CN115130341B - TM polarization fast cross-correlation contrast source electromagnetic inversion method under uniform background - Google Patents
TM polarization fast cross-correlation contrast source electromagnetic inversion method under uniform background Download PDFInfo
- Publication number
- CN115130341B CN115130341B CN202210720577.4A CN202210720577A CN115130341B CN 115130341 B CN115130341 B CN 115130341B CN 202210720577 A CN202210720577 A CN 202210720577A CN 115130341 B CN115130341 B CN 115130341B
- Authority
- CN
- China
- Prior art keywords
- dimensional
- matrix
- type
- spatial spectrum
- kernel function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000010287 polarization Effects 0.000 title claims abstract description 29
- 239000011159 matrix material Substances 0.000 claims abstract description 235
- 238000004364 calculation method Methods 0.000 claims abstract description 24
- 238000001228 spectrum Methods 0.000 claims description 117
- 230000035699 permeability Effects 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 abstract description 15
- 238000004422 calculation algorithm Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 6
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/12—Simultaneous equations, e.g. systems of linear equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
- G06F17/153—Multidimensional correlation or convolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Operations Research (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Complex Calculations (AREA)
Abstract
本申请涉及一种均匀背景下的TM极化快速互相关对比源电磁反演方法,包括:在均匀背景下,基于TM极化快速互相关对比源电磁反演方法,构建包括第一类多线性方程组和第二类多线性方程组的反演求解模型;通过对对比源矩阵和刚度矩阵进行计算,完成第一类多线性方程组的计算;通过对残差矩阵和共轭转置刚度矩阵进行计算,完成第二类多线性方程组的计算;根据两类多线性方程组的求解完成反演求解模型的计算。采用本方法能够通过对两类多线性方程组进行快速精确求解,来完成反演求解模型的计算并实现快速电磁反演成像,降低了电磁反演成像技术的计算复杂度,提高了电磁反演的计算精度和计算速度,从而有效提升电磁反演算法在实际问题中的可用性。
The present application relates to a TM polarization rapid cross-correlation contrast source electromagnetic inversion method under a uniform background, comprising: under a uniform background, based on the TM polarization rapid cross-correlation contrast source electromagnetic inversion method, constructing an inversion solution model including a first type of multilinear equation group and a second type of multilinear equation group; completing the calculation of the first type of multilinear equation group by calculating the contrast source matrix and the stiffness matrix; completing the calculation of the second type of multilinear equation group by calculating the residual matrix and the conjugate transposed stiffness matrix; completing the calculation of the inversion solution model according to the solution of the two types of multilinear equation groups. The present method can complete the calculation of the inversion solution model and realize rapid electromagnetic inversion imaging by quickly and accurately solving the two types of multilinear equation groups, thereby reducing the computational complexity of the electromagnetic inversion imaging technology, improving the computational accuracy and speed of the electromagnetic inversion, and thus effectively improving the usability of the electromagnetic inversion algorithm in practical problems.
Description
技术领域Technical Field
本申请涉及电磁成像技术领域,特别是涉及一种均匀背景下的TM极化快速互相关对比源电磁反演方法。The present application relates to the field of electromagnetic imaging technology, and in particular to a TM polarization rapid cross-correlation contrast source electromagnetic inversion method under a uniform background.
背景技术Background technique
随着计算机技术的发展,支撑电磁仿真计算技术的突飞猛进,随之出现了基于电磁逆散射理论的电磁反演技术,该技术对电磁散射进行非线性精确建模,能够同时获取散射体的几何形态与电磁参数信息,但是,该项技术在反演成像过程中涉及大量的电磁计算,计算复杂度远高于传统的线性成像方法,成为其走向实用的一大瓶颈。With the development of computer technology, the electromagnetic simulation computing technology has made great progress. As a result, electromagnetic inversion technology based on electromagnetic inverse scattering theory has emerged. This technology performs nonlinear and accurate modeling of electromagnetic scattering and can simultaneously obtain the geometric shape and electromagnetic parameter information of the scatterer. However, this technology involves a large amount of electromagnetic calculations in the inversion imaging process, and the computational complexity is much higher than that of traditional linear imaging methods, which has become a major bottleneck for its practical application.
在电磁反演的计算中,关于散射场和梯度场的两类多线性方程组占据了反演算法中大部分的计算复杂度,因此对于两类多线性方程组的求解过程的简化成为简化电磁反演计算的关键。In electromagnetic inversion calculations, two types of multilinear equations about the scattering field and the gradient field account for most of the computational complexity of the inversion algorithm. Therefore, simplifying the solution process of the two types of multilinear equations becomes the key to simplifying electromagnetic inversion calculations.
发明内容Summary of the invention
基于此,有必要针对上述技术问题,提供一种快速的电磁反演成像的TM极化快速互相关对比源电磁反演方法。Based on this, it is necessary to provide a fast TM polarization fast cross-correlation contrast source electromagnetic inversion method for electromagnetic inversion imaging to address the above technical problems.
一种均匀背景下的TM极化快速互相关对比源电磁反演方法,所述方法包括:A TM polarization rapid cross-correlation contrast source electromagnetic inversion method under a uniform background, the method comprising:
在均匀背景下,基于TM极化快速互相关对比源电磁反演方法,构建反演求解模型;反演求解模型中包括:根据对比源矩阵和刚度矩阵计算散射场的第一类多线性方程组以及根据残差矩阵和共轭转置刚度矩阵计算梯度场的第二类多线性方程组;In a uniform background, an inversion solution model is constructed based on the TM polarization fast cross-correlation contrast source electromagnetic inversion method; the inversion solution model includes: a first-type multilinear equation group for calculating the scattered field based on the contrast source matrix and the stiffness matrix, and a second-type multilinear equation group for calculating the gradient field based on the residual matrix and the conjugate transposed stiffness matrix;
获取对比源矩阵,对对比源矩阵进行二维傅里叶变换得到二维对比源空间谱矩阵,构建刚度矩阵对应的第一类核函数矩阵,对第一类核函数矩阵进行二维傅里叶变换得到第一类核函数二维空间谱矩阵;Obtain a contrast source matrix, perform a two-dimensional Fourier transform on the contrast source matrix to obtain a two-dimensional contrast source spatial spectrum matrix, construct a first-class kernel function matrix corresponding to the stiffness matrix, perform a two-dimensional Fourier transform on the first-class kernel function matrix to obtain a first-class kernel function two-dimensional spatial spectrum matrix;
对二维对比源空间谱矩阵和第一类核函数二维空间谱矩阵进行计算得到二维散射场空间谱矩阵,对二维散射场空间谱矩阵进行二维逆傅里叶变换得到散射场,完成第一类多线性方程组的求解;The two-dimensional contrast source spatial spectrum matrix and the first-type kernel function two-dimensional spatial spectrum matrix are calculated to obtain the two-dimensional scattering field spatial spectrum matrix, and the two-dimensional inverse Fourier transform is performed on the two-dimensional scattering field spatial spectrum matrix to obtain the scattering field, thereby solving the first-type multilinear equation group;
获取残差矩阵,对残差矩阵进行二维傅里叶变换得到二维残差空间谱矩阵,构建共轭转置刚度矩阵对应的第二类核函数矩阵,对第二类核函数矩阵进行二维傅里叶变换得到第二类核函数二维空间谱矩阵;Obtain a residual matrix, perform a two-dimensional Fourier transform on the residual matrix to obtain a two-dimensional residual space spectrum matrix, construct a second-type kernel function matrix corresponding to the conjugate transposed stiffness matrix, perform a two-dimensional Fourier transform on the second-type kernel function matrix to obtain a second-type kernel function two-dimensional space spectrum matrix;
对二维残差空间谱矩阵和第二类核函数二维空间谱矩阵进行计算得到二维梯度场空间谱矩阵,对二维梯度场空间谱矩阵进行二维逆傅里叶变换得到梯度场,完成第二类多线性方程组的求解;The two-dimensional residual spatial spectrum matrix and the two-dimensional spatial spectrum matrix of the second-type kernel function are calculated to obtain the two-dimensional gradient field spatial spectrum matrix, and the two-dimensional inverse Fourier transform of the two-dimensional gradient field spatial spectrum matrix is performed to obtain the gradient field, so as to complete the solution of the second-type multilinear equation system;
根据第一类多线性方程组和第二类多线性方程组的求解完成反演求解模型的计算。The calculation of the inverse solution model is completed according to the solution of the first kind of multilinear equations and the second kind of multilinear equations.
在其中一个实施例中,在均匀背景下,基于TM极化快速互相关对比源电磁反演方法,构建反演求解模型,包括:In one embodiment, under a uniform background, an inversion solution model is constructed based on a TM polarization fast cross-correlation contrast source electromagnetic inversion method, including:
反演求解模型中的两类多线性方程组表示为The two types of multilinear equations in the inverse solution model are expressed as
AE=JAE=J
AHG=SA H G=S
其中,AE=J表示第一类多线性方程组,AHG=S表示第二类多线性方程组,A表示刚度矩阵,E表示散射场,J=χEtot表示对比源矩阵,χ表示对比度,Etot表示总场,AH表示共轭转置刚度矩阵,G表示梯度场,S表示残差矩阵。Among them, AE=J represents the first kind of multilinear equations, AHG =S represents the second kind of multilinear equations, A represents the stiffness matrix, E represents the scattered field, J= χEtot represents the contrast source matrix, χ represents the contrast, Etot represents the total field, AH represents the conjugate transposed stiffness matrix, G represents the gradient field, and S represents the residual matrix.
在其中一个实施例中,获取对比源矩阵,对对比源矩阵进行二维傅里叶变换得到二维对比源空间谱矩阵,包括:In one embodiment, obtaining a contrast source matrix, and performing a two-dimensional Fourier transform on the contrast source matrix to obtain a two-dimensional contrast source spatial spectrum matrix includes:
获取对比源矩阵函数j(x),对对比源矩阵函数j(x)进行二维傅里叶变换得到二维对比源空间谱矩阵表示为Obtain the contrast source matrix function j(x), perform a two-dimensional Fourier transform on the contrast source matrix function j(x) to obtain a two-dimensional contrast source spatial spectrum matrix Expressed as
其中,i2=-1,表示二维位置坐标空间,/>表示二维空间谱的频率向量,x=(x1,x2)表示二维空间位置坐标向量。Where i 2 = -1, Represents a two-dimensional position coordinate space, /> represents the frequency vector of the two-dimensional spatial spectrum, and x=(x 1 ,x 2 ) represents the two-dimensional spatial position coordinate vector.
在其中一个实施例中,构建刚度矩阵对应的第一类核函数矩阵,对第一类核函数矩阵进行二维傅里叶变换得到第一类核函数二维空间谱矩阵,包括:In one embodiment, a first-type kernel function matrix corresponding to the stiffness matrix is constructed, and a two-dimensional Fourier transform is performed on the first-type kernel function matrix to obtain a first-type kernel function two-dimensional spatial spectrum matrix, including:
构建刚度矩阵对应的第一类核函数矩阵hΙ(x),表示为Construct the first type kernel function matrix h Ι (x) corresponding to the stiffness matrix, expressed as
其中,ω表示角频率,μ0表示真空中的磁导率,表示第一类Hankel函数,k表示不同频率的波数,||x||2表示二维空间位置坐标向量x到原点的距离;Where ω represents the angular frequency, μ 0 represents the magnetic permeability in vacuum, represents the first kind of Hankel function, k represents the wave number of different frequencies, and ||x|| 2 represents the distance from the two-dimensional space position coordinate vector x to the origin;
对第一类核函数矩阵hΙ(x)进行二维傅里叶变换得到第一类核函数二维空间谱矩阵表示为Perform a two-dimensional Fourier transform on the first-class kernel function matrix h Ι (x) to obtain the first-class kernel function two-dimensional spatial spectrum matrix Expressed as
其中,在均匀背景中保持不变。in, Remain unchanged against a uniform background.
在其中一个实施例中,对二维对比源空间谱矩阵和第一类核函数二维空间谱矩阵进行计算得到二维散射场空间谱矩阵,包括:In one embodiment, the two-dimensional contrast source spatial spectrum matrix and the first-type kernel function two-dimensional spatial spectrum matrix are calculated to obtain a two-dimensional scattered field spatial spectrum matrix, including:
根据逐点乘法对二维对比源空间谱矩阵和第一类核函数二维空间谱矩阵进行计算,得到二维散射场空间谱矩阵/>表示为According to the point-by-point multiplication, the two-dimensional contrast source space spectrum matrix and the first kind of kernel function two-dimensional space spectrum matrix Calculate and obtain the two-dimensional scattering field spatial spectrum matrix/> Expressed as
在其中一个实施例中,对二维散射场空间谱矩阵进行二维逆傅里叶变换得到散射场,完成第一类多线性方程组的求解,包括:In one embodiment, a two-dimensional inverse Fourier transform is performed on a two-dimensional scattering field spatial spectrum matrix to obtain a scattering field, and a first-type multilinear equation system is solved, including:
对二维散射场空间谱矩阵进行二维逆傅里叶变换,得到散射场的空间分布E(x),表示为The two-dimensional scattered field spatial spectrum matrix Perform a two-dimensional inverse Fourier transform to obtain the spatial distribution E(x) of the scattered field, which can be expressed as
根据E(x)完成第一类多线性方程组的求解。Complete the solution of the first kind of multilinear equations according to E(x).
在其中一个实施例中,获取残差矩阵,对残差矩阵进行二维傅里叶变换得到二维残差空间谱矩阵,包括:In one embodiment, obtaining a residual matrix and performing a two-dimensional Fourier transform on the residual matrix to obtain a two-dimensional residual space spectrum matrix includes:
获取残差矩阵函数s(y),对残差矩阵函数s(y)进行二维傅里叶变换,得到二维残差空间谱矩阵表示为Get the residual matrix function s(y), perform a two-dimensional Fourier transform on the residual matrix function s(y), and obtain a two-dimensional residual space spectrum matrix Expressed as
其中,表示反演域的二维空间谱的频率向量,y=(y1,y2)表示反演域的二维空间位置坐标向量。in, represents the frequency vector of the two-dimensional spatial spectrum of the inversion domain, and y=(y 1 ,y 2 ) represents the two-dimensional spatial position coordinate vector of the inversion domain.
在其中一个实施例中,构建共轭转置刚度矩阵对应的第二类核函数矩阵,对第二类核函数矩阵进行二维傅里叶变换得到第二类核函数二维空间谱矩阵,包括:In one embodiment, a second type kernel function matrix corresponding to the conjugate transposed stiffness matrix is constructed, and a two-dimensional Fourier transform is performed on the second type kernel function matrix to obtain a second type kernel function two-dimensional spatial spectrum matrix, including:
构建共轭转置刚度矩阵对应的第二类核函数矩阵hΙΙ(y),表示为Construct the second-type kernel function matrix h ΙΙ (y) corresponding to the conjugate transposed stiffness matrix, expressed as
其中,表示共轭运算,||y||2表示反演域的二维空间位置坐标向量y到原点的距离;in, represents the conjugate operation, ||y|| 2 represents the distance from the two-dimensional spatial position coordinate vector y of the inversion domain to the origin;
对第二类核函数矩阵hΙΙ(y)进行二维傅里叶变换得到第二类核函数二维空间谱矩阵表示为Perform a two-dimensional Fourier transform on the second-type kernel function matrix h ΙΙ (y) to obtain the second-type kernel function two-dimensional spatial spectrum matrix Expressed as
其中,在均匀背景中保持不变。in, Remain unchanged against a uniform background.
在其中一个实施例中,对二维残差空间谱矩阵和第二类核函数二维空间谱矩阵进行计算得到二维梯度场空间谱矩阵,包括:In one embodiment, the two-dimensional residual spatial spectrum matrix and the second-type kernel function two-dimensional spatial spectrum matrix are calculated to obtain a two-dimensional gradient field spatial spectrum matrix, including:
根据逐点乘法对二维残差空间谱矩阵和第二类核函数二维空间谱矩阵进行计算,得到二维梯度场空间谱矩阵/>表示为According to the point-by-point multiplication, the two-dimensional residual space spectrum matrix and the second type of kernel function two-dimensional spatial spectrum matrix Calculate and obtain the two-dimensional gradient field spatial spectrum matrix/> Expressed as
在其中一个实施例中,对二维梯度场空间谱矩阵进行二维逆傅里叶变换得到梯度场,完成第二类多线性方程组的求解,包括:In one embodiment, a two-dimensional inverse Fourier transform is performed on the two-dimensional gradient field spatial spectrum matrix to obtain the gradient field, and the second kind of multilinear equations are solved, including:
对二维梯度场空间谱矩阵进行二维逆傅里叶变换,得到梯度场的空间分布g(y),表示为For the two-dimensional gradient field spatial spectrum matrix Perform a two-dimensional inverse Fourier transform to obtain the spatial distribution of the gradient field g(y), which is expressed as
根据g(y)完成第二类多线性方程组的求解。Solve the multilinear system of equations of the second kind in terms of g(y).
上述均匀背景下的TM极化快速互相关对比源电磁反演方法,在均匀背景下,基于TM极化快速互相关对比源电磁反演方法,构建涉及第一类多线性方程组和第二类多线性方程组的反演求解模型,其中反演求解模型涉及根据对比源矩阵和刚度矩阵对应的第一类核函数矩阵计算散射场的第一类多线性方程组以及根据残差矩阵和共轭转置刚度矩阵对应的第二类核函数矩阵计算梯度场的第二类多线性方程组,通过对两类多线性方程组的快速精确求解,完成反演求解模型的计算,从而实现快速电磁反演成像,与现有技术相比,本发明通过对电磁反演成像中的两类多线性方程组进行快速求解,来完成反演求解模型的计算并实现快速电磁反演成像,降低了电磁反演成像技术的计算复杂度,提高了电磁反演的计算精度和计算速度,从而有效提升电磁反演算法在实际问题中的可用性。The above-mentioned TM polarization fast cross-correlation contrast source electromagnetic inversion method under a uniform background, under a uniform background, based on the TM polarization fast cross-correlation contrast source electromagnetic inversion method, constructs an inversion solution model involving a first type of multilinear equation group and a second type of multilinear equation group, wherein the inversion solution model involves a first type of multilinear equation group for calculating the scattering field according to a first type of kernel function matrix corresponding to a contrast source matrix and a stiffness matrix, and a second type of multilinear equation group for calculating the gradient field according to a second type of kernel function matrix corresponding to a residual matrix and a conjugate transposed stiffness matrix. By quickly and accurately solving the two types of multilinear equation groups, the calculation of the inversion solution model is completed, thereby realizing fast electromagnetic inversion imaging. Compared with the prior art, the present invention completes the calculation of the inversion solution model and realizes fast electromagnetic inversion imaging by quickly solving the two types of multilinear equation groups in electromagnetic inversion imaging, reduces the computational complexity of the electromagnetic inversion imaging technology, improves the computational accuracy and speed of the electromagnetic inversion, thereby effectively improving the usability of the electromagnetic inversion algorithm in practical problems.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一个实施例中均匀背景下的TM极化快速互相关对比源电磁反演方法的流程示意图;FIG1 is a schematic flow chart of a TM polarization rapid cross-correlation contrast source electromagnetic inversion method under a uniform background in one embodiment;
图2为一个实施例中在不同的数据集中均匀背景下的TM极化快速互相关对比源电磁反演方法的反演结果示意图:(a)为在FoamTwinDielTM数据集中反演得到的相对介电常数示意图;(b)为在FoamTwinDielTM数据集中反演得到的电导率示意图;(c)为在FoamMetExtTM数据集中反演得到的相对介电常数示意图;(d)为在FoamMetExtTM数据集中反演得到的电导率示意图。Figure 2 is a schematic diagram of the inversion results of the TM polarization rapid cross-correlation contrast source electromagnetic inversion method in a uniform background in different data sets in one embodiment: (a) is a schematic diagram of the relative dielectric constant inverted in the FoamTwinDielTM data set; (b) is a schematic diagram of the conductivity inverted in the FoamTwinDielTM data set; (c) is a schematic diagram of the relative dielectric constant inverted in the FoamMetExtTM data set; (d) is a schematic diagram of the conductivity inverted in the FoamMetExtTM data set.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application more clearly understood, the present application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application and are not used to limit the present application.
在一个实施例中,如图1所示,提供了一种均匀背景下的TM极化快速互相关对比源电磁反演方法,包括以下步骤:In one embodiment, as shown in FIG1 , a TM polarization rapid cross-correlation contrast source electromagnetic inversion method under a uniform background is provided, comprising the following steps:
步骤102,在均匀背景下,基于TM极化快速互相关对比源电磁反演方法,构建反演求解模型;反演求解模型中包括:根据对比源矩阵和刚度矩阵计算散射场的第一类多线性方程组以及根据残差矩阵和共轭转置刚度矩阵计算梯度场的第二类多线性方程组。Step 102, under a uniform background, based on the TM polarization fast cross-correlation contrast source electromagnetic inversion method, construct an inversion solution model; the inversion solution model includes: a first type of multilinear equation group for calculating the scattered field according to the contrast source matrix and the stiffness matrix, and a second type of multilinear equation group for calculating the gradient field according to the residual matrix and the conjugate transposed stiffness matrix.
可以理解,均匀背景是指在均匀背景介质下;TM极化表示在二维反演构造的走向方向只有磁场分量;互相关对比源反演(Cross-Correlated Contrast Source Inversion,CC-CSI)方法是一种非线性迭代反演方法,在CC-CSI方法中,状态误差和数据误差是互相关的,通过最小化互相关误差来稳定反演过程,相较于传统的对比源反演(CSI)方法和乘法正则化CSI(MR-CSI)方法,CC-CSI方法具有更高的反演精度和更好的鲁棒性;第一类多线性方程组和第二类多线性方程组并不是分别只有一组,而是各有多组线性方程组。It can be understood that uniform background refers to a uniform background medium; TM polarization indicates that there is only a magnetic field component in the strike direction of the two-dimensional inversion structure; the Cross-Correlated Contrast Source Inversion (CC-CSI) method is a nonlinear iterative inversion method. In the CC-CSI method, the state error and the data error are cross-correlated, and the inversion process is stabilized by minimizing the cross-correlation error. Compared with the traditional contrast source inversion (CSI) method and the multiplicative regularized CSI (MR-CSI) method, the CC-CSI method has higher inversion accuracy and better robustness; the first kind of multilinear equations and the second kind of multilinear equations are not only one set each, but each has multiple sets of linear equations.
步骤104,获取对比源矩阵,对对比源矩阵进行二维傅里叶变换得到二维对比源空间谱矩阵,构建刚度矩阵对应的第一类核函数矩阵,对第一类核函数矩阵进行二维傅里叶变换得到第一类核函数二维空间谱矩阵。Step 104, obtain a contrast source matrix, perform a two-dimensional Fourier transform on the contrast source matrix to obtain a two-dimensional contrast source spatial spectrum matrix, construct a first-class kernel function matrix corresponding to the stiffness matrix, and perform a two-dimensional Fourier transform on the first-class kernel function matrix to obtain a first-class kernel function two-dimensional spatial spectrum matrix.
可以理解,通过对对比源空间谱矩阵和第一类核函数二维空间谱矩阵分别进行点乘和二维傅里叶变换,将散射场的计算转换到二维空间谱域上,简化了散射场的计算过程。It can be understood that by performing dot multiplication and two-dimensional Fourier transform on the source spatial spectrum matrix and the first-class kernel function two-dimensional spatial spectrum matrix respectively, the calculation of the scattered field is converted to the two-dimensional spatial spectrum domain, which simplifies the calculation process of the scattered field.
步骤106,对二维对比源空间谱矩阵和第一类核函数二维空间谱矩阵进行计算得到二维散射场空间谱矩阵,对二维散射场空间谱矩阵进行二维逆傅里叶变换得到散射场,完成第一类多线性方程组的求解。Step 106, calculating the two-dimensional contrast source spatial spectrum matrix and the first-type kernel function two-dimensional spatial spectrum matrix to obtain a two-dimensional scattered field spatial spectrum matrix, performing a two-dimensional inverse Fourier transform on the two-dimensional scattered field spatial spectrum matrix to obtain the scattered field, and completing the solution of the first-type multilinear equation group.
可以理解,通过对二维散射场空间谱矩阵进行二维逆傅里叶变换,将散射场空间谱还原到空间维度。It can be understood that by performing a two-dimensional inverse Fourier transform on the two-dimensional scattering field spatial spectrum matrix, the scattering field spatial spectrum is restored to the spatial dimension.
步骤108,获取残差矩阵,对残差矩阵进行二维傅里叶变换得到二维残差空间谱矩阵,构建共轭转置刚度矩阵对应的第二类核函数矩阵,对第二类核函数矩阵进行二维傅里叶变换得到第二类核函数二维空间谱矩阵。Step 108, obtain the residual matrix, perform a two-dimensional Fourier transform on the residual matrix to obtain a two-dimensional residual space spectrum matrix, construct a second-type kernel function matrix corresponding to the conjugate transposed stiffness matrix, and perform a two-dimensional Fourier transform on the second-type kernel function matrix to obtain a second-type kernel function two-dimensional space spectrum matrix.
可以理解,通过对残差空间谱矩阵和第二类核函数二维空间谱矩阵分别进行点乘和二维傅里叶变换,将梯度场的计算转换到二维空间谱域上,简化了梯度场的计算过程。It can be understood that by performing dot multiplication and two-dimensional Fourier transform on the residual space spectrum matrix and the two-dimensional space spectrum matrix of the second type kernel function respectively, the calculation of the gradient field is converted to the two-dimensional space spectrum domain, which simplifies the calculation process of the gradient field.
步骤110,对二维残差空间谱矩阵和第二类核函数二维空间谱矩阵进行计算得到二维梯度场空间谱矩阵,对二维梯度场空间谱矩阵进行二维逆傅里叶变换得到梯度场,完成第二类多线性方程组的求解。Step 110, the two-dimensional residual spatial spectrum matrix and the second-type kernel function two-dimensional spatial spectrum matrix are calculated to obtain a two-dimensional gradient field spatial spectrum matrix, and the two-dimensional inverse Fourier transform is performed on the two-dimensional gradient field spatial spectrum matrix to obtain a gradient field, thereby completing the solution of the second-type multilinear equation group.
可以理解,通过对二维梯度场空间谱矩阵进行二维逆傅里叶变换,将梯度场还原到原来的空间维度。It can be understood that by performing a two-dimensional inverse Fourier transform on the two-dimensional gradient field spatial spectrum matrix, the gradient field is restored to its original spatial dimension.
步骤112,根据第一类多线性方程组和第二类多线性方程组的求解完成反演求解模型的计算。Step 112, completing the calculation of the inverse solution model according to the solutions of the first type of multilinear equations and the second type of multilinear equations.
可以理解,通过对两类多线性方程组的求解,完成反演求解模型的计算,从而实现快速电磁反演成像。It can be understood that by solving two types of multilinear equations, the calculation of the inversion solution model is completed, thereby realizing fast electromagnetic inversion imaging.
上述均匀背景下的TM极化快速互相关对比源电磁反演方法,在均匀背景下,基于TM极化快速互相关对比源电磁反演方法,构建涉及第一类多线性方程组和第二类多线性方程组的反演求解模型,其中反演求解模型涉及根据对比源矩阵和刚度矩阵对应的第一类核函数矩阵计算散射场的第一类多线性方程组以及根据残差矩阵和共轭转置刚度矩阵对应的第二类核函数矩阵计算梯度场的第二类多线性方程组,通过对两类多线性方程组的快速求解,完成反演求解模型的计算,从而实现快速电磁反演成像,与现有技术相比,本发明通过对电磁反演成像中的两类多线性方程组进行快速求解,来完成反演求解模型的计算并实现快速电磁反演成像,降低了电磁反演成像技术的计算复杂度,提高了电磁反演的计算精度和计算速度,从而有效提升电磁反演算法在实际问题中的可用性。The TM polarization fast cross-correlation contrast source electromagnetic inversion method under the uniform background is used to construct an inversion solution model involving a first type of multilinear equation group and a second type of multilinear equation group based on the TM polarization fast cross-correlation contrast source electromagnetic inversion method under the uniform background, wherein the inversion solution model involves a first type of multilinear equation group for calculating the scattering field according to a first type of kernel function matrix corresponding to the contrast source matrix and the stiffness matrix, and a second type of multilinear equation group for calculating the gradient field according to a second type of kernel function matrix corresponding to the residual matrix and the conjugate transposed stiffness matrix. By quickly solving the two types of multilinear equation groups, the calculation of the inversion solution model is completed, thereby realizing fast electromagnetic inversion imaging. Compared with the prior art, the present invention completes the calculation of the inversion solution model and realizes fast electromagnetic inversion imaging by quickly solving the two types of multilinear equation groups in electromagnetic inversion imaging, reduces the computational complexity of the electromagnetic inversion imaging technology, improves the computational accuracy and speed of the electromagnetic inversion, and thus effectively improves the usability of the electromagnetic inversion algorithm in practical problems.
在其中一个实施例中,在均匀的背景介质下,基于TM极化快速互相关对比源电磁反演方法,构建反演求解模型,其中反演求解模型包括散射场的第一类多线性方程组和梯度场的第二类多线性方程组,模型表示如下In one embodiment, under a uniform background medium, an inversion solution model is constructed based on the TM polarization fast cross-correlation contrast source electromagnetic inversion method, wherein the inversion solution model includes a first-type multilinear equation group of the scattering field and a second-type multilinear equation group of the gradient field, and the model is expressed as follows
AE=JAE=J
AHG=SA H G=S
其中,AE=J表示散射场的第一类多线性方程组,AHG=S表示梯度场第二类多线性方程组。Among them, AE=J represents the first kind of multilinear equations of the scattering field, and AHG =S represents the second kind of multilinear equations of the gradient field.
具体地,对于散射场的第一类多线性方程组,方程组中,E=A-1J表示散射场,表示对比源矩阵,χ表示对比度,Etot表示总场,对比源矩阵中的每列均为有限差分(FD)模型中的矢量形式,/>表示频域有限差分(FDFD)方法中刚度矩阵,值得注意的是,刚度矩阵A中已包含了ω2,即A是FDFD刚度矩阵与ω2的乘积,Nsrc表示激励源数,N表示反演在每个维度上划分的网格数,N×N表示二维反演中总的网格数,N×N×Nsrc和N2×N2分别表示对比源矩阵和刚度矩阵的维度;Specifically, for the first type of multilinear equations for the scattered field, in the equations, E = A -1 J represents the scattered field, represents the contrast source matrix, χ represents the contrast, E tot represents the total field, and each column in the contrast source matrix is a vector form in the finite difference (FD) model, /> represents the stiffness matrix in the frequency domain finite difference (FDFD) method. It is worth noting that the stiffness matrix A already contains ω 2 , that is, A is the product of the FDFD stiffness matrix and ω 2 , N src represents the number of excitation sources, N represents the number of grids divided in each dimension of the inversion, N×N represents the total number of grids in the two-dimensional inversion, N×N×N src and N 2 ×N 2 represent the dimensions of the contrast source matrix and the stiffness matrix, respectively;
对比源矩阵J的分量j=δ(x-y)激发的散射场可以表示为The scattering field excited by the component j = δ(x-y) of the source matrix J can be expressed as
其中,*表示二维卷积算子,D表示反演域,j(x)表示对比源矩阵函数,hΙ(x)表示刚度矩阵对应的第一类核函数矩阵。Wherein, * represents the two-dimensional convolution operator, D represents the inversion domain, j(x) represents the contrast source matrix function, and h Ι (x) represents the first-class kernel function matrix corresponding to the stiffness matrix.
具体地,对于梯度场的第二类多线性方程组,方程组中,G=(A-1)HS表示梯度场,表示残差矩阵,N×N×Nsrc表示残差矩阵的维度,AH表示共轭转置刚度矩阵;Specifically, for the second type of multilinear equations of the gradient field, in the equations, G = (A -1 ) H S represents the gradient field, represents the residual matrix, N×N×N src represents the dimension of the residual matrix, A H represents the conjugate transposed stiffness matrix;
残差矩阵S的分量s=δ(y-x)激发的梯度场可以表示为The gradient field excited by the component s = δ(y-x) of the residual matrix S can be expressed as
其中,表示共轭运算,s(y)表示残差矩阵函数,hΙΙ(y)表示共轭转置刚度矩阵对应的第二类核函数矩阵。in, represents the conjugate operation, s(y) represents the residual matrix function, and h ΙΙ (y) represents the second-type kernel function matrix corresponding to the conjugate transposed stiffness matrix.
在其中一个实施例中,获取对比源矩阵函数j(x),对对比源矩阵函数j(x)进行二维傅里叶变换得到二维对比源空间谱矩阵表示为In one embodiment, a contrast source matrix function j(x) is obtained, and a two-dimensional Fourier transform is performed on the contrast source matrix function j(x) to obtain a two-dimensional contrast source spatial spectrum matrix Expressed as
其中,i2=-1,表示二维位置坐标空间,/>表示二维空间谱的频率向量,x=(x1,x2)表示二维空间位置坐标向量。Where i 2 = -1, Represents a two-dimensional position coordinate space, /> represents the frequency vector of the two-dimensional spatial spectrum, and x=(x 1 ,x 2 ) represents the two-dimensional spatial position coordinate vector.
在其中一个实施例中,构建刚度矩阵对应的第一类核函数hΙ(x),表示为In one embodiment, the first type kernel function h Ι (x) corresponding to the stiffness matrix is constructed, which is expressed as
其中,ω表示角频率,μ0表示真空中的磁导率,表示第一类Hankel函数,k表示不同频率的波数,||x||2表示二维空间位置坐标向量x到原点的距离;Where ω represents the angular frequency, μ0 represents the magnetic permeability in vacuum, represents the first kind of Hankel function, k represents the wave number of different frequencies, and ||x|| 2 represents the distance from the two-dimensional space position coordinate vector x to the origin;
对第一类核函数矩阵hΙ(x)进行二维傅里叶变换得到第一类核函数二维空间谱矩阵表示为Perform a two-dimensional Fourier transform on the first-class kernel function matrix h Ι (x) to obtain the first-class kernel function two-dimensional spatial spectrum matrix Expressed as
其中,在均匀背景中保持不变,可以预先计算并储存以供重用。in, remain constant in a uniform background and can be pre-computed and stored for reuse.
可以理解,通过构建核函数,可以使方程求解的精度不受网格划分大小的影响。It can be understood that by constructing the kernel function, the accuracy of the equation solution can be made unaffected by the size of the grid division.
可以理解,通过构建核函数,可以使电磁反演的精度不受反演在每个维度上划分的网格数的影响。It can be understood that by constructing the kernel function, the accuracy of electromagnetic inversion can be made unaffected by the number of grids divided in each dimension.
在其中一个实施例中,根据逐点乘法对二维对比源空间谱矩阵第一类核函数二维空间谱矩阵/>进行计算,得到二维散射场空间谱矩阵,表示为In one embodiment, the two-dimensional contrast source space spectrum matrix is multiplied by point-by-point multiplication. The first kind of kernel function two-dimensional spatial spectrum matrix/> Calculate and obtain the two-dimensional scattering field spatial spectrum matrix, which is expressed as
在其中一个实施例中,对二维散射场空间谱矩阵进行二维逆傅里叶变换,得到散射场的空间分布,表示为In one embodiment, the two-dimensional scattered field spatial spectrum matrix Perform a two-dimensional inverse Fourier transform to obtain the spatial distribution of the scattered field, which is expressed as
根据散射场的空间分布E(x)完成第一类多线性方程组的求解。The solution of the first kind of multilinear equations is completed according to the spatial distribution E(x) of the scattered field.
在其中一个实施例中,获取残差矩阵函数s(y),对残差矩阵函数s(y)进行二维傅里叶变换,得到二维残差空间谱矩阵,表示为In one embodiment, a residual matrix function s(y) is obtained, and a two-dimensional Fourier transform is performed on the residual matrix function s(y) to obtain a two-dimensional residual space spectrum matrix, which is expressed as
其中,Ky=(Ky1,Ky2)表示反演域的二维空间谱的频率向量,y=(y1,y2)表示反演域的二维空间位置坐标向量。Wherein, Ky =( Ky1 , Ky2 ) represents the frequency vector of the two-dimensional spatial spectrum of the inversion domain, and y =( y1 , y2 ) represents the two-dimensional spatial position coordinate vector of the inversion domain.
在其中一个实施例中,构建共轭转置刚度矩阵对应的第二类核函数矩阵hΙΙ(y),表示为In one embodiment, a second type kernel function matrix h ΙΙ (y) corresponding to the conjugate transposed stiffness matrix is constructed, which is expressed as
其中,表示共轭运算,||y||2表示反演域的二维空间位置坐标向量y到原点的距离;in, represents the conjugate operation, ||y|| 2 represents the distance from the two-dimensional spatial position coordinate vector y of the inversion domain to the origin;
对hΙΙ(y)进行二维傅里叶变换得到第二类核函数二维空间谱矩阵,表示为Performing a two-dimensional Fourier transform on h ΙΙ (y) yields the two-dimensional spatial spectrum matrix of the second-class kernel function, expressed as
其中,在均匀背景中保持不变,可以预先计算并储存以供重用。in, remain constant in a uniform background and can be pre-computed and stored for reuse.
在其中一个实施例中,根据逐点乘法对二维残差空间谱矩阵和第二类核函数二维空间谱矩阵/>进行计算,得到二维梯度场空间谱矩阵,表示为In one embodiment, the two-dimensional residual space spectrum matrix is multiplied by point-by-point multiplication. and the second type of kernel function two-dimensional spatial spectrum matrix/> Calculate and get the two-dimensional gradient field spatial spectrum matrix, expressed as
在其中一个实施例中,对二维梯度场空间谱矩阵进行二维逆傅里叶变换,得到梯度场的空间分布,表示为In one embodiment, the two-dimensional gradient field spatial spectrum matrix Perform a two-dimensional inverse Fourier transform to obtain the spatial distribution of the gradient field, which is expressed as
根据梯度场的空间分布g(y)完成第二类多线性方程组的求解。The solution of the second kind of multilinear equations is completed according to the spatial distribution of the gradient field g(y).
为进一步说明本发明所提出的匀背景下的TM极化快速互相关对比源电磁反演方法的有益效果,在FoamTwinDielTM和FoamMetExtTM数据集中进行了实验验证,FoamTwinDielTM数据集为一个大的组合介质圆柱(εr=1.45±0.15,diameter=80mm)和两个小的介质圆柱体(εr=3±0.3,diameter=31mm),FoamMetExtTM数据集是由一个大的介质圆柱体(εr=1.45±0.15,diameter=80mm)和一个小的金属圆柱体(diameter=28.5mm)组合而成。从18个不同的入射角对目标进行照射,在半径为1.67m的圆周上,对每个入射角的电场进行探测。即用均匀背景下的TM极化快速互相关对比源电磁反演方法对241×18×9散射场的复数据进行反演。To further illustrate the beneficial effects of the TM polarization rapid cross-correlation contrast source electromagnetic inversion method under uniform background proposed by the present invention, experimental verification was carried out in FoamTwinDielTM and FoamMetExtTM data sets. The FoamTwinDielTM data set is a large combined dielectric cylinder (ε r =1.45±0.15, diameter=80mm) and two small dielectric cylinders (ε r =3±0.3, diameter=31mm), and the FoamMetExtTM data set is a combination of a large dielectric cylinder (ε r =1.45±0.15, diameter=80mm) and a small metal cylinder (diameter=28.5mm). The target was illuminated from 18 different incident angles, and the electric field at each incident angle was detected on a circle with a radius of 1.67m. That is, the TM polarization rapid cross-correlation contrast source electromagnetic inversion method under uniform background was used to invert the complex data of 241×18×9 scattered fields.
在FoamTwinDielTM数据集和FoamMetExtTM数据集中,在二维情况下,反演区域设置为[-75,75;-90,60]mm2,网格大小为100×100,频率步进为1GHz,频率取值范围从2GHz到10GHz的9个频率下的均匀背景下的TM极化快速互相关对比源电磁反演方法的反演结果如图2所示,其中,图2中的(a)为在FoamTwinDielTM数据集中反演得到的相对介电常数示意图,(b)为在FoamTwinDielTM数据集中反演得到的电导率示意图,(c)为在FoamMetExtTM数据集中反演得到的相对介电常数示意图,(d)为在FoamMetExtTM数据集中反演得到的电导率示意图。由图2可知,本发明提出的均匀背景下的TM极化快速互相关对比源电磁反演方法在两个数据集中都准确地再现了两个目标的形状和介电参数值。In the FoamTwinDielTM dataset and the FoamMetExtTM dataset, in the two-dimensional case, the inversion region is set to [-75, 75; -90, 60] mm2 , the grid size is 100×100, the frequency step is 1 GHz, and the frequency range is from 2 GHz to 10 GHz. The inversion results of the TM polarization rapid cross-correlation contrast source electromagnetic inversion method under a uniform background at 9 frequencies are shown in FIG2, where (a) in FIG2 is a schematic diagram of the relative dielectric constant inverted in the FoamTwinDielTM dataset, (b) is a schematic diagram of the conductivity inverted in the FoamTwinDielTM dataset, (c) is a schematic diagram of the relative dielectric constant inverted in the FoamMetExtTM dataset, and (d) is a schematic diagram of the conductivity inverted in the FoamMetExtTM dataset. As shown in FIG2, the TM polarization rapid cross-correlation contrast source electromagnetic inversion method under a uniform background proposed by the present invention accurately reproduces the shapes and dielectric parameter values of the two targets in both datasets.
在一个具体的实施例中,还将本发明提出的均匀背景下的TM极化快速互相关对比源电磁反演方法在FoamTwinDielTM数据集和FoamMetExtTM数据集的运行时间进行了比较,如表1所示,表1中Iteration number表示迭代次数,Total time表示完整运行时间,表示平均运行时间,Niter表示迭代数,Nf表示频率数。将本发明所提反演方法的平均运行时间与现有技术中的基于LU分解互相关对比源电磁反演方法的平均运行时间进行比较,可以知道,对于100×100网格规模来说,LU分解用时很少,因此可以忽略不计,但随着网格规模的增加,LU分解花费的时间会明显增加。基于LU分解对于网格大小是有要求的,即网格大小需要小于电磁波最短波长的15分之一才具备可信的计算精度,否则计算误差不可忽略;而相反地,本发明的均匀背景下的TM极化快速互相关对比源电磁反演方法基于理论解构建核函数,精度不受划分网格大小的影响。因此,尽管基于LU分解的反演方法和本发明所提反演方法阶数相同,但是相较于现有技术,本发明所提的电磁反演的计算速度更快,计算效率和计算精度更高,且本发明所提的基于TM极化快速互相关对比源电磁反演方法,引用了FDFD刚度矩阵,不需要同基于LU分解的反演方法一样牺牲反演边界附近的网格。In a specific embodiment, the running time of the TM polarization fast cross-correlation contrast source electromagnetic inversion method under uniform background proposed by the present invention is compared on the FoamTwinDielTM dataset and the FoamMetExtTM dataset, as shown in Table 1, where Iteration number represents the number of iterations, and Total time represents the complete running time. Represents the average running time, N iter represents the number of iterations, and N f represents the number of frequencies. Comparing the average running time of the inversion method proposed in the present invention with the average running time of the electromagnetic inversion method based on LU decomposition cross-correlation contrast source in the prior art, it can be seen that for a 100×100 grid scale, LU decomposition takes very little time, so it can be ignored, but as the grid scale increases, the time spent on LU decomposition will increase significantly. There are requirements for the grid size based on LU decomposition, that is, the grid size needs to be less than one-fifteenth of the shortest wavelength of the electromagnetic wave to have a reliable calculation accuracy, otherwise the calculation error cannot be ignored; on the contrary, the TM polarization fast cross-correlation contrast source electromagnetic inversion method under a uniform background of the present invention constructs a kernel function based on the theoretical solution, and the accuracy is not affected by the size of the divided grid. Therefore, although the inversion method based on LU decomposition and the inversion method proposed in the present invention have the same order, compared with the prior art, the electromagnetic inversion proposed in the present invention has a faster calculation speed, higher calculation efficiency and higher calculation accuracy. In addition, the electromagnetic inversion method based on TM polarization fast cross-correlation contrast source proposed in the present invention refers to the FDFD stiffness matrix, and does not need to sacrifice the grid near the inversion boundary like the inversion method based on LU decomposition.
表1均匀背景下的TM极化快速互相关对比源电磁反演方法在两种数据集中的运行时间Table 1 Running time of the TM polarization fast cross-correlation contrast source electromagnetic inversion method in the uniform background for two datasets
应该理解的是,虽然图1流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that, although the various steps in the flowchart of Fig. 1 are shown in sequence according to the indication of the arrows, these steps are not necessarily executed in sequence according to the order indicated by the arrows. Unless there is a clear explanation in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least a part of the steps in Fig. 1 may include a plurality of sub-steps or a plurality of stages, and these sub-steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these sub-steps or stages is not necessarily to be carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the sub-steps or stages of other steps.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the invention patent. It should be pointed out that, for a person of ordinary skill in the art, several variations and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the patent of the present application shall be subject to the attached claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210720577.4A CN115130341B (en) | 2022-06-23 | 2022-06-23 | TM polarization fast cross-correlation contrast source electromagnetic inversion method under uniform background |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210720577.4A CN115130341B (en) | 2022-06-23 | 2022-06-23 | TM polarization fast cross-correlation contrast source electromagnetic inversion method under uniform background |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115130341A CN115130341A (en) | 2022-09-30 |
CN115130341B true CN115130341B (en) | 2024-04-12 |
Family
ID=83379349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210720577.4A Active CN115130341B (en) | 2022-06-23 | 2022-06-23 | TM polarization fast cross-correlation contrast source electromagnetic inversion method under uniform background |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115130341B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102798898A (en) * | 2012-08-20 | 2012-11-28 | 中国地质科学院矿产资源研究所 | Three-dimensional inversion method for nonlinear conjugate gradient of magnetotelluric field |
CN109977585A (en) * | 2019-04-04 | 2019-07-05 | 中南大学 | A kind of high-precision magnetotelluric the Forward Modeling |
CN111103627A (en) * | 2020-01-14 | 2020-05-05 | 桂林理工大学 | Method and device for two-dimensional inversion of electric field data by magnetotelluric TM polarization mode |
CN114297905A (en) * | 2022-03-10 | 2022-04-08 | 中南大学 | A Fast Numerical Simulation Method for Two-Dimensional Electromagnetic Field |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6904374B2 (en) * | 2003-09-29 | 2005-06-07 | The Boeing Company | Methods and systems for predicting electromagnetic scattering |
WO2020046555A1 (en) * | 2018-08-27 | 2020-03-05 | Exxonmobil Research And Engineering Company | Inversion of large, nearly-homogeneous geobodies via ultra low-dimensional shape representation using orthogonal basis functions |
-
2022
- 2022-06-23 CN CN202210720577.4A patent/CN115130341B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102798898A (en) * | 2012-08-20 | 2012-11-28 | 中国地质科学院矿产资源研究所 | Three-dimensional inversion method for nonlinear conjugate gradient of magnetotelluric field |
CN109977585A (en) * | 2019-04-04 | 2019-07-05 | 中南大学 | A kind of high-precision magnetotelluric the Forward Modeling |
CN111103627A (en) * | 2020-01-14 | 2020-05-05 | 桂林理工大学 | Method and device for two-dimensional inversion of electric field data by magnetotelluric TM polarization mode |
CN114297905A (en) * | 2022-03-10 | 2022-04-08 | 中南大学 | A Fast Numerical Simulation Method for Two-Dimensional Electromagnetic Field |
Non-Patent Citations (3)
Title |
---|
Application of A GMMV-based Multi-frequency Inversion Method to 3-D Half-space Inverse Scattering Problems;Shilong Sun等;《URSI GASS》;20200905;全文 * |
均匀介质中基于积分方程的二维电磁成像模拟;宋殿光;魏宝君;;微波学报;20100815(第S1期);全文 * |
多重网格准线性近似技术在三维航空电磁正演模拟中的应用;殷长春;卢永超;刘云鹤;张博;齐彦福;蔡晶;;吉林大学学报(地球科学版);20180126(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115130341A (en) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dick et al. | Discrepancy theory and quasi-Monte Carlo integration | |
Liu et al. | Spectral coarsening of geometric operators | |
CN113158492B (en) | Full-implicit double-time-step calculation method of time-varying electromagnetic field | |
Li | A fast singular boundary method for 3D Helmholtz equation | |
CN118551630B (en) | Method for accelerating finite volume of grid sequence of frequency domain electromagnetic field of structural grid | |
Liu et al. | Efficient and qualified mesh generation for Gaussian molecular surface using adaptive partition and piecewise polynomial approximation | |
Priddin et al. | Applying an iterative method numerically to solve n× n matrix Wiener–Hopf equations with exponential factors | |
Franzen et al. | General nonlinearities in so (2)-equivariant cnns | |
Dziekonski et al. | Communication and load balancing optimization for finite element electromagnetic simulations using multi-GPU workstation | |
CN115130341B (en) | TM polarization fast cross-correlation contrast source electromagnetic inversion method under uniform background | |
CN114755652B (en) | Method for acquiring electric large-size target broadband RCS based on ACA and CAT | |
CN115099089B (en) | TE polarization rapid cross-correlation contrast source electromagnetic inversion method under uniform background | |
Lingsch et al. | Beyond regular grids: Fourier-based neural operators on arbitrary domains | |
CN115114821B (en) | Three-dimensional fast cross-correlation contrast source electromagnetic inversion method under uniform background | |
JP4052181B2 (en) | Communication hiding parallel fast Fourier transform method | |
Castrillón-Candás et al. | A discrete adapted hierarchical basis solver for radial basis function interpolation | |
Sun et al. | Improved real-space parallelizable matrix-product state compression and its application to unitary quantum dynamics simulation | |
JP2000200261A (en) | Fourier transforming method, simulation method, and program recording medium | |
CN112329308B (en) | Electromagnetic scattering simulation method for ship model based on iterative multilayer fast multipole | |
CN118171539B (en) | Quasi-periodic array electromagnetic calculation method based on finite element boundary element region decomposition | |
Dziekonski et al. | GPU-accelerated finite element method | |
CN106204676A (en) | CT method for reconstructing based on Mojette conversion | |
Imanparast et al. | A linear time randomized approximation algorithm for Euclidean matching | |
Chen et al. | Advances in biomolecular surface meshing and its applications to mathematical modeling | |
Franzen et al. | Nonlinearities in steerable so (2)-equivariant cnns |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |