervised domain self-adaptive strategy and attention mechanism
CN114239733A (en) * 2021-12-21 2022-03-25 华中科技大学 Machine tool response modeling method and system based on transfer learning and response prediction method
CN114692950A (en) * 2022-03-03 2022-07-01 内蒙古工业大学 Wind power prediction method
CN114970365A (en) * 2022-06-08 2022-08-30 昆明理工大学 Bearing residual life prediction model based on anti-migration learning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIN CHENG WEN 等: "Data-driven remaining useful life prediction based on domain adaptation", 《PEERJ COMPUTER SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933531A (en) * 2023-01-09 2023-04-07 广东工业大学 Machine tool thermal error modeling method and system based on depth domain anti-migration
CN115933531B (en) * 2023-01-09 2024-04-05 广东工业大学 A machine tool thermal error modeling method and system based on deep domain adversarial migration

Similar Documents

Publication Publication Date Title
CN114626512B (en) A high temperature disaster prediction method based on directed graph neural network
Wang et al. Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm
Li et al. Interpretable memristive LSTM network design for probabilistic residential load forecasting
CN110059878A (en) Based on CNN LSTM photovoltaic power generation power prediction model and its construction method
Yuan et al. Parameter extraction of solar cell models using chaotic asexual reproduction optimization
CN109711617B (en) Medium-and-long-term runoff prediction method based on BLSTM deep learning
CN109583565B (en) Flood prediction method based on attention model long-time and short-time memory network
CN112100911B (en) A Solar Radiation Prediction Method Based on Deep BILSTM
CN103106544B (en) A kind of photovoltaic generation prognoses system based on T-S Fuzzy neutral net
CN115347571B (en) Photovoltaic power generation short-term prediction method and device based on transfer learning
CN104636985A (en) Method for predicting radio disturbance of electric transmission line by using improved BP (back propagation) neural network
CN104978613A (en) Short-period forecasting method for photovoltaic output in consideration of assembly temperature
CN108985515A (en) A kind of new energy based on independent loops neural network goes out force prediction method and system
CN114462718A (en) CNN-GRU wind power prediction method based on time sliding window
CN116526473A (en) Electric heating load forecasting method based on particle swarm optimization LSTM
CN116345555A (en) A Short-Term Photovoltaic Power Forecasting Method Based on CNN-ISCA-LSTM Model
CN115169543A (en) A short-term photovoltaic power prediction method and system based on transfer learning
CN108985323A (en) A kind of short term prediction method of photovoltaic power
Wang et al. An approach for day-ahead interval forecasting of photovoltaic power: A novel DCGAN and LSTM based quantile regression modeling method
CN116930609A (en) Electric energy metering error analysis method based on ResNet-LSTM model
CN116937565A (en) Distributed photovoltaic power generation power prediction method, system, equipment and medium
CN117407802A (en) Runoff prediction method based on improved depth forest model
CN115169544A (en) A short-term photovoltaic power generation power prediction method and system
CN116894504A (en) A method for establishing a wind power cluster power ultra-short-term prediction model
CN110826810A (en) A regional rainfall prediction method combining spatial reasoning and machine learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221011