CN115160372B - 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用 - Google Patents

基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用 Download PDF

Info

Publication number
CN115160372B
CN115160372B CN202210821687.XA CN202210821687A CN115160372B CN 115160372 B CN115160372 B CN 115160372B CN 202210821687 A CN202210821687 A CN 202210821687A CN 115160372 B CN115160372 B CN 115160372B
Authority
CN
China
Prior art keywords
copper
tungsten
polymer film
film material
sulfur cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210821687.XA
Other languages
English (en)
Other versions
CN115160372A (zh
Inventor
郎建平
包淑锦
徐泽明
倪春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202210821687.XA priority Critical patent/CN115160372B/zh
Publication of CN115160372A publication Critical patent/CN115160372A/zh
Application granted granted Critical
Publication of CN115160372B publication Critical patent/CN115160372B/zh
Priority to PCT/CN2023/106898 priority patent/WO2024012473A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • C07F11/005Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用。所述簇合物化学式:[RWS3Cu2(La)]n(M)n;其中,R基团为三(3,5‑二甲基吡唑)氢合硼酸根、三(吡唑)氢合硼酸根、五甲基环戊二烯基团;所述La的结构式为
Figure DDA0003744779640000011
M为高铼酸根时,n值为4;M为三氟甲磺酸根时,n值为6。该簇合物合成工艺简单且可控,通过选择不同的亚铜盐,可选择性合成四面体型和八面体型钨/铜/硫簇合物,是一类良好的三阶非线性光学(NLO)活性物种;通过旋涂法,可制备不同层数的复合高分子薄膜;这类薄膜作为一类柔性、便携且易加工的固体材料可应用于三阶NLO方面。随着膜层数的增加,它们的三阶NLO响应逐渐增强,比其溶液提高了3~4个数量级。

Description

基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和 三阶非线性光学的应用
技术领域
本发明属于金属簇合物及其三阶非线性光学应用领域,尤其是指基于钨 /铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用。
背景技术
随着科学技术的巨大进步,特别是光信息技术的飞速发展,引发了人们对光子器件研究的浪潮(参见:F.Jedema,Nat.Mater.,2007,6,90-91.)。光子器件是实现光信息处理和光计算的关键,而三阶非线性光学(NLO)材料是研究并实现光学逻辑、光存储、光三极管和光开关等光子器件的基础,因此开发具有良好三阶NLO响应的光学材料一直是材料学家的研究热点(参见:J.M.Hales,J.Matichak,S.Barlow,S.Ohira,K.Yesudas,J.L.Brédas,J.W. Perry,S.R.Marder,Science,2010,327,1485-1488.)。在过去的十几年里,各种各样的有机/无机及杂化材料已经被设计合成并用于三阶NLO性能的研究,包括共轭的有机分子、石墨烯、碳纳米管、聚合物、金属配合物、金属纳米簇和金属-有机框架等(参见:Y.P.He,G.H.Chen,D.J.Li,Q.H.Li,L.Zhang,J.Zhang,Angew.Chem.Int.Ed.,2021,60,2920-2923.)。
钨/铜/硫簇合物也是一类具有良好发展前景的三阶NLO材料,这类化合物通常具有高度离域的dπ-pπ和高度共轭dπ-dπ体系(参见:W.H.Zhang,Z. G.Ren,J.P.Lang,Chem.Soc.Rev.,2016,45,4995-5019.)。然而,目前对于其NLO性能的研究仅限于溶液且其NLO响应大多较弱,很难实现其在非线性光学器件方面的应用。众所周知,分子材料的形态对其物理化学性质有着重要影响,固态材料能够因其结构的紧密堆积方式而表现出与分散状态的溶液不同或完全相反的性能,且固态材料易于加工,可以更好地实现材料的功能化与器件化(参见:Q.C.Peng,L.P.Yang,Y.Y.Li,Y.Zhang,T.H.Li,Y.J.Qin,Y.L.Song,H.W.Hou,K.Li,J.Phys.Chem.C,2020,124,22684-22691)。因此,开发出具有良好三阶NLO响应的固态材料对于NLO光学器件的发展具有十分重要的研究意义。
近年来,有机高分子膜因其良好的柔性、便携性和高透明度等优点引起了人们的广泛关注。将目标化合物引入到这类聚合物基底中形成均匀的固态高分子膜材料,可以有效地提高其稳定性,降低光散射程度(参考:D.J.Li, Q.H.Li,Z.R.Wang,Z.Z.Ma,Z.G.Gu,J.Zhang,J.Am.Chem.Soc.2021, 143,17162-17169.),在实用型非线性光学器件的制备与开发上表现出较大的发展潜力。然而,到目前为止,这种复合膜材料并没有表现出高度增强的 NLO性能。事实上,几乎没有薄膜实例报道的NLO响应比相应的溶液提高数千倍甚至数万倍。因此,将钨/铜/硫簇合物等NLO活性较低的材料引入到聚合物基底中,形成能够在多个数量级上显著放大NLO响应的新型复合膜具有十分重要的意义。
发明内容
为解决上述技术问题,本发明提供了一种基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用。
本发明的第一个目的在于提供一种多面体型钨/铜/硫簇合物,所述簇合物化学式:[RWS3Cu2(La)]n(M)n
其中,R基团为三(3,5-二甲基吡唑)氢合硼酸根(Tp*)、三(吡唑)氢合硼酸根(Tp)、五甲基环戊二烯(Cp*)基团;
所述La的结构式为
Figure SMS_1
M选自三氟甲磺酸根(OTf)、高铼酸根(ReO4 ),其中当M为ReO4 时,n值为4;当M为OTf时,n值为6。
在本发明的一个实施例中,所述多面体是指四面体型或八面体型。
本发明的第二个目的在于提供所述的多面体型钨/铜/硫簇合物的制备方法,其特征在于,包括以下步骤:将金属含硫合成子[Et4N][RWS3]、配体L 和亚铜盐加入混合溶剂中,搅拌反应,固液分离取滤液,经扩散剂扩散,析出所述多面体型钨/铜/硫簇合物。配体L为1,4-二(吡啶-4-基)-1,3-丁二炔。
在本发明的一个实施例中,所述扩散剂选自乙醚。
在本发明的一个实施例中,所述金属含硫合成子[Et4N][RWS3]、配体L 和亚铜盐的摩尔比为(1~1.5):(1~1.5):(2~2.5)。
在本发明的一个实施例中,所述混合溶剂由体积比为(4~5):(1~1.5)的二氯甲烷和乙腈的混合所得。
在本发明的一个实施例中,所述亚铜盐选自[Cu(CH3CN)4]ReO4、 [Cu(CH3CN)4]OTf。
本发明的第三个目的在于提供一种复合高分子薄膜材料,包括所述多面体型钨/铜/硫簇合物。
本发明的第四个目的在于提供所述的复合高分子薄膜材料的制备方法,包括以下步骤:向高分子聚合物溶液中加入多面体型钨/铜/硫簇合物溶液,混合均匀,将所得液体旋涂于基底中,并经过热处理,得到所述复合高分子薄膜材料。
在本发明的一个实施例中,所述高分子聚合物选自聚乙烯醇(PVA)、聚甲基丙烯酸甲酯、聚酰亚胺和聚丙烯醇中的一种或多种。
在本发明的一个实施例中,所述高分子聚合物溶液的浓度为 5.0×10-4~1.0×10-3mol/L。
在本发明的一个实施例中,所述多面体型钨/铜/硫簇合物溶液的浓度为 1.6×10-3~4.0×10-3mol/L。
在本发明的一个实施例中,所述复合高分子薄膜材料的层数不低于2。
本发明的第五个目的在于提供所述的复合高分子薄膜材料在制备三阶非线性光学材料中的应用。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述的四面体型和八面体型钨/铜/硫簇合物合成工艺简单且合成过程可控,通过改变不同阴离子的亚铜盐,即可选择性合成四面体型和八面体型钨/铜/硫簇合物。这类化合物的刚性结构骨架中含有较多的重金属原子中心以及高度共轭的有机连接单元,因此,它们是一类潜在的三阶非线性光学材料;基于这类多面体型钨/铜/硫簇合物的不同层数的复合高分子薄膜材料的制备方法,制备过程简单,通过常规的旋涂以及热处理操作即可获得复合高分子薄膜材料,并可用于大批量、大面积合成,其中通过增加旋涂的次数,即可得到不同负载量的2层及以上的复合高分子薄膜;制备得到的钨/ 铜/硫簇合物@聚乙烯醇复合高分子薄膜作为一类柔性、便携且易加工的固体材料可以应用于三阶NLO方面。本发明制备的复合高分子薄膜材料随着薄膜层数的增加,三阶NLO响应逐渐增强,这是由于逐渐增加的钨/铜/硫簇合物负载量所引起的,特别是旋涂了12层的复合薄膜,相比于溶液,它们的三阶NLO响应得到了四个数量级的提升,有助于实现开发性能优良的三阶非线性光学器件。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为实施例一和例二中[1](ReO4)4和[2](OTf)6的组装示意图;
图2为实施例一中[1](ReO4)4的晶体结构图;
图3为实施例二中[2](OTf)6的晶体结构图;
图4为实施例三中[1](ReO4)4和[2](OTf)6的DMF溶液在开孔测试条件下的三阶NLO响应;其中图4a为[1](ReO4)4和[2](OTf)6的DMF溶液在开孔测试条件下的Z-扫描散点图,图4b为[1](ReO4)4和[2](OTf)6的DMF溶液的三阶NLO参数(最小归一化透过率Tmin值和有效非线性吸收系数β值)柱状图;
图5为实施例四中[1](ReO4)4@PVA和[2](OTf)6@PVA复合高分子薄膜的制备过程示意图;
图6为实施例五中旋涂了不同层数的[1](ReO4)4@PVA和 [2](OTf)6@PVA复合高分子薄膜在开孔测试条件下的三阶NLO响应;其中图6a为旋涂了2层、4层、6层、8层、10层及12层的 [1](ReO4)4@PVA复合高分子薄膜在开孔测试条件下的Z-扫描散点图,图6b为旋涂了2层、4层、6层、8层、10层及12层的[2](OTf)6@PVA 复合高分子薄膜在开孔测试条件下的Z-扫描散点图,图6c为 [1](ReO4)4@PVA复合高分子薄膜的三阶NLO参数(最小归一化透过率Tmin值和有效非线性吸收系数β值)柱状图,图6d为[2](OTf)6@PVA 复合高分子薄膜的三阶NLO参数(最小归一化透过率Tmin值和有效非线性吸收系数β值)柱状图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一:四面体型钨/铜/硫簇合物[1](ReO4)4的制备
室温下将金属含硫合成子[Et4N][Tp*WS3](0.071g,0.10mmol)、亚铜盐 [Cu(CH3CN)4]ReO4(0.096g,0.20mmol)和配体L(0.020g,0.10mmol)溶解于二氯甲烷/乙腈(40mL/10mL)的混合溶剂中,用磁力搅拌器搅拌六小时。反应结束后,过滤,得到深红色滤液。将此滤液置于玻璃管中,利用扩散法将25mL乙醚覆盖到滤液上层,一周后管壁上析出黑红色长条状晶体[1](ReO4)4。收集该晶体,然后用乙醚充分洗涤,最后置于60℃恒温烘箱中干燥,产率:0.335g(83%,基于[Et4N][Tp*WS3]计算)
元素分析(%):C116H120B4Cu8N32O16Re4S12W4(M.W.=4634.91),理论值:C,30.06;H,2.61;N,9.67%;实测值:30.33;H,2.87;N, 9.51%。
红外光谱(溴化钾压片法):3446(s),2962(w),2922(w),2852(w), 2555(w),2181(w),1608(s),1544(s),1495(w),1449(m),1415(s),1384(w),1355(s),1214(s),1112(w),1065(m),1038(m),982(w),910(vs),856(m), 825(m),790(w),692(w),642(w),544(w)cm-1
电喷雾质谱(ESI-TOF MS):m/z=1294.5472({[1](ReO4)}3+理论值:1294.6398),2067.0724({[1](ReO4)2}2+理论值:2066.9229).
氢谱核磁共振谱(600MHz,CD3CN,ppm):δ8.72(d,J=6Hz,8H),8.09 (s,8H),7.75(d,J=6Hz,16H),6.31(s,4H),6.21(s,4H),5.78(s,4H),3.09(s,12H),2.79(s,12H),2.72(s,12H),2.70(s,12H),2.30(s,12H),1.88(s,12H).
组装过程如下图1所示。对该产物进行X射线单晶衍射试验,其晶体学参数见表1,四面体型钨/铜/硫簇合物[1](ReO4)4的阳离子骨架结构如图2所示。
表1.簇合物[1](ReO4)4的晶体学参数
Figure SMS_2
上述数据表明,本实施例成功得到了四面体型钨/铜/硫簇合物 [Tp*WS3Cu2(La)]4(ReO4)4,即[1](ReO4)4
实施例二:八面体型钨/铜/硫簇合物[2](OTf)6的制备
室温下将金属含硫合成子[Et4N][Tp*WS3](0.071g,0.10mmol)、亚铜盐 [Cu(CH3CN)4]OTf(0.075g,0.20mmol)和配体L(0.020g,0.10mmol)溶解于二氯甲烷/乙腈(40mL/10mL)的混合溶剂中,用磁力搅拌器搅拌六小时。反应结束后,过滤,得到深红色滤液。将此滤液置于玻璃管中,利用扩散法将25mL乙醚覆盖到滤液上层,一周后管壁上析出黑红色六边形片状晶体[2](OTf)6。收集该晶体,然后用乙醚充分洗涤,最后置于60℃恒温烘箱中干燥,产率:0.536g(78%,基于[Et4N][Tp*WS3]计算)。
组装过程如下图1所示。对[2](OTf)6进行了X-射线单晶衍射、元素分析、红外、电喷雾质谱和核磁共振谱的表征,具体结果如下。
表2.簇合物[2](OTf)6的晶体学参数
Figure SMS_3
元素分析(%):C180H180B6Cu12F18N48O18S24W6(M.W.=6345.59),理论值:C,34.07;H,2.86;N,10.59%;实测值:C,33.89;H,2.99;N, 10.44%。
红外光谱(溴化钾压片法):3439(s),2968(m),2926(m),2558(w), 2185(w),1610(s),1544(s),1496(w),1448(m),1416(s),1384(w),1354(s),1279(s),1260(s),1218(m),1159(m),1065(m),1030(s),981(w),857(m), 815(m),693(w),638(s),517(w)cm-1
电喷雾质谱(ESI-TOF MS):m/z=1119.9339({[2](OTf)}5+理论值: 1119.9840),1437.1539({[2](OTf)2}4+理论值:1437.2180).
氢谱核磁共振谱(600MHz,d6-DMSO,ppm):δ8.95(d,J=6Hz,12H), 8.54-8.40(m,24H),7.88(m,12H),6.27(s,12H),5.83(s,6H),2.65(s,54H),2.26(s,27H),1.79(d,J=12Hz,27H).
上述数据表明,本实施例成功得到了八面体型钨/铜/硫簇合物 [Tp*WS3Cu2(La)]6(OTf)6,即[2](OTf)6。八面体型钨/铜/硫簇合物 [2](OTf)6的阳离子骨架结构如图3所示。
实施例三:簇合物[1](ReO4)4和[2](OTf)6在DMF溶液中的三阶 NLO性能测试
将簇合物[1](ReO4)4和[2](OTf)6配制成浓度为1.38×10-4mol/L 的DMF溶液,分别取约150μL的溶液置于2mm宽的石英比色皿中,并将其固定在由计算机控制的平移台上,平移台沿z轴移动样品,在室温下进行Z-扫描测试。测试所采用的光源是产生532nm偏振光的倍频锁模调Q的Nd:YAG激光器,脉冲宽度为4ns,重复频率为10Hz,激光能量为9.6μj。Z-扫描测试结果如下图4a所示,这些簇合物溶液的“样品-焦点距离Z”-“归一化透过率”曲线均呈现波谷形曲线特征,表明它们具有反饱和吸收响应,但是响应较弱。[1](ReO4)4和 [2](OTf)6溶液的最小归一化透过率Tmin值分别约为0.99和0.98,有效非线性吸收系数β值分别为1.8×10-11m/W和2.4×10-11m/W(图4b)。
实施例四:[1](ReO4)4@PVA和[2](OTf)6@PVA复合高分子薄膜的制备
称取0.25g聚乙烯醇(PVA,聚合度约为1700)固体置于20mL玻璃瓶中,加入4mL去离子水,在98℃的油浴锅中加热搅拌使PVA固体变成透明且均一的PVA黏液,再将[1](ReO4)4(0.015g,0.003mmol)的DMF(2 mL)溶液逐滴加入到上述PVA溶液中,搅拌至混合均匀的红棕色黏液。用滴管吸取数滴黏液滴加在1.5cm×1.5cm的石英片上,进行旋涂。旋涂完成后,将其置于60℃的恒温烘箱中进行缓慢烘干,即可得到[1](ReO4)4@PVA 复合高分子薄膜。通过增加旋涂的次数,即可分别得到2层、4层、6层、8 层、10层及12层的[1](ReO4)4@PVA复合高分子薄膜。
[2](OTf)6@PVA复合高分子薄膜的制备方法与[1](ReO4)4@PVA复合高分子薄膜的一致。制备过程中将[1](ReO4)4(0.015g,0.003mmol)替换成 [2](OTf)6(0.020g,0.003mmol),其他条件均相同。
制备过程示意图如图5所示。
实施例五:旋涂了2层、4层、6层、8层、10层及12层的 [1](ReO4)4@PVA和[2](OTf)6@PVA复合高分子薄膜的三阶NLO性能测试
我们将薄膜样品直接固定在由计算机控制的平移台上在室温条件下进行Z-扫描测试。测试所采用的激光光源与激光能量与上述溶液样品进行Z-扫描测试的相同。Z-扫描结果如图6a所示,旋涂了2层、4层、6层的[1](ReO4)4@PVA复合高分子薄膜没有任何光学响应,而旋涂了8层、10层以及12层的[1](ReO4)4@PVA复合高分子薄膜的“样品-焦点距离Z”-“归一化透过率”曲线均呈现波谷形曲线特征,表现出反饱和吸收响应。同样地,[2](OTf)6@PVA复合薄膜样品的Z- 扫描曲线也表现出类似的现象,如图6b所示,其中,旋涂了2层和4层的[2](OTf)6@PVA复合薄膜也没有任何NLO响应,而旋涂了6层及以上的 [2](OTf)6@PVA复合薄膜表现反饱和吸收响应。随着薄膜层数的增加,最小归一化透过率Tmin值逐渐减小,有效非线性吸收系数β值增大,表明三阶NLO 响应逐渐增大(图6c和图6d)。其中旋涂了12层的[1](ReO4)4@PVA复合薄膜的β值为1.8×10-7m/W,是其溶液的10000倍;旋涂了12层的[2](OTf)6@PVA复合薄膜的β值达到2.6×10-7m/W,是其溶液的10833倍。
显然,本发明中提及的[1](ReO4)4@PVA和[2](OTf)6@PVA复合高分子薄膜是一类较为理想的三阶NLO材料,既可以极大地提高了材料的可加工性能,还为三阶NLO器件的开发打下了良好的基础。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种多面体型钨/铜/硫簇合物,其特征在于,所述簇合物化学式:[RWS3Cu2(La)]n(M)n
其中,R基团为三(3,5-二甲基吡唑)氢合硼酸根;
所述La的结构式为
Figure QLYQS_1
M选自三氟甲磺酸根、高铼酸根,其中当M为ReO4 时,n值为4;当M为OTf时,n值为6。
2.一种权利要求1所述的多面体型钨/铜/硫簇合物的制备方法,其特征在于,包括以下步骤:将金属含硫合成子[Et4N][RWS3]、配体La和亚铜盐加入混合溶剂中,搅拌反应,固液分离取滤液,经扩散剂扩散,析出所述多面体型钨/铜/硫簇合物。
3.根据权利要求2所述制备方法,其特征在于,所述金属含硫合成子[Et4N][RWS3]、配体La和亚铜盐的摩尔比为(1~1.5):(1~1.5):(2~2.5)。
4.根据权利要求2所述的制备方法,其特征在于,所述亚铜盐选自[Cu(CH3CN)4]ReO4、[Cu(CH3CN)4]OTf。
5.一种复合高分子薄膜材料,其特征在于,包括权利要求1中所述多面体型钨/铜/硫簇合物。
6.权利要求5所述的复合高分子薄膜材料的制备方法,其特征在于,包括以下步骤:向高分子聚合物溶液中加入多面体型钨/铜/硫簇合物溶液,混合均匀,将所得液体旋涂于基底中,并经过热处理,得到所述复合高分子薄膜材料。
7.根据权利要求6所述的制备方法,其特征在于,所述高分子聚合物选自聚乙烯醇、聚甲基丙烯酸甲酯、聚酰亚胺和聚丙烯醇中的一种或多种。
8.根据权利要求6所述的制备方法,其特征在于,所述高分子聚合物溶液的浓度为5.0×10−4~1.0×10−3 mol/L;所述多面体型钨/铜/硫簇合物溶液的浓度为1.6×10−3~4.0×10−3mol/L。
9.根据权利要求6所述的制备方法,其特征在于,所述复合高分子薄膜材料的层数不低于2。
10.权利要求5所述的复合高分子薄膜材料在制备三阶非线性光学材料中的应用。
CN202210821687.XA 2022-07-13 2022-07-13 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用 Active CN115160372B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210821687.XA CN115160372B (zh) 2022-07-13 2022-07-13 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用
PCT/CN2023/106898 WO2024012473A1 (zh) 2022-07-13 2023-07-12 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210821687.XA CN115160372B (zh) 2022-07-13 2022-07-13 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用

Publications (2)

Publication Number Publication Date
CN115160372A CN115160372A (zh) 2022-10-11
CN115160372B true CN115160372B (zh) 2023-07-07

Family

ID=83493026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210821687.XA Active CN115160372B (zh) 2022-07-13 2022-07-13 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用

Country Status (2)

Country Link
CN (1) CN115160372B (zh)
WO (1) WO2024012473A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160372B (zh) * 2022-07-13 2023-07-07 苏州大学 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422395C (zh) * 2006-07-17 2008-10-01 南京理工大学 五核平面正方形硫系金属簇合物功能分子晶体的制备方法
CN1888969A (zh) * 2006-07-17 2007-01-03 南京理工大学 同晶异核立方烷型金属簇合物分子功能材料的制备方法
CN101392087A (zh) * 2008-11-11 2009-03-25 南京大学 金属硫属簇合物掺杂的高聚物固体复合材料及其制法
CN105237585A (zh) * 2015-09-24 2016-01-13 盐城工学院 一种基于三唑类配体的原子簇聚合物及其制备方法
CN112679750B (zh) * 2021-01-08 2022-02-22 江南大学 一种W-S-Cu簇基金属有机框架晶体材料、制备方法及其应用
CN115160372B (zh) * 2022-07-13 2023-07-07 苏州大学 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用

Also Published As

Publication number Publication date
WO2024012473A1 (zh) 2024-01-18
CN115160372A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Li et al. Cation coordination control of anionic group alignment to maximize SHG effects in the BaMBO3F (M= Zn, Mg) series
Chi et al. Dimeric phenalenyl-based neutral radical molecular conductors
Han et al. Experimental and theoretical studies on the linear and nonlinear optical properties of lead phosphate crystals LiPbPO 4
Shen et al. Structural and functional modulation of five 4-cyanopyridinium iodoargentates built up from cubane-like Ag4I4 nodes
Blazejczyk et al. Anion-binding calixarene receptors: Synthesis, microstructure, and effect on properties of polyether electrolytes
Huang et al. Ba2 [MoO3 (OH)(IO3) 2] IO3: a promising SHG material featuring a Λ-shaped functional motif achieved by universal mono-site substitution
Selvakumar et al. Growth and characterization of a novel organometallic nonlinear optical crystal: bis (thiourea) cadmium formate
CN115160372B (zh) 基于钨/铜/硫簇合物的复合高分子薄膜材料及其制备方法和三阶非线性光学的应用
Wang et al. Heteroanionic melilite oxysulfide: a promising infrared nonlinear optical candidate with a strong second-harmonic generation response, sufficient birefringence, and wide bandgap
Xie et al. Two chiral coordination polymers: Preparation and X-ray structures of mono (4-sulfo-L-phenylalanine)(diaqua) zinc (II) and copper (II) complexes
Jiang et al. Thin-film electrochemistry of single Prussian blue nanoparticles revealed by surface plasmon resonance microscopy
Feng et al. Experimental and theoretical studies on effects of structural modification of tin nanoclusters for third-order nonlinear optical properties
CN108948365A (zh) 一种利用模板法制备二维mof衍生硫化物的方法
Sha et al. Polyoxometalates templated metal Ag–carbene frameworks anodic material for lithium-ion batteries
Jin et al. Difluoro (oxalato) borates as short-wavelength optical crystals with bifunctional [BF2C2O4] units
Geng et al. Efficient strategy for investigating the third-order nonlinear optical (NLO) properties of solid-state coordination polymers
Wu et al. Gd (NO 3)(Se 2 O 5)· 3H 2 O: a nitrate–selenite nonlinear optical material with a short ultraviolet cutoff edge
Ko et al. Sr2Nb6O13F8· 4H2O and Sr3Nb2O2F12· 2H2O: a variant of three-dimensional tungsten bronze and a polar molecular oxide fluoride
Liu et al. Highly Stable Metal–Organic Framework with Redox‐Active Naphthalene Diimide Core as Cathode Material for Aqueous Zinc‐Ion Batteries
Pal et al. Phenalenyl-based neutral radical molecular conductors: Substituent effects on solid-state structures and properties
Solntsev et al. Optical and magnetic properties of Cu-containing borates with “antizeolite” structure
Han et al. Organic–Inorganic Hybrid Compound [H2-1, 5-Diazabicyclo [3.3. 0] octane] ZnBr4 with Reverse Symmetry Breaking Shows a Switchable Dielectric Anomaly and Robust Second Harmonic Generation Effect
Li et al. Rational design of an organic–inorganic hybrid with Schiff base cations for an efficient quadratic nonlinear optical switch
Petrov et al. Ternary phase diagrams of MAI–PbI2–DMF and MAI–PbI2–DMSO systems
Mohammadi et al. Metal–organic framework-derived cobalt hydroxide microparticles as supercapacitor electrode materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant