CN115153589A - Method, system, electronic device and storage medium for recording electroencephalogram signal data - Google Patents

Method, system, electronic device and storage medium for recording electroencephalogram signal data Download PDF

Info

Publication number
CN115153589A
CN115153589A CN202210878795.0A CN202210878795A CN115153589A CN 115153589 A CN115153589 A CN 115153589A CN 202210878795 A CN202210878795 A CN 202210878795A CN 115153589 A CN115153589 A CN 115153589A
Authority
CN
China
Prior art keywords
eeg signal
eeg
recorded
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210878795.0A
Other languages
Chinese (zh)
Inventor
黄立
黄晟
周宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Zhonghua Brain Computer Integration Technology Development Co Ltd
Original Assignee
Wuhan Zhonghua Brain Computer Integration Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Zhonghua Brain Computer Integration Technology Development Co Ltd filed Critical Wuhan Zhonghua Brain Computer Integration Technology Development Co Ltd
Priority to CN202210878795.0A priority Critical patent/CN115153589A/en
Publication of CN115153589A publication Critical patent/CN115153589A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Psychiatry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Psychology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请提供了脑电信号数据记录的方法、系统、电子设备和存储介质,包括:获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;根据所述脑电信号特征对所述待记录脑电信号进行分类标记,所述分类包括:正常脑电信号、异常脑电信号;对所述正常脑电信号和/或异常脑电信号进行分类记录。使得脑电信号根据脑电波图形被划分为正常脑电信号和异常脑电信号,对不同类型的脑电信号分别记录对应的索引地址,大大缩短了脑电信号的检索时间。The present application provides a method, system, electronic device and storage medium for EEG signal data recording, including: acquiring EEG signals to be recorded in target EEG data, where the EEG signals to be recorded are EEG signals with nerve impulses ; Count the numerical value of the EEG signal to be recorded, and obtain the EEG signal feature of the target EEG data; classify and mark the EEG signal to be recorded according to the EEG signal feature, and the classification includes: normal EEG signal, abnormal EEG signal; classify and record the normal EEG signal and/or abnormal EEG signal. The EEG signals are divided into normal EEG signals and abnormal EEG signals according to the EEG patterns, and corresponding index addresses are recorded for different types of EEG signals, which greatly shortens the retrieval time of EEG signals.

Description

脑电信号数据记录的方法、系统、电子设备和存储介质EEG signal data recording method, system, electronic device and storage medium

技术领域technical field

本申请属于脑电领域,尤其涉及脑电信号数据记录的方法、系统、和电子设备和存储介质。The present application belongs to the field of electroencephalography, and in particular relates to a method, system, electronic device and storage medium for recording electroencephalographic signal data.

背景技术Background technique

目前脑电信号的记录方式主要为多导信号,多导信号的信号通道数和记录时间有限,多采用记录原始数据,记录数据量不大,因此数据分析的数据量也不大,在查找数据时多采用将数据遍历方式查找需要的数据,而不采用索引的方式查找数据。At present, the recording method of EEG signal is mainly polyconductive signal. The number of signal channels and recording time of polyconductive signal are limited. Most of the original data is recorded, and the amount of recorded data is not large, so the amount of data for data analysis is not large. Most of the time, the data traversal method is used to find the required data, and the index method is not used to find the data.

采用遍历方式查找脑电信号其查找时间受数据量的影响较大,在数据量较小时,查找时间较短,还可以接受,如果数据量增大,将导致增大查找所需数据的时间,占用大量资源。The search time of EEG signal search by traversal method is greatly affected by the amount of data. When the amount of data is small, the search time is short, which is acceptable. If the amount of data increases, it will increase the time to search for the required data. Take up a lot of resources.

发明内容SUMMARY OF THE INVENTION

本发明实施例的主要目的在于提供脑电信号数据记录的方法、系统、电子设备和存储介质,使得脑电信号根据脑电波图形被划分为正常脑电信号和异常脑电信号,对不同类型的脑电信号分别记录对应的索引地址,大大缩短了脑电信号的检索时间。The main purpose of the embodiments of the present invention is to provide a method, system, electronic device and storage medium for EEG signal data recording, so that EEG signals can be divided into normal EEG signals and abnormal EEG signals according to EEG patterns. EEG signals are recorded with corresponding index addresses, which greatly shortens the retrieval time of EEG signals.

第一方面,提供了脑电信号数据记录的方法,所述方法包括:In a first aspect, a method for recording EEG signal data is provided, the method comprising:

获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;Obtaining the EEG signal to be recorded in the target EEG data, the EEG signal to be recorded is an EEG signal with nerve impulses;

统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;Count the numerical value of the EEG signal to be recorded, and obtain the EEG signal characteristics of the target EEG data;

根据所述脑电信号特征对所述待记录脑电信号进行分类标记,所述分类包括:正常脑电信号、异常脑电信号;Classify and mark the to-be-recorded EEG signals according to the features of the EEG signals, and the classification includes: normal EEG signals and abnormal EEG signals;

对所述正常脑电信号和/或异常脑电信号进行分类记录。The normal EEG signal and/or the abnormal EEG signal are classified and recorded.

在一个可能的实现方式中,所述对所述正常脑电信号和/或异常脑电信号进行分类记录,包括:In a possible implementation manner, the classification and recording of the normal EEG signal and/or the abnormal EEG signal includes:

如果所述待记录脑电信号为正常脑电信号,则记录所述正常脑电信号的起始时刻、波峰/波谷的频率、持续时间以及索引地址;以及,If the to-be-recorded EEG signal is a normal EEG signal, record the start time, peak/trough frequency, duration, and index address of the normal EEG signal; and,

如果所述待记录脑电信号为异常脑电信号,则记录所述异常脑电信号的起始时刻、波峰或波谷的频率、持续时间以及索引地址。If the to-be-recorded EEG signal is an abnormal EEG signal, record the start time, the frequency, duration, and index address of the abnormal EEG signal.

在另一个可能的实现方式中,所述统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征,包括:In another possible implementation manner, the counting of the values of the EEG signals to be recorded, and obtaining the EEG signal characteristics of the target EEG data, include:

统计设定时间段内所述待记录脑电信号中波峰和/或波谷的数量,并获取每一个波峰和/或波谷的数值;Counting the number of peaks and/or troughs in the EEG signal to be recorded in the set time period, and obtaining the value of each peak and/or trough;

根据所述数量和数值,获取平均波峰数值和/或平均波谷数值。Based on the numbers and values, an average peak value and/or an average trough value are obtained.

在另一个可能的实现方式中,所述根据所述脑电信号特征对所述待记录脑电信号进行分类标记,包括:In another possible implementation manner, classifying and marking the to-be-recorded EEG signal according to the EEG signal feature includes:

获取待记录脑电信号的波峰数值和/或波谷数值与所述平均波峰数值和/或平均波谷数值的波峰数值差和/或波谷数值差;Obtain the peak value difference and/or the trough value difference between the peak value and/or the trough value of the EEG signal to be recorded and the average peak value and/or the average trough value;

如果所述波峰数值差和/或波谷数值差的绝对值位于阈值范围外,则所述待记录脑电信号为异常脑电信号;以及,如果所述波峰数值差和/或波谷数值差的绝对值位于阈值范围内,则所述待记录脑电信号为正常脑电信号。If the absolute value of the peak value difference and/or the trough value difference is outside the threshold range, the EEG signal to be recorded is an abnormal EEG signal; and, if the absolute value of the peak value difference and/or the trough value difference is If the value is within the threshold range, the EEG signal to be recorded is a normal EEG signal.

第二方面,提供了一种脑电信号数据记录的系统,所述系统包括:In a second aspect, a system for recording EEG signal data is provided, the system comprising:

待记录脑电信号获取模块,用于获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;a to-be-recorded EEG signal acquisition module, configured to acquire the to-be-recorded EEG signal in the target EEG data, where the to-be-recorded EEG signal is an EEG signal with nerve impulses;

脑电信号特征获取模块,用于统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;an EEG signal feature acquisition module, configured to count the value of the EEG signal to be recorded, and obtain the EEG signal feature of the target EEG data;

分类标记模块,用于对所述正常脑电信号和/或异常脑电信号进行分类记录,所述分类包括:正常脑电信号、异常脑电信号;A classification and marking module, configured to classify and record the normal EEG signal and/or the abnormal EEG signal, and the classification includes: normal EEG signal and abnormal EEG signal;

索引地址记录模块,用于对所述正常脑电信号和/或异常脑电信号分别记录对应的索引地址。The index address recording module is used to respectively record the corresponding index addresses of the normal EEG signal and/or the abnormal EEG signal.

在一个可能的实现方式中,所述对所述正常脑电信号和/或异常脑电信号进行分类记录,包括:In a possible implementation manner, the classification and recording of the normal EEG signal and/or the abnormal EEG signal includes:

如果所述待记录脑电信号为正常脑电信号,则记录所述正常脑电信号的起始时刻、波峰/波谷的频率、持续时间以及索引地址;以及,If the to-be-recorded EEG signal is a normal EEG signal, record the start time, peak/trough frequency, duration, and index address of the normal EEG signal; and,

如果所述待记录脑电信号为异常脑电信号,则记录所述异常脑电信号的起始时刻、波峰或波谷的频率、持续时间以及索引地址。If the to-be-recorded EEG signal is an abnormal EEG signal, record the start time, the frequency, duration, and index address of the abnormal EEG signal.

在另一个可能的实现方式中,所述脑电信号特征获取模块,包括:In another possible implementation, the EEG signal feature acquisition module includes:

数量和数值获取单元,用于统计所述待记录脑电信号中波峰和/或波谷的数量,并获取每一个波峰和/或波谷的数值;A quantity and value acquisition unit, used to count the number of peaks and/or troughs in the EEG signal to be recorded, and obtain the value of each peak and/or trough;

平均值获取单元,用于根据所述数量和数值,获取平均波峰数值和/或平均波谷数值。an average value obtaining unit, configured to obtain an average peak value and/or an average trough value according to the number and value.

在另一个可能的实现方式中,分类标记模块,包括:In another possible implementation, the classification and marking module includes:

数值差获取单元,用于获取待记录脑电信号的波峰数值和/或波谷数值与所述平均波峰数值和/或平均波谷数值的波峰数值差和/或波谷数值差;A numerical difference obtaining unit, used for obtaining the peak numerical value and/or the trough numerical value of the EEG signal to be recorded and the peak numerical value difference and/or the trough numerical value difference of the average peak numerical value and/or the average wave trough numerical value;

分类单元,用于如果所述波峰数值差和/或波谷数值差的绝对值大于预设的数值差阈值,则所述待记录脑电信号为异常脑电信号;以及,如果所述波峰数值差和/或波谷数值差的绝对值小于预设的数值差阈值,则所述待记录脑电信号为正常脑电信号。A classification unit, for if the absolute value of the peak value difference and/or the trough value difference is greater than a preset value difference threshold, the EEG signal to be recorded is an abnormal EEG signal; and, if the peak value difference And/or the absolute value of the trough numerical difference is smaller than the preset numerical difference threshold, the EEG signal to be recorded is a normal EEG signal.

第三方面,提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如第一方面提供的脑电信号数据记录的方法。In a third aspect, an electronic device is provided, including a memory, a processor, and a computer program stored in the memory and running on the processor. When the processor executes the program, the EEG signal data recording method provided in the first aspect is realized. method.

第四方面,提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如第一方面提供的脑电信号数据记录的方法。In a fourth aspect, a non-transitory computer-readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the method for recording EEG signal data as provided in the first aspect is provided.

附图说明Description of drawings

为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单地介绍。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments of the present application.

图1为本发明一个实施例提供的脑电信号数据记录的方法的流程图;1 is a flowchart of a method for recording EEG signal data provided by an embodiment of the present invention;

图2为本发明再一个实施例提供的脑电信号数据记录的方法的流程图;2 is a flowchart of a method for recording EEG signal data provided by yet another embodiment of the present invention;

图3为本发明另一个实施例提供的脑电信号数据记录的方法的流程图;3 is a flowchart of a method for recording EEG signal data provided by another embodiment of the present invention;

图4为本发明一个实施例提供的脑电信号数据记录的系统的结构图;4 is a structural diagram of a system for recording EEG signal data provided by an embodiment of the present invention;

图5为本发明再一个实施例提供的脑电信号数据记录的系统的结构图;5 is a structural diagram of a system for recording EEG signal data provided by yet another embodiment of the present invention;

图6为本发明另一个实施例提供的脑电信号数据记录的系统的结构图;6 is a structural diagram of a system for recording EEG signal data provided by another embodiment of the present invention;

图7为本发明一种电子设备的实体结构示意图。FIG. 7 is a schematic diagram of the physical structure of an electronic device of the present invention.

具体实现方式specific implementation

下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的模块或具有相同或类似功能的模块。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本发明的限制。The following describes in detail the embodiments of the present application, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar modules or modules having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present application, but not to be construed as limiting the present invention.

本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、模块和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、模块、组件和/或它们的组。应该理解,当我们称模块被“连接”或“耦接”到另一模块时,它可以直接连接或耦接到其他模块,或者也可以存在中间模块。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一模块和全部组合。It will be understood by those skilled in the art that the singular forms "a", "an", "the" and "the" as used herein can include the plural forms as well, unless expressly stated otherwise. It should be further understood that the word "comprising" used in the description of this application refers to the presence of the stated features, integers, steps, operations, modules and/or components, but does not preclude the presence or addition of one or more other features, Integers, steps, operations, modules, components and/or groups thereof. It will be understood that when we refer to a module as being "connected" or "coupled" to another module, it can be directly connected or coupled to the other module or intervening modules may also be present. Furthermore, "connected" or "coupled" as used herein may include wirelessly connected or wirelessly coupled. As used herein, the term "and/or" includes all or any and all combinations of one or more of the associated listed items.

为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实现方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present application clearer, the implementation manner of the present application will be further described in detail below with reference to the accompanying drawings.

下面以具体地实施例对本申请的技术方案以及本申请的技术方案如和解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。The technical solutions of the present application and the technical solutions of the present application, such as and solutions to the above-mentioned technical problems, will be described in detail below with specific examples. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. The embodiments of the present application will be described below with reference to the accompanying drawings.

如图1所示为本发明一个实施例提供的脑电信号数据记录的方法的流程图,所述方法包括:FIG. 1 is a flowchart of a method for recording EEG signal data provided by an embodiment of the present invention, and the method includes:

步骤101,获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;Step 101, acquiring the EEG signal to be recorded in the target EEG data, the EEG signal to be recorded is an EEG signal with nerve impulses;

步骤102,统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;Step 102, count the numerical value of the EEG signal to be recorded, and obtain the EEG signal feature of the target EEG data;

步骤103,根据所述脑电信号特征对所述待记录脑电信号进行分类标记,所述分类包括:正常脑电信号、异常脑电信号;Step 103 , classify and mark the to-be-recorded EEG signals according to the features of the EEG signals, and the classification includes: normal EEG signals and abnormal EEG signals;

步骤104,对所述正常脑电信号和/或异常脑电信号进行分类记录。Step 104, classify and record the normal EEG signal and/or the abnormal EEG signal.

在本发明实施例中,一段完整的脑电数据中包含多段具有短时神经冲动波形的脑电信号。在开始记录时,通过直观的视觉即可从一段完整的脑电数据中提取出具有神经冲动波形的脑电信号,将其标记为待记录脑电信号。待记录脑电信号为具有“波峰-波谷”形式的神经冲动信号,通过统计每一个波峰和波谷的数值即可获取目标脑电数据的脑电信号特征。将待记录脑电信号与脑电信号特征进行比较,根据比较的结果将待记录脑电信号分类为正常脑电信号和异常脑电信号,同时对正常脑电信号和异常脑电信号分别记录对应的索引地址,完成脑电信号的分类记录。In this embodiment of the present invention, a piece of complete EEG data includes multiple EEG signals with short-term nerve impulse waveforms. When recording starts, an EEG signal with a neural impulse waveform can be extracted from a complete piece of EEG data through intuitive vision, and marked as the EEG signal to be recorded. The EEG signal to be recorded is a nerve impulse signal in the form of "peak-valley", and the EEG signal characteristics of the target EEG data can be obtained by counting the values of each peak and trough. Compare the EEG signal to be recorded with the characteristics of the EEG signal, classify the EEG signal to be recorded into normal EEG signal and abnormal EEG signal according to the comparison result, and record the corresponding EEG signal respectively. The index address to complete the classification and recording of EEG signals.

其中,所述脑电信号特征包括:动作电位阈值、波形包络特征点、波峰数量、波谷数量、持续时间和/或功率谱密度。Wherein, the EEG signal features include: action potential threshold, waveform envelope feature points, number of peaks, number of troughs, duration and/or power spectral density.

其中,所述对所述正常脑电信号和/或异常脑电信号进行分类记录,包括:Wherein, classifying and recording the normal EEG signal and/or abnormal EEG signal includes:

如果所述待记录脑电信号为正常脑电信号,则记录所述正常脑电信号的起始时刻、波峰/波谷的频率、持续时间以及索引地址;以及,If the to-be-recorded EEG signal is a normal EEG signal, record the start time, peak/trough frequency, duration, and index address of the normal EEG signal; and,

如果所述待记录脑电信号为异常脑电信号,则记录所述异常脑电信号的起始时刻、波峰或波谷的频率、持续时间以及索引地址。If the to-be-recorded EEG signal is an abnormal EEG signal, record the start time, the frequency, duration, and index address of the abnormal EEG signal.

具体地,所述对所述正常脑电信号和/或异常脑电信号进行分类记录包括:根据所述正常脑电信号和/或异常脑电信号创建相应的记录信息,以建立索引库,其中,每条所述记录信息包括索引段、数据段和信号类型。Specifically, the classifying and recording the normal EEG signal and/or the abnormal EEG signal includes: creating corresponding record information according to the normal EEG signal and/or the abnormal EEG signal to establish an index database, wherein , each piece of record information includes an index segment, a data segment and a signal type.

其中,所述索引段包括脑电信号的索引地址,所述索引地址为脑电信号在索引库的存储位置,所述数据段包括脑电信号的动作电位阈值、波形包络特征点、波峰数量、波谷数量、持续时间和/或功率谱密度,所述信号类型包括正常脑电信号、异常脑电信号和不明确脑电信号。其中,不明确脑电信号指的是目前无法确定是异常脑电信号,还是正常脑电信号的信号。The index segment includes the index address of the EEG signal, the index address is the storage location of the EEG signal in the index library, and the data segment includes the action potential threshold of the EEG signal, the waveform envelope feature points, and the number of peaks. , the number of troughs, the duration and/or the power spectral density, the signal types include normal EEG, abnormal EEG and ambiguous EEG. Among them, the unclear EEG signal refers to the signal that cannot be determined at present whether it is an abnormal EEG signal or a normal EEG signal.

在优选的实施例中,所述数据段还包括脑电信号所对应的脑部组织位置。In a preferred embodiment, the data segment further includes the position of the brain tissue corresponding to the EEG signal.

本发明实施例,获取目标脑电数据中的待记录脑电信号,统计待记录脑电信号的数值,获取目标脑电数据的脑电信号特征,根据脑电信号特征将待记录脑电信号分类标记为正常脑电信号和/或异常脑电信号,对正常脑电信号和/或异常脑电信号分别记录对应的索引地址。使得脑电数据中的脑电信号被分类进行记录统计,减少了检索脑电信号的时间。In this embodiment of the present invention, the EEG signals to be recorded in the target EEG data are acquired, the values of the EEG signals to be recorded are counted, the EEG signal features of the target EEG data are obtained, and the EEG signals to be recorded are classified according to the EEG signal characteristics It is marked as a normal EEG signal and/or an abnormal EEG signal, and the corresponding index addresses are respectively recorded for the normal EEG signal and/or the abnormal EEG signal. The EEG signals in the EEG data are classified and recorded for statistics, which reduces the time for retrieving the EEG signals.

如图2所示为本发明再一个实施例提供的脑电信号数据记录的方法的流程图,所述统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征,包括:FIG. 2 is a flowchart of a method for recording EEG signal data provided by another embodiment of the present invention. The EEG signal characteristics of the target EEG data are obtained by counting the values of the EEG signal to be recorded. ,include:

步骤201,统计设定时间段内所述待记录脑电信号中波峰和/或波谷的数量,并获取每一个波峰和/或波谷的数值;Step 201, count the number of peaks and/or troughs in the EEG signal to be recorded in the set time period, and obtain the value of each peak and/or trough;

步骤202,根据所述数量和数值,获取平均波峰数值和/或平均波谷数值。在本发明实施例中,脑电信号特征主要包括的即是平均波峰数值和/或平均波谷数值,平均波峰数值和/或平均波谷数值在后续的流程中可作为正常脑电信号和/或异常脑电信号的判断依据。Step 202: Obtain an average peak value and/or an average trough value according to the number and value. In the embodiment of the present invention, the EEG signal features mainly include the average peak value and/or the average trough value, and the average peak value and/or the average trough value can be used as normal EEG signals and/or abnormal values in the subsequent process. EEG signal judgment basis.

如图3所示为本发明另一个实施例提供的脑电信号数据记录的方法的流程图,所述根据所述脑电信号特征对所述待记录脑电信号进行分类标记,包括:FIG. 3 is a flowchart of a method for recording EEG signal data provided by another embodiment of the present invention. The classification and marking of the EEG signal to be recorded according to the EEG signal feature includes:

步骤301,获取待记录脑电信号的波峰数值和/或波谷数值与所述平均波峰数值和/或平均波谷数值的波峰数值差和/或波谷数值差;Step 301, obtaining the peak value difference and/or the trough value difference between the peak value and/or the trough value of the EEG signal to be recorded and the average peak value and/or the average trough value;

步骤302,如果所述波峰数值差和/或波谷数值差的绝对值位于阈值范围外,则所述待记录脑电信号为异常脑电信号;以及,如果所述波峰数值差和/或波谷数值差的绝对值位于阈值范围内,则所述待记录脑电信号为正常脑电信号。Step 302, if the absolute value of the peak value difference and/or the trough value difference is outside the threshold range, then the EEG signal to be recorded is an abnormal EEG signal; And, if the peak value difference and/or the trough value difference If the absolute value of the difference is within the threshold range, the EEG signal to be recorded is a normal EEG signal.

在本发明实施例中,判断脑电信号的类型主要依据的是待记录脑电信号的波峰数值与平均波峰数值的数值差,以及波谷数值与平均波谷数值的数值差。由于待记录脑电信号的波峰和/或波谷可以大于平均波峰和/或平均波谷,也可以小于平均波峰和/或平均波谷,因此在获取了波峰数值差和/或波谷数值差之后,取该波峰数值差和/或波谷数值差的绝对值,将该绝对值与预设的数值差阈值进行比较,如果大于数值差阈值,则待记录脑电信号为正常脑电信号,如果小于数值差阈值,则待记录脑电信号为异常脑电信号。In the embodiment of the present invention, determining the type of the EEG signal is mainly based on the difference between the peak value and the average peak value of the EEG signal to be recorded, and the value difference between the trough value and the average trough value. Since the peaks and/or troughs of the EEG signals to be recorded may be larger than the average peaks and/or troughs, or may be smaller than the average peaks and/or troughs, after obtaining the peak value difference and/or the trough value difference, take the The absolute value of the peak value difference and/or the trough value difference. Compare the absolute value with the preset value difference threshold. If it is greater than the value difference threshold, the EEG signal to be recorded is a normal EEG signal. If it is smaller than the value difference threshold , the EEG signal to be recorded is abnormal EEG signal.

如图4所示为本发明一个实施例提供的脑电信号数据记录的系统的结构图,所述系统包括:FIG. 4 is a structural diagram of a system for recording EEG signal data provided by an embodiment of the present invention, where the system includes:

待记录脑电信号获取模块401,用于获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;The EEG signal acquisition module 401 to be recorded is used for acquiring the EEG signal to be recorded in the target EEG data, the EEG signal to be recorded is an EEG signal with nerve impulses;

脑电信号特征获取模块402,用于统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;An EEG signal feature acquisition module 402, configured to count the value of the EEG signal to be recorded, and obtain the EEG signal feature of the target EEG data;

分类标记模块403,用于对所述正常脑电信号和/或异常脑电信号进行分类记录,所述分类包括:正常脑电信号、异常脑电信号;The classification and marking module 403 is configured to classify and record the normal EEG signal and/or the abnormal EEG signal, and the classification includes: normal EEG signal and abnormal EEG signal;

索引地址记录模块404,用于对所述正常脑电信号和/或异常脑电信号分别记录对应的索引地址。The index address recording module 404 is configured to respectively record the corresponding index addresses for the normal EEG signal and/or the abnormal EEG signal.

在本发明实施例中,一段完整的脑电数据中包含多段具有短时神经冲动波形的脑电信号。在开始记录时,通过直观的视觉即可从一段完整的脑电数据中提取出具有神经冲动波形的脑电信号,将其标记为待记录脑电信号。待记录脑电信号为具有“波峰-波谷”形式的神经冲动信号,通过统计每一个波峰和波谷的数值即可获取目标脑电数据的脑电信号特征。将待记录脑电信号与脑电信号特征进行比较,根据比较的结果将待记录脑电信号分类为正常脑电信号和异常脑电信号,同时对正常脑电信号和异常脑电信号分别记录对应的索引地址,完成脑电信号的分类记录。In this embodiment of the present invention, a piece of complete EEG data includes multiple EEG signals with short-term nerve impulse waveforms. When recording starts, an EEG signal with a neural impulse waveform can be extracted from a complete piece of EEG data through intuitive vision, and marked as the EEG signal to be recorded. The EEG signal to be recorded is a nerve impulse signal in the form of "peak-valley", and the EEG signal characteristics of the target EEG data can be obtained by counting the values of each peak and trough. Compare the EEG signal to be recorded with the characteristics of the EEG signal, classify the EEG signal to be recorded into normal EEG signal and abnormal EEG signal according to the comparison result, and record the corresponding EEG signal respectively. The index address to complete the classification and recording of EEG signals.

其中,所述对所述正常脑电信号和/或异常脑电信号进行分类记录,包括:Wherein, classifying and recording the normal EEG signal and/or abnormal EEG signal includes:

如果所述待记录脑电信号为正常脑电信号,则记录所述正常脑电信号的起始时刻、波峰/波谷的频率、持续时间以及索引地址;以及,If the to-be-recorded EEG signal is a normal EEG signal, record the start time, peak/trough frequency, duration, and index address of the normal EEG signal; and,

如果所述待记录脑电信号为异常脑电信号,则记录所述异常脑电信号的起始时刻、波峰或波谷的频率、持续时间以及索引地址。If the to-be-recorded EEG signal is an abnormal EEG signal, record the start time, the frequency, duration, and index address of the abnormal EEG signal.

本发明实施例,获取目标脑电数据中的待记录脑电信号,统计待记录脑电信号的数值,获取目标脑电数据的脑电信号特征,根据脑电信号特征将待记录脑电信号分类标记为正常脑电信号和/或异常脑电信号,对正常脑电信号和/或异常脑电信号分别记录对应的索引地址。使得脑电数据中的脑电信号被分类进行记录统计,减少了检索脑电信号的时间。In this embodiment of the present invention, the EEG signals to be recorded in the target EEG data are acquired, the values of the EEG signals to be recorded are counted, the EEG signal features of the target EEG data are obtained, and the EEG signals to be recorded are classified according to the EEG signal characteristics It is marked as a normal EEG signal and/or an abnormal EEG signal, and the corresponding index addresses are respectively recorded for the normal EEG signal and/or the abnormal EEG signal. The EEG signals in the EEG data are classified and recorded for statistics, which reduces the time for retrieving the EEG signals.

如图5所示为本发明再一个实施例提供的脑电信号数据记录的系统的结构图,所述脑电信号特征获取模块402,包括:FIG. 5 is a structural diagram of a system for recording EEG signal data provided by another embodiment of the present invention. The EEG signal feature acquisition module 402 includes:

数量和数值获取单元501,用于统计所述待记录脑电信号中波峰和/或波谷的数量,并获取每一个波峰和/或波谷的数值;Quantity and numerical value acquisition unit 501, used to count the number of peaks and/or troughs in the EEG signal to be recorded, and obtain the numerical value of each peak and/or trough;

平均值获取单元502,用于根据所述数量和数值,获取平均波峰数值和/或平均波谷数值。The average value obtaining unit 502 is configured to obtain the average peak value and/or the average trough value according to the number and value.

在本发明实施例中,脑电信号特征主要包括的即是平均波峰数值和/或平均波谷数值,平均波峰数值和/或平均波谷数值在后续的流程中可作为正常脑电信号和/或异常脑电信号的判断依据。In the embodiment of the present invention, the EEG signal features mainly include the average peak value and/or the average trough value, and the average peak value and/or the average trough value can be used as normal EEG signals and/or abnormal values in the subsequent process. EEG signal judgment basis.

如图6所示为本发明另一个实施例提供的脑电信号数据记录的系统的结构图,所述分类标记模块403,包括:FIG. 6 is a structural diagram of a system for recording EEG signal data provided by another embodiment of the present invention. The classification and marking module 403 includes:

数值差获取单元601,用于获取待记录脑电信号的波峰数值和/或波谷数值与所述平均波峰数值和/或平均波谷数值的波峰数值差和/或波谷数值差;Numerical difference obtaining unit 601, for obtaining the peak value difference and/or the trough value of the EEG signal to be recorded and the peak value difference and/or the trough value of the average peak value and/or the average trough value;

分类单元602,用于如果所述波峰数值差和/或波谷数值差的绝对值大于预设的数值差阈值,则所述待记录脑电信号为异常脑电信号;以及,如果所述波峰数值差和/或波谷数值差的绝对值小于预设的数值差阈值,则所述待记录脑电信号为正常脑电信号。Classification unit 602, for if the absolute value of the peak value difference and/or the trough value difference is greater than a preset value difference threshold, the EEG signal to be recorded is an abnormal EEG signal; and, if the peak value If the absolute value of the difference and/or the trough numerical difference is smaller than the preset numerical difference threshold, the EEG signal to be recorded is a normal EEG signal.

在本发明实施例中,判断脑电信号的类型主要依据的是待记录脑电信号的波峰数值与平均波峰数值的数值差,以及波谷数值与平均波谷数值的数值差。由于待记录脑电信号的波峰和/或波谷可以大于平均波峰和/或平均波谷,也可以小于平均波峰和/或平均波谷,因此在获取了波峰数值差和/或波谷数值差之后,取该波峰数值差和/或波谷数值差的绝对值,将该绝对值与预设的数值差阈值进行比较,如果大于数值差阈值,则待记录脑电信号为正常脑电信号,如果小于数值差阈值,则待记录脑电信号为异常脑电信号。In the embodiment of the present invention, determining the type of the EEG signal is mainly based on the difference between the peak value and the average peak value of the EEG signal to be recorded, and the value difference between the trough value and the average trough value. Since the peaks and/or troughs of the EEG signals to be recorded may be larger than the average peaks and/or troughs, or may be smaller than the average peaks and/or troughs, after obtaining the peak value difference and/or the trough value difference, take the The absolute value of the peak value difference and/or the trough value difference. Compare the absolute value with the preset value difference threshold. If it is greater than the value difference threshold, the EEG signal to be recorded is a normal EEG signal. If it is smaller than the value difference threshold , the EEG signal to be recorded is abnormal EEG signal.

图7示例了一种电子设备的实体结构示意图,如图7所示,该电子设备可以包括:处理器(processor)701、通信接口(Communications Interface)702、存储器(memory)703和通信总线704,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信。处理器可以调用存储器中的逻辑指令,以执行脑电信号数据记录的方法,该方法包括:获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;根据所述脑电信号特征对所述待记录脑电信号进行分类标记,所述分类包括:正常脑电信号、异常脑电信号;对所述正常脑电信号和/或异常脑电信号进行分类记录。FIG. 7 illustrates a schematic diagram of the physical structure of an electronic device. As shown in FIG. 7 , the electronic device may include: a processor (processor) 701, a communication interface (Communications Interface) 702, a memory (memory) 703, and a communication bus 704, Among them, the processor, the communication interface, and the memory communicate with each other through the communication bus. The processor can call the logic instructions in the memory to perform a method for recording EEG signal data, the method comprising: acquiring EEG signals to be recorded in the target EEG data, the EEG signals to be recorded are brains with nerve impulses electrical signals; count the values of the EEG signals to be recorded, and obtain the EEG signal features of the target EEG data; classify and mark the EEG signals to be recorded according to the EEG signal features, and the classification includes : normal EEG signal, abnormal EEG signal; classify and record the normal EEG signal and/or abnormal EEG signal.

此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the above-mentioned logic instructions in the memory can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product. Based on this understanding, the technical solution of the present invention can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

另一方面,本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的脑电信号数据记录的方法,该方法包括:获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;根据所述脑电信号特征对所述待记录脑电信号进行分类标记,所述分类包括:正常脑电信号、异常脑电信号;对所述正常脑电信号和/或异常脑电信号进行分类记录。On the other hand, an embodiment of the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, when the program instructions When executed by the computer, the computer can execute the method for recording EEG signal data provided by the above method embodiments, the method includes: acquiring the EEG signal to be recorded in the target EEG data, the EEG signal to be recorded is a EEG signals of nerve impulses; count the values of the EEG signals to be recorded, and obtain EEG signal characteristics of the target EEG data; classify and mark the EEG signals to be recorded according to the EEG signal characteristics, The classification includes: normal EEG signals, abnormal EEG signals; classifying and recording the normal EEG signals and/or abnormal EEG signals.

又一方面,本发明实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的脑电信号数据记录的方法,该方法包括:获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;根据所述脑电信号特征对所述待记录脑电信号进行分类标记,所述分类包括:正常脑电信号、异常脑电信号;对所述正常脑电信号和/或异常脑电信号进行分类记录。In yet another aspect, an embodiment of the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored, and the computer program is implemented by a processor to execute the EEG signal data recording provided by the above-mentioned embodiments. The method includes: acquiring the EEG signal to be recorded in the target EEG data, the EEG signal to be recorded is an EEG signal with nerve impulses; EEG signal features of the target EEG data; classify and mark the EEG signals to be recorded according to the EEG signal features, and the classification includes: normal EEG signals and abnormal EEG signals; Signals and/or abnormal EEG signals are classified and recorded.

应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the various steps in the flowchart of the accompanying drawings are sequentially shown in the order indicated by the arrows, these steps are not necessarily executed in sequence in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order and may be performed in other orders. Moreover, at least a part of the steps in the flowchart of the accompanying drawings may include multiple sub-steps or multiple stages, and these sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and the execution sequence is also It does not have to be performed sequentially, but may be performed alternately or alternately with other steps or at least a portion of sub-steps or stages of other steps.

以上所述仅是本发明的部分实现方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only partial implementations of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (10)

1.一种脑电信号数据记录的方法,其特征在于,所述方法包括:1. a method for EEG data recording, characterized in that the method comprises: 获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;Obtaining the EEG signal to be recorded in the target EEG data, the EEG signal to be recorded is an EEG signal with nerve impulses; 获取所述目标脑电数据的脑电信号特征;obtaining the EEG signal characteristics of the target EEG data; 根据所述脑电信号特征对所述待记录脑电信号进行分类标记,所述分类包括:正常脑电信号、异常脑电信号;Classify and mark the to-be-recorded EEG signals according to the features of the EEG signals, and the classification includes: normal EEG signals and abnormal EEG signals; 对所述正常脑电信号和/或异常脑电信号进行分类记录。The normal EEG signal and/or the abnormal EEG signal are classified and recorded. 2.如权利要求1所述的方法,其特征在于,所述对所述正常脑电信号和/或异常脑电信号进行分类记录包括:2. The method according to claim 1, wherein the classifying and recording the normal EEG signal and/or the abnormal EEG signal comprises: 根据所述正常脑电信号和/或异常脑电信号创建相应的记录信息,其中,每条所述记录信息包括索引段、数据段和信号类型。Corresponding record information is created according to the normal EEG signal and/or the abnormal EEG signal, wherein each piece of the record information includes an index segment, a data segment and a signal type. 3.如权利要求2所述的方法,其特征在于,所述索引段包括脑电信号的索引地址,所述数据段包括脑电信号的动作电位阈值、波形包络特征点、波峰数量、波谷数量、持续时间和/或功率谱密度,所述信号类型包括正常脑电信号、异常脑电信号和不明确脑电信号。3. The method according to claim 2, wherein the index segment includes an index address of an EEG signal, and the data segment includes an action potential threshold, a waveform envelope feature point, a number of peaks, and a trough of the EEG signal. Quantity, duration and/or power spectral density, the signal types include normal EEG, abnormal EEG and ambiguous EEG. 4.如权利要求1所述的方法,其特征在于,所述脑电信号特征包括:动作电位阈值、波形包络特征点、波峰数量、波谷数量、持续时间和/或功率谱密度。4. The method of claim 1, wherein the EEG signal features include: action potential threshold, waveform envelope feature points, number of peaks, number of troughs, duration and/or power spectral density. 5.如权利要求1所述的方法,其特征在于,所述获取所述目标脑电数据的脑电信号特征,包括:5. The method of claim 1, wherein the acquiring the electroencephalographic signal characteristics of the target electroencephalographic data comprises: 统计设定时间段内所述待记录脑电信号中波峰和/或波谷的数量,并获取每一个波峰和/或波谷的数值;Counting the number of peaks and/or troughs in the EEG signal to be recorded in the set time period, and obtaining the value of each peak and/or trough; 根据所述数量和数值,获取平均波峰数值和/或平均波谷数值。Based on the numbers and values, an average peak value and/or an average trough value are obtained. 6.如权利要求5所述的方法,其特征在于,所述根据所述脑电信号特征对所述待记录脑电信号进行分类标记,包括:6. The method according to claim 5, wherein the classifying and marking the to-be-recorded EEG signal according to the EEG signal feature comprises: 获取待记录脑电信号的波峰数值和/或波谷数值与所述平均波峰数值和/或平均波谷数值的波峰数值差和/或波谷数值差;Obtain the peak value difference and/or the trough value difference between the peak value and/or the trough value of the EEG signal to be recorded and the average peak value and/or the average trough value; 如果所述波峰数值差和/或波谷数值差的绝对值位于阈值范围外,则所述待记录脑电信号为异常脑电信号;以及,如果所述波峰数值差和/或波谷数值差的绝对值位于阈值范围内,则所述待记录脑电信号为正常脑电信号。If the absolute value of the peak value difference and/or the trough value difference is outside the threshold range, the EEG signal to be recorded is an abnormal EEG signal; and, if the absolute value of the peak value difference and/or the trough value difference is If the value is within the threshold range, the EEG signal to be recorded is a normal EEG signal. 7.一种脑电信号数据记录的系统,其特征在于,所述系统包括:7. A system for EEG signal data recording, wherein the system comprises: 待记录脑电信号获取模块,用于获取目标脑电数据中的待记录脑电信号,所述待记录脑电信号为具有神经冲动的脑电信号;a to-be-recorded EEG signal acquisition module, configured to acquire the to-be-recorded EEG signal in the target EEG data, where the to-be-recorded EEG signal is an EEG signal with nerve impulses; 脑电信号特征获取模块,用于统计所述待记录脑电信号的数值,获取所述目标脑电数据的脑电信号特征;an EEG signal feature acquisition module, configured to count the value of the EEG signal to be recorded, and obtain the EEG signal feature of the target EEG data; 分类标记模块,用于对所述正常脑电信号和/或异常脑电信号进行分类记录,所述分类包括:正常脑电信号、异常脑电信号;A classification and marking module, configured to classify and record the normal EEG signal and/or the abnormal EEG signal, and the classification includes: normal EEG signal and abnormal EEG signal; 索引地址记录模块,用于对所述正常脑电信号和/或异常脑电信号分别记录对应的索引地址。The index address recording module is used to respectively record the corresponding index addresses of the normal EEG signal and/or the abnormal EEG signal. 8.如权利要求7所述的系统,其特征在于,所述脑电信号特征获取模块,包括:8. The system of claim 7, wherein the EEG signal feature acquisition module comprises: 数量和数值获取单元,用于统计所述待记录脑电信号中波峰和/或波谷的数量,并获取每一个波峰和/或波谷的数值;A quantity and value acquisition unit, used to count the number of peaks and/or troughs in the EEG signal to be recorded, and obtain the value of each peak and/or trough; 平均值获取单元,用于根据所述数量和数值,获取平均波峰数值和/或平均波谷数值。an average value obtaining unit, configured to obtain an average peak value and/or an average trough value according to the number and value. 9.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-6任一项所述的脑电信号数据记录的方法。9. An electronic device, comprising a memory, a processor and a computer program stored on the memory and running on the processor, wherein the processor implements any one of claims 1-6 when the processor executes the program The method for EEG signal data recording described in item. 10.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-6任一项所述的脑电信号数据记录的方法。10. A non-transitory computer-readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the EEG signal data according to any one of claims 1-6 is realized method of recording.
CN202210878795.0A 2022-07-25 2022-07-25 Method, system, electronic device and storage medium for recording electroencephalogram signal data Pending CN115153589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210878795.0A CN115153589A (en) 2022-07-25 2022-07-25 Method, system, electronic device and storage medium for recording electroencephalogram signal data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210878795.0A CN115153589A (en) 2022-07-25 2022-07-25 Method, system, electronic device and storage medium for recording electroencephalogram signal data

Publications (1)

Publication Number Publication Date
CN115153589A true CN115153589A (en) 2022-10-11

Family

ID=83496196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210878795.0A Pending CN115153589A (en) 2022-07-25 2022-07-25 Method, system, electronic device and storage medium for recording electroencephalogram signal data

Country Status (1)

Country Link
CN (1) CN115153589A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150088024A1 (en) * 2012-03-19 2015-03-26 University Of Florida Research Foundation, Inc. Methods and systems for brain function analysis
CN106377250A (en) * 2016-09-21 2017-02-08 广州视源电子科技股份有限公司 Marking equipment for electroencephalogram data types in sleep state
CN109247936A (en) * 2018-10-31 2019-01-22 山东大学 A kind of abnormal brain electricity behavior monitoring system and method for full night sleep monitor
CN109766845A (en) * 2019-01-14 2019-05-17 首都医科大学宣武医院 An EEG signal classification method, device, equipment and medium
CN111528838A (en) * 2020-05-19 2020-08-14 中国电子科技集团公司第三十八研究所 Abnormal electroencephalogram signal detection device and detection method
CN111832537A (en) * 2020-07-27 2020-10-27 深圳竹信科技有限公司 Abnormal electrocardiosignal identification method and abnormal electrocardiosignal identification device
CN112237433A (en) * 2020-11-05 2021-01-19 山东大学 Electroencephalogram signal abnormity monitoring system and method
CN112353402A (en) * 2020-10-22 2021-02-12 平安科技(深圳)有限公司 Training method of electrocardiosignal classification model, electrocardiosignal classification method and device
CH717003A2 (en) * 2019-12-27 2021-06-30 Univ Lanzhou System for regulating a depressed mood through music feedback based on an electroencephalogram signal.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150088024A1 (en) * 2012-03-19 2015-03-26 University Of Florida Research Foundation, Inc. Methods and systems for brain function analysis
CN106377250A (en) * 2016-09-21 2017-02-08 广州视源电子科技股份有限公司 Marking equipment for electroencephalogram data types in sleep state
CN109247936A (en) * 2018-10-31 2019-01-22 山东大学 A kind of abnormal brain electricity behavior monitoring system and method for full night sleep monitor
CN109766845A (en) * 2019-01-14 2019-05-17 首都医科大学宣武医院 An EEG signal classification method, device, equipment and medium
CH717003A2 (en) * 2019-12-27 2021-06-30 Univ Lanzhou System for regulating a depressed mood through music feedback based on an electroencephalogram signal.
CN111528838A (en) * 2020-05-19 2020-08-14 中国电子科技集团公司第三十八研究所 Abnormal electroencephalogram signal detection device and detection method
CN111832537A (en) * 2020-07-27 2020-10-27 深圳竹信科技有限公司 Abnormal electrocardiosignal identification method and abnormal electrocardiosignal identification device
CN112353402A (en) * 2020-10-22 2021-02-12 平安科技(深圳)有限公司 Training method of electrocardiosignal classification model, electrocardiosignal classification method and device
CN112237433A (en) * 2020-11-05 2021-01-19 山东大学 Electroencephalogram signal abnormity monitoring system and method

Similar Documents

Publication Publication Date Title
EP3692901B1 (en) Automatic recognition and classification method for electrocardiogram heartbeat based on artificial intelligence
CN109164980B (en) Aggregation optimization processing method for time sequence data
US9396247B2 (en) Method and device for processing a time sequence based on dimensionality reduction
CN109257383B (en) BGP anomaly detection method and system
CN113724734B (en) Sound event detection method, device, storage medium and electronic device
CN113992340B (en) User abnormal behavior identification method, device, equipment and storage medium
CN111177360B (en) Self-adaptive filtering method and device based on user logs on cloud
JP7014072B2 (en) Feature amount generation method, feature amount generation device, and feature amount generation program
CN107832333B (en) Method and system for constructing user network data fingerprint based on distributed processing and DPI data
CN111866196A (en) Domain name traffic characteristic extraction method, device, equipment and readable storage medium
Diah et al. Exploring the feature selection of the EEG signal time and frequency domain features for k-NN and weighted k-NN
CN111488813B (en) Video emotion marking method and device, electronic equipment and storage medium
CN119740102A (en) Real-time decoding of EEG signals and intention recognition method and device for attention glasses
CN115153589A (en) Method, system, electronic device and storage medium for recording electroencephalogram signal data
CN112988846B (en) Flow real-time statistical method and engine based on absolute time sliding window
CN119293686A (en) Public opinion heat anomaly detection method and system based on information denoising and clustering
CN118383764A (en) Electroencephalogram signal emotion recognition method based on attention and space-time convolution network
CN113925517B (en) Cognitive disorder recognition method, device and medium based on electroencephalogram signals
CN111309608B (en) Test case selection method, device, electronic equipment and readable storage medium
CN109150819A (en) A kind of attack recognition method and its identifying system
CN118924305B (en) Abnormal electrocardiogram recognition method, device, equipment, medium and product
CN119783794A (en) Method, device, equipment and medium for constructing knowledge graph of radar echo data
CN114756214B (en) Image processing method and device based on OpenCV and plug-ins
CN118981693B (en) BV-CNN-based analog circuit fault diagnosis method, electronic equipment and storage medium
Zhang et al. Density Distribution-based Learning Framework for Addressing Online Continual Learning Challenges

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination