CN115130930B - 一种非煤矿山掘进机设备选型方法 - Google Patents

一种非煤矿山掘进机设备选型方法 Download PDF

Info

Publication number
CN115130930B
CN115130930B CN202211043861.9A CN202211043861A CN115130930B CN 115130930 B CN115130930 B CN 115130930B CN 202211043861 A CN202211043861 A CN 202211043861A CN 115130930 B CN115130930 B CN 115130930B
Authority
CN
China
Prior art keywords
cutting
pick
heading machine
average
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211043861.9A
Other languages
English (en)
Other versions
CN115130930A (zh
Inventor
郑志杰
杨小聪
黄丹
郭利杰
李玉选
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BGRIMM Technology Group Co Ltd
Original Assignee
BGRIMM Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BGRIMM Technology Group Co Ltd filed Critical BGRIMM Technology Group Co Ltd
Priority to CN202211043861.9A priority Critical patent/CN115130930B/zh
Publication of CN115130930A publication Critical patent/CN115130930A/zh
Application granted granted Critical
Publication of CN115130930B publication Critical patent/CN115130930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mining & Mineral Resources (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mathematical Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Geology (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Accounting & Taxation (AREA)
  • Operations Research (AREA)
  • Finance (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种非煤矿山掘进机设备选型方法,涉及采矿技术领域,该选型方法包括单截齿截割矿山岩样至少三次,获取单截齿平均最大截割力与单截齿平均截割比能耗;获取不同型号掘进机参数,计算各个掘进机的截齿平均截割力;选择截齿平均截割力不小于单截齿平均最大截割力的掘进机;利用单截齿平均截割比能耗预测实际工况下各个掘进机的纯截割效率;基于实际工况下纯截割效率测算各个掘进机的采矿作业生产能力;根据掘进机机械采矿生产系统技术经济指标推荐掘进机。本发明提供的选型方法弥补传统仅靠岩石单体强度经验推荐掘进机的缺陷,实现地下非煤矿山掘进机科学选型推荐。

Description

一种非煤矿山掘进机设备选型方法
技术领域
本发明涉及采矿技术领域,尤其是涉及一种非煤矿山掘进机设备选型方法。
背景技术
掘进机是一种集切割、装运、转运石渣、降尘等于一体的高效掘进设备,广泛用于交通、隧道、采矿等领域,与常规钻爆法相比,具有破岩、出碴、支护一条龙连续化作业,开挖速度快,效率高,施工质量好,超挖量少,可减少支护工程量,降低工程费用,且不破坏周边岩层的稳定性,施工安全等优点。但掘进机也存在着适用能力较差等问题,若选择不当,不仅导致其成巷速度与生产效率显著下降,而且影响矿山生产和企业经济效益的提高。如何将掘进机与金属矿岩石及岩体特性、采矿方法、采矿工艺相结合,成为制约掘进机在该矿区顺利使用及效率发挥的重点。因此,有必要针对矿山的实际情况,选择确定合理的掘进机型号与类型。
现有专利中,申请号为CN201410695119.5的发明专利,公开了一种连续采煤机短壁开采工作面设备选型方法,该专利针对煤矿短壁开采工作面设备,包括连续采煤机、转运设备、支护设备、给料破碎设备、巷道清理和辅助设备以及其他配套设备提出了选型方法。
地下金属矿机械连续开采技术中采用的破岩机械主要引用自隧道及煤矿施工设备。对金属矿山而言,掘进机属于新型设备,金属矿机械开采目前仍处于试验期,暂未形成完善的工艺,各项内容仍需深入研究。煤矿针对采煤工作面有进行专门的设备选型配套系统研究,在金属矿山机械设备选型配套目前仍属于技术空白。
发明内容
本发明的目的在于提供一种非煤矿山掘进机设备选型方法,弥补传统仅靠岩石单体强度经验推荐掘进机的缺陷,实现地下非煤矿山掘进机科学选型推荐。
为实现上述目的,本发明提供以下技术方案:
本发明提供一种非煤矿山掘进机设备选型方法,包括:
开展截齿截割试验:单截齿截割矿山岩样至少三次,获取每单截齿平均最大截割力与单截齿平均截割比能耗;
测算掘进机截齿平均截割力:获取不同型号掘进机参数,计算各个所述掘进机的截齿平均截割力;
掘进机初选:选择所述截齿平均截割力不小于所述单截齿平均最大截割力的所述掘进机;
测算实际工况下掘进机纯截割效率:利用所述单截齿平均截割比能耗预测实际工况下各个所述掘进机的纯截割效率;
测算采矿作业生产能力:基于实际工况下所述纯截割效率测算各个所述掘进机的采矿作业生产能力;
掘进机优选:根据掘进机机械采矿生产系统技术经济指标推荐所述掘进机。
进一步地,单截齿截割矿山岩样3-10次。
进一步地,所述开展截齿截割试验步骤中:
所述矿山岩样大小为6×6×6cm-15×15×15cm。
进一步地,所述开展截齿截割试验步骤中:
所述单截齿为全新未使用的单截齿,每次截割过程中均记录所述单截齿的截割力与位移曲线。
进一步地,所述开展截齿截割试验步骤中:
所述单截齿平均最大截割力为每次所述单截齿截割时所产生最大截割力的平均值;
所述单截齿平均截割比能耗为每次所述单截齿截割时的截割外力功与掉落岩屑体积比值的平均值;
通过下式计算每一次所述单截齿截割时的所述单截齿平均截割比能耗SE:
Figure F_220812135050745_745041001
其中:
W为所述单截齿截割时的截割外力功;Q为所述单截齿截割时掉落的岩屑体积;Fc为截割试验中单截齿的截割力;h为截割试验中单截齿的截割位移。
进一步地,所述测算掘进机截齿平均截割力步骤中:
通过下式计算所述截齿平均截割力Fj
Figure F_220812135050935_935063002
其中:
P为掘进机截割功率;η为机械传动效率,选取0.4-0.6;n为掘进机截割头转速;
Figure F_220812135051044_044893003
为所述掘进机截割头平均半径;Nt为同时参与破岩的截齿数;k为修正系数,选取0.6-0.8。
进一步地,所述测算实际工况下掘进机纯截割效率步骤中:
通过下式计算所述纯截割效率ICR:
Figure F_220812135051138_138632004
其中:
P为掘进机截割功率;SEopt为最优比能耗,等于10-15倍的SE;kp为能量传递效率,选取0.4-0.6;K0为实际工效系数,选取0.8-0.9。
进一步地,所述测算采矿作业生产能力步骤中:
在掘进机纯截割效率基础上,考虑每天排班数、每班作业时间、断面面积、分段采场分层数、采场长度、分层采场进路数、转层充填时间、矿石体重中至少一个参数,对所述采矿作业生产能力进行测算。
进一步地,所述掘进机优选步骤中:
所述掘进机机械采矿生产系统技术经济指标由生产能力测算指标以及包含落矿工序、出矿工序、通风工序和除尘工序的直接生产成本所组成。
进一步地,所述掘进机优选步骤中:
所述直接生产成本包含设备折旧费、设备大修费、设备经修费、人工费、材料费和燃料动力费。
本发明提供的非煤矿山掘进机设备选型方法能产生如下有益效果:
本发明提供的非煤矿山掘进机设备选型方法中,
上述非煤矿山掘进机设备选型方法中,首先可加工矿山岩样开展室内标准单截齿截割破岩试验,单截齿截割矿山岩样至少三次,获取每一次截割试验的单截齿平均最大截割力与平均截割比能耗。随后搜集不同型号掘进机参数计算各个掘进机截齿平均截割力。随后对比不同型号掘进机的截齿平均截割力与截割试验截齿平均最大截割力,以此推荐满足破岩能力要求的掘进机。而掘进机仅满足破岩能力要求还不够,一般来说掘进机截割能力越高,其设备截割效率越高,但设备价格也越高。因此随后利用单截齿平均截割比能耗预测实际工况下掘进机纯截割效率。随后基于实际工况下掘进机纯截割效率对非煤矿山掘进机采矿作业生产能力进行测算,进而测算掘进机机械采矿生产系统技术经济指标,实现对掘进机进行优选,最终推荐适用于矿山的掘进机设备型号。
相对于现有技术来说,本发明创新了地下非煤矿山掘进机设备选型方法,弥补传统仅靠岩石单体强度经验推荐掘进机的缺陷,实现地下非煤矿山掘进机科学选型推荐,适用于我国非煤金属矿山的掘进机设备优化选型。具体通过试验获取单截齿平均最大截割力与单截齿平均截割比能耗,根据各个型号掘进机的参数与试验数据进行比较实现掘进机的初选,随后通过试验数据测算实际工况下掘进机纯截割效率与生产能力,并经过对掘进机机械采矿生产系统技术经济指标的测算推荐优选掘进机。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种非煤矿山掘进机设备选型方法的流程框图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本实施例在于提供一种非煤矿山掘进机设备选型方法,如图1所示,包括:
步骤S101,开展截齿截割试验:单截齿截割矿山岩样至少三次,获取单截齿平均最大截割力与单截齿平均截割比能耗;
步骤S102,测算掘进机截齿平均截割力:获取不同型号掘进机参数,计算各个掘进机的截齿平均截割力;
步骤S103,掘进机初选:选择截齿平均截割力不小于单截齿平均最大截割力的掘进机;
步骤S104,测算实际工况下掘进机纯截割效率:利用单截齿平均截割比能耗预测实际工况下各个掘进机的纯截割效率;
步骤S105,测算采矿作业生产能力:基于实际工况下纯截割效率测算各个掘进机的采矿作业生产能力;
步骤S106,掘进机优选:根据掘进机机械采矿生产系统技术经济指标推荐掘进机。
本实施例提供的非煤矿山掘进机设备选型方法中,首先通过试验获取单截齿平均最大截割力与单截齿平均截割比能耗。随后根据各个型号掘进机的参数与试验数据进行比较实现掘进机的初选,初选得到的掘进机的截齿平均截割力要不小于单截齿平均最大截割力。随后通过单截齿平均截割比能耗测算实际工况下掘进机纯截割效率以及测算采矿作业生产能力,并经过对掘进机机械采矿生产系统技术经济指标推荐优选掘进机。弥补传统仅靠岩石单体强度经验推荐掘进机的缺陷,通过本实施例提供的方法与步骤,实现地下非煤矿山掘进机科学选型推荐。
以下对上述各步骤进行详细的说明:
在一些实施例中,开展截齿截割试验步骤中,单截齿可以截割矿山岩样3-10次,具体可以为3、4、5、6、7、8、9或10次。
其中,矿山岩样大小为6×6×6cm-15×15×15cm,即岩样各个边的边长为6-15cm,具体可以为6cm、8cm、10cm、12cm或15cm。
矿山岩样可以为立方体,矿山岩样也并不一定限制于是立方体,矿山岩样还可以采用长方体、圆柱体等。
另外,开展截齿截割试验步骤中:为去除其他因素的干扰,单截齿为全新未使用的单截齿。每次截割过程中均记录单截齿的截割力与位移曲线。
在至少一个实施例中,上述单截齿采用镐形截齿。
需要说明的是,在截割时,单截齿的截割力并非为一恒定值,上述单截齿平均最大截割力为每次单截齿截割时所产生最大截割力的平均值;单截齿平均截割比能耗为每次单截齿截割时的截割外力功与掉落岩屑体积比值的平均值。
通过下式计算每一次单截齿截割时的单截齿平均截割比能耗SE:
Figure F_220812135051227_227514005
其中:
W为单截齿截割时的截割外力功;Q为单截齿截割时掉落的岩屑体积;FC为截割试验中单截齿的截割力;h为截割试验中单截齿的截割位移。单截齿截割外力功可以通过试验过程中所记录的单截齿截割力与位移曲线得到。
在一些实施例中,测算掘进机截齿平均截割力步骤中:
通过下式计算截齿平均截割力Fj
Figure F_220812135051321_321258006
其中:
P为掘进机截割功率;η为机械传动效率,选取0.4-0.6,具体可以为0.4、0.5或0.6;n为掘进机截割头转速;
Figure F_220812135051385_385717007
为所述掘进机截割头平均半径;Nt为同时参与破岩的截齿数;k为修正系数,选取0.6-0.8,具体可以为0.6、0.7或0.8。
在一些实施例中,测算实际工况下掘进机纯截割效率步骤中:
通过下式计算纯截割效率ICR:
Figure F_220812135051463_463820008
其中:
P为掘进机截割功率;SEopt为最优比能耗,等于10-15倍的SE,具体可以为10、12、13或15倍的SE;kp为能量传递效率,选取0.4-0.6,具体可以为0.4、0.5或0.6;K0为实际工效系数,选取0.8-0.9,具体可以为0.8、0.85或0.9。
可以理解的是,测算采矿作业生产能力步骤中:非煤矿山掘进机采矿作业生产能力按照非煤矿山采用的采矿方法测算生产能力。具体地,在掘进机纯截割效率基础上,考虑每天排班数、每班作业时间、断面面积、分段采场分层数、采场长度、分层采场进路数、转层充填时间、矿石体重中至少一个参数,对所述采矿作业生产能力进行测算。
当然,所考虑的参数并不限于以上举例的几种,还可以根据实际情况考虑其他参数。
在一些实施例中,掘进机优选步骤中:掘进机机械采矿生产系统技术经济指标由生产能力测算指标以及包含落矿工序、出矿工序、通风工序和除尘工序的直接生产成本所组成。在对掘进机进行选择时,需要综合以上指标来考虑,选择满足工序要求且成本最低的掘进机。
其中,直接生产成本包含设备折旧费、设备大修费、设备经修费、人工费、材料费和燃料动力费。
具体地,掘进机机械采掘作业面主要设备有掘进机、通风设备、除尘设备、转载运输设备。作业人员包括掘进机司机,辅助工,转载运输司机,现场管理人员(班组长)等。主要消耗材料有截齿、齿轮油、黄油等。过程中主要消耗的燃料动力费包含电费、转运费、油耗。在选择时,对比不同型号掘进机机械落矿系统技术经济指标从而实现掘进机优选推荐。
以下通过一个具体实施例来对上述非煤矿山掘进机设备选型方法进行具体说明:
新疆某金矿矿区内矿带长约1280m,控制最大斜深425m,总体为上宽下窄。矿带北部走向近南北,向南渐变为140°方向,倾向北东,倾角60-80°。整体上矿体受主断裂带控制,主断裂带沿火山管道壁内侧边缘分布,全长大于1300m,总体呈向西南凸出的弧形展布。主断裂带岩组分布于矿体下盘,部分地段严重影响矿体开采。
根据以往岩石力学资料可知,矿体及其顶底板围岩大部分属中等稳固类型,局部不稳固-极不稳固。上盘围岩和上盘矿体,远离主断裂带,属中等稳固。矿体下盘矿岩,远离主断裂带地段中等稳固,离主断裂带较近地段,矿岩不稳固,主断裂带穿插的地段,矿岩极不稳固。总体看来,远离主断裂带的矿体和上盘围岩的稳定性好,矿体底板和底板断裂带稳定性差,同时,南矿段勘探报告给出的围岩抗压强度比北矿段的低。从区域构造背景来看,矿床所在地区的新构造运动强烈,地震较频繁,矿区的区域稳定性属于不稳定区。
矿山目前主要采用上向分层进路式充填采矿法回采,中段高度50-55m。深部矿体因岩体质量较差,局部遇水泥化,岩性及品位变化较大等原因导致现有采矿方法出现生产效率低、成本高、安全性较差等问题。通过调研、论证及分析,矿山计划变革传统凿岩爆破采矿模式采用掘进机机械采矿技术,以解决矿山生产目前面临的众多问题。
以下结合一具体实施例对上述非煤矿山掘进机设备选型方法进行详细说明:
根据矿山实际生产、工程地质条件并综合考虑本次研究目的及研究需要,确定此次可截割试验所取岩样采取现场大块方式取样,室内加工为标准试验岩样。现场取得岩块试样,使用水冷岩石切割机对不规则岩样进行整理切制,共计加工100×100×100mm的立方体3块。使用同一支截齿,在岩样的不同位置和方向上进行试验,3块岩样共计截割10次。采用截割标准试验参数进行测试,根据试验记录的力-位移曲线可得到最大截割力,并进一步计算出外力功。对于截割破落的岩屑进行收集并标记,推荐使用称重法测量岩屑的体积。
由截齿截割试验结果可知,为满足有效破岩要求,单截齿截割破岩所需的截割力应达到3.133kN,截割比能耗为0.422kW·h/m。
掘进机功率参数主要分为切割功率和装机功率。掘进机切割功率是指截割机构电动机的功率,是确定掘进机生产能力的重要参数。掘进机在实际破岩工况中并非所有区域都处于截割区,有时仅有部分截割头深入到岩石内参与截割。当所选掘进机提供的平均截割力不小于破岩所需的最大截割力时,方可满足破岩能力要求,此为掘进机破岩基础要求。
由截齿截割试验结果可知,为满足有效破岩要求,单截齿截割破岩所需的截割力应达到3133N。160、200、260、318型掘进机转化成截割厚度为9mm时截齿截割试验的最大截割力分别为2590.71N、3238.39N、3586.22N、5149.05N。因此除160型掘进机外其余掘进机均可满足破岩能力要求,满足截割破岩能力要求的设备为200、260、318型掘进机,可参考下表1。
表1 掘进机截割力测算结果
掘进机型号 160型掘进机 200型掘进机 260型掘进机 318型掘进机
截割电机功率(kW) 160 200 260 318
截割头转速(r/min) 46/23 46/23 55/27 31.8
截割头截齿数量(个) 36 36 36 36
截割头平均半径(m) 0.55 0.55 0.55 0.55
掘进机提供最大截割扭矩(N · m) 33217.39 41521.74 45981.48 66019.57
掘进机截齿截割力(N) 3355.29 4194.12 4644.59 6668.64
转换截割试验的最大截割力(N) 2590.71 3238.39 3586.22 5149.05
进一步的,掘进机仅满足破岩能力要求还不够,一般来说掘进机截割能力越高,其设备截割效率越高,但设备价格也越高。因此需对其采矿作业技术经济指标进行详细测算对比,从而实现掘进机优选。
通过实际工况下掘进机纯截割效率计算公式,对200、260、318型掘进机纯截割效率进行测算,可参考下表2。
表2 掘进机截割效率预测
掘进机型号 200型掘进机 260型掘进机 318型掘进机
截割电机功率(kW) 200 260 318
截割试验截割比能耗(kW · h/m ³ ) 0.422 0.422 0.422
纯截割能力(m ³ /h) 15.45 20.08 24.56
进一步的,对其采矿作业生产能力进行测算。矿山目前采用上向分层进路充填采矿法,采矿作业采用连续作业工作制,年工作330天,每天3班滚班作业。采矿作业中,受矿体赋存条件、采场布置、支护、充填、养护、转层、设备养护等多方面的限制,其综合生产能力较单班生产能力与进路生产能力而言较低。在掘进机纯截割效率预测结果基础上,将每天排班数、每班作业时间、断面面积、分段采场分层数、采场长度、分层采场进路数、转层充填时间、矿石体重等参数代入,即可对其采场生产能力进行测算,可参考下表3。
表3 掘进机采矿能力对比
指标名称 单位 200型掘进机 260型掘进机 318型掘进机
每天排班数 3 3 3
矿石体重 t/m ³ 2.77 2.77 2.77
断面面积 14 14 14
单班进尺能力 m/班 4.41 5.74 6.00
每天进尺能力 m/d 6.62 8.61 9.00
分段采场矿量 t 77560 77560 77560
分段采场回采时间 d 386 316 306
采场生产能力 t/d 200.87 245.14 253.28
掘进机机械采掘系统构建后,其设备、人员每月均为固定投入,而电费、材料等消耗与每月掘进工程量密切相关。成本测算过程中不考虑措施费、企业管理费、税费、安全生产费、税金等费用,考虑落矿、出矿、通风、除尘这四项关键工序,生产成本包含设备折旧费、设备大修费、设备经修费、人工费、材料费及燃料动力费。掘进机机械采掘作业面主要设备有掘进机、通风设备、除尘设备、转载运输设备。作业人员包括掘进机司机,辅助工,转载运输司机,现场管理人员(班组长)等。主要消耗材料有截齿、齿轮油、黄油。过程中主要消耗的燃料动力费包含电费、转运费、油耗,可参考下表4。
表4 机械落矿技术经济指标测算
Figure T_220812135052869_869607004
160型掘进机化成截割厚度为9mm时截齿截割试验的最大截割力为2590.71N,小于比单截齿截割破岩所需的截割力3133N,因此不满足有效破岩要求。在满足破岩能力要求基础上,对200、260、318型掘进机进行优选。
基于截齿截割破岩试验获取的比能耗,对设备纯截割能力进行预测。200、260、318型掘进机测算生产能力分别为200.87t/d、245.14t/d、253.28t/d。在满足截割破岩能力要求的基础上,掘进机截割功率越高,其掘进效率越高,但设备价格也越高。因此需对其技术经济指标进行对比,从而选择合适的掘进机。200、260、318型掘进机机械落矿技术经济指标测算结果分别为66.36元/t、59.95元/t、64.95元/t。260型掘进机吨矿成本比200和318的吨矿成本都低,因此最终推荐采用260型掘进机。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种非煤矿山掘进机设备选型方法,其特征在于,包括:
开展截齿截割试验:单截齿截割矿山岩样至少三次,获取单截齿平均最大截割力与单截齿平均截割比能耗;
测算掘进机截齿平均截割力:获取不同型号掘进机参数,计算各个所述掘进机的截齿平均截割力;
掘进机初选:选择所述截齿平均截割力不小于所述单截齿平均最大截割力的所述掘进机;
测算实际工况下掘进机纯截割效率:利用所述单截齿平均截割比能耗预测实际工况下满足所述掘进机初选的各个所述掘进机的纯截割效率;
测算采矿作业生产能力:基于实际工况下所述纯截割效率测算满足所述掘进机初选的各个所述掘进机的采矿作业生产能力;
掘进机优选:根据掘进机机械采矿生产系统技术经济指标推荐满足所述掘进机初选的所述掘进机。
2.根据权利要求1所述的非煤矿山掘进机设备选型方法,其特征在于,单截齿截割矿山岩样3-10次。
3.根据权利要求2所述的非煤矿山掘进机设备选型方法,其特征在于,所述开展截齿截割试验步骤中:
所述矿山岩样大小为6×6×6cm-15×15×15cm。
4.根据权利要求1所述的非煤矿山掘进机设备选型方法,其特征在于,所述开展截齿截割试验步骤中:
所述单截齿为全新未使用的单截齿,每次截割过程中均记录所述单截齿的截割力与位移曲线。
5.根据权利要求1所述的非煤矿山掘进机设备选型方法,其特征在于,所述开展截齿截割试验步骤中:
所述单截齿平均最大截割力为每次所述单截齿截割时所产生最大截割力的平均值;
所述单截齿平均截割比能耗为每次所述单截齿截割时的截割外力功与掉落岩屑体积比值的平均值;
通过下式计算每一次所述单截齿截割时的所述单截齿平均截割比能耗SE:
Figure F_221018135148052_052172001
其中:
W为所述单截齿截割时的截割外力功;Q为所述单截齿截割时掉落的岩屑体积;Fc为截割试验中单截齿的截割力;h为截割试验中单截齿的截割位移。
6.根据权利要求1所述的非煤矿山掘进机设备选型方法,其特征在于,所述测算掘进机截齿平均截割力步骤中:
通过下式计算所述截齿平均截割力Fj
Figure F_221018135148132_132253002
其中:
P为掘进机截割功率;η为机械传动效率,选取0.4-0.6;n为掘进机截割头转速;
Figure F_221018135148210_210422003
为所述掘进机截割头平均半径;Nt为同时参与破岩的截齿数;k为修正系数,选取0.6-0.8。
7.根据权利要求1所述的非煤矿山掘进机设备选型方法,其特征在于,所述测算实际工况下掘进机纯截割效率步骤中:
通过下式计算所述纯截割效率ICR:
Figure F_221018135148289_289946004
其中:
P为掘进机截割功率;SEopt为最优比能耗,等于10-15倍的SE;kp为能量传递效率,选取0.4-0.6;K0为实际工效系数,选取0.8-0.9。
8.根据权利要求1所述的非煤矿山掘进机设备选型方法,其特征在于,所述测算采矿作业生产能力步骤中:
在掘进机纯截割效率基础上,考虑每天排班数、每班作业时间、断面面积、分段采场分层数、采场长度、分层采场进路数、转层充填时间、矿石体重中至少一个参数,对所述采矿作业生产能力进行测算。
9.根据权利要求1所述的非煤矿山掘进机设备选型方法,其特征在于,所述掘进机优选步骤中:
所述掘进机机械采矿生产系统技术经济指标由生产能力测算指标以及包含落矿工序、出矿工序、通风工序和除尘工序的直接生产成本所组成。
10.根据权利要求9所述的非煤矿山掘进机设备选型方法,其特征在于,所述掘进机优选步骤中:
所述直接生产成本包含设备折旧费、设备大修费、设备经修费、人工费、材料费和燃料动力费。
CN202211043861.9A 2022-08-30 2022-08-30 一种非煤矿山掘进机设备选型方法 Active CN115130930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211043861.9A CN115130930B (zh) 2022-08-30 2022-08-30 一种非煤矿山掘进机设备选型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211043861.9A CN115130930B (zh) 2022-08-30 2022-08-30 一种非煤矿山掘进机设备选型方法

Publications (2)

Publication Number Publication Date
CN115130930A CN115130930A (zh) 2022-09-30
CN115130930B true CN115130930B (zh) 2022-11-25

Family

ID=83386912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211043861.9A Active CN115130930B (zh) 2022-08-30 2022-08-30 一种非煤矿山掘进机设备选型方法

Country Status (1)

Country Link
CN (1) CN115130930B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116122814B (zh) * 2022-12-30 2024-01-23 天地上海采掘装备科技有限公司 一种采煤机选型方法、系统及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106372810A (zh) * 2016-09-18 2017-02-01 中铁隧道集团有限公司 一种利用功效系数法的tbm定量化选型方法
CN114418164A (zh) * 2021-12-01 2022-04-29 南京工业大学 一种基于知识管理的盾构掘进装备智能优化选型方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109933577B (zh) * 2019-03-08 2020-12-18 山东大学 基于tbm岩-机参数动态交互机制的隧洞可掘进预测方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106372810A (zh) * 2016-09-18 2017-02-01 中铁隧道集团有限公司 一种利用功效系数法的tbm定量化选型方法
CN114418164A (zh) * 2021-12-01 2022-04-29 南京工业大学 一种基于知识管理的盾构掘进装备智能优化选型方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《岩石可截割性及其分级研究》;王想 等;《煤炭工程》;20110530;第77-79、82页 *
《金属矿山悬臂式掘进机采掘配套设备选型研究》;李玉选 等;《矿业研究与开发》;20220630;第42卷(第6期);第166-171页 *

Also Published As

Publication number Publication date
CN115130930A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2020119177A1 (zh) 壁式连采连充保水采煤及水资源运移监测、水害预警方法
CN115130930B (zh) 一种非煤矿山掘进机设备选型方法
Lan et al. Prediction model of wear rate of inner disc cutter of engineering in Yinsong, Jilin
Wu Research on sublevel open stoping recovery processes of inclined medium-thick orebody on the basis of physical simulation experiments
Laughton Evaluation and prediction of tunnel boring machine performance in variable rock masses
Bilgin et al. The effect of rock weathering and transition zones on the performance of an EPB-TBM in complex geology near Istanbul, Turkey
Ji et al. Modified Q-index for prediction of rock mass quality around a tunnel excavated with a tunnel boring machine (TBM)
CN112746847A (zh) 缓倾斜至倾斜中厚矿体的采矿方法
Coşar Application of rock mass classification systems for future support design of the Dim Tunnel near Alanya
Shaterpour-Mamaghani et al. Full-Scale linear cutting tests using a button cutter and deterministic performance prediction modeling for raise boring machines
CN107654232B (zh) 倾斜矿体的堑沟集矿采矿方法
Henning Evaluation of long-hole mine design influences on unplanned ore dilution
CN117514325A (zh) 适用于缓倾斜厚大矿体的盘区上向进路干式充填采矿法
Rostami Design optimization, performance prediction and economic analysis of tunnel boring machines for the construction of the proposed yucca mountain nuclear waste repository
CN113153418B (zh) 一种基于综合指数法的三维空间充填效果评价方法
CN114135288B (zh) 一种冲击地压煤层巷道高压水射流割缝卸压参数优化方法
CN114000882A (zh) 一种同一采区崩落法与充填法协同开采方法
CN112610230B (zh) 基于相似理论的隧道掘进机室内模型实验方法与系统
Mangal et al. Role of convergence behaviour for superior recovery of thick coal seams in underground mines by blasting gallery
Goel Evaluation of TBM performance in a Himalayan tunnel
CN114776370B (zh) 一种处理煤矸石的方法
Pu et al. Determination of reasonable width of filling body for gob-side entry retaining in mining face with large cutting height
Li et al. Disc cutter wear prediction method of hard rock TBM Based on Bayesian networks
Hong Shield tunneling technology in hard-soft uneven stratum and extremely-soft stratum
Chapula et al. The evaluation of large deformation in deep underground mine excavations using RQD

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant