CN115127246A - Energy-saving system and method of chiller controlled by frequency converter - Google Patents
Energy-saving system and method of chiller controlled by frequency converter Download PDFInfo
- Publication number
- CN115127246A CN115127246A CN202110779432.7A CN202110779432A CN115127246A CN 115127246 A CN115127246 A CN 115127246A CN 202110779432 A CN202110779432 A CN 202110779432A CN 115127246 A CN115127246 A CN 115127246A
- Authority
- CN
- China
- Prior art keywords
- chiller
- water
- guide vane
- unit
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 177
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000001257 hydrogen Substances 0.000 claims abstract description 64
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 64
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims abstract description 24
- 238000013022 venting Methods 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000033228 biological regulation Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明涉及冷水系统调节领域,提供一种变频器控制的冷水机节能系统及方法,包括:供气单元、氢气压缩机、第一冷水单元、第二冷水单元、换热器、加氢机、放散单元和加氢车辆;供气单元与氢气压缩机连接,氢气压缩机与第一冷水单元连接,氢气压缩机与放散单元连接,氢气压缩机与换热器连接,换热器与第二冷水单元连接,换热器与加氢机连接,加氢机与加氢车辆连接,加氢机与放散单元连接。本发明根据冷水机组的进水口与出水口的水温差,以及导流叶片的负荷范围调节冷水机组的功率,使得冷水机组的启动运行均有明显的节能效果;采用变频器驱动冷水机组,改善了冷水机组的运行性能,防止了喘振,增强了运行调节的灵活性。
The invention relates to the field of chilled water system regulation, and provides an inverter-controlled chiller energy-saving system and method, comprising: an air supply unit, a hydrogen compressor, a first chilled water unit, a second chilled water unit, a heat exchanger, a hydrogenation machine, The venting unit and the hydrogenation vehicle; the gas supply unit is connected with the hydrogen compressor, the hydrogen compressor is connected with the first cold water unit, the hydrogen compressor is connected with the venting unit, the hydrogen compressor is connected with the heat exchanger, and the heat exchanger is connected with the second cold water The unit is connected, the heat exchanger is connected with the hydrogenation machine, the hydrogenation machine is connected with the hydrogenation vehicle, and the hydrogenation machine is connected with the discharge unit. The invention adjusts the power of the chiller according to the water temperature difference between the water inlet and the outlet of the chiller and the load range of the guide vanes, so that the chiller has obvious energy-saving effect when starting and running; the frequency converter is used to drive the chiller, which improves the The operating performance of the chiller prevents surge and enhances the flexibility of operation adjustment.
Description
技术领域technical field
本发明涉及冷水系统调节领域,尤其涉及一种变频器控制的冷水机节能系统及方法。The invention relates to the field of chilled water system regulation, in particular to an energy-saving system and method for a chiller controlled by a frequency converter.
背景技术Background technique
现在一般加氢站都采用H2冷却系统专用风冷式乙二醇冷冻水机组,冷冻水机组采用工作频率为380V50HZ交流三相电来作为动力能源,因冷冻水机组制冷量的实际需求,一般在加氢站使用的冷冻水机组整机功率在15KW~260KW;而在生产使用中冷冻水机组是以随着氢气增压压缩机和加氢机的启动、停止而运行,在这期间冷冻水机组是以定频50HZ的频率来一直运行;当冷冻水机组的出口水温度达到需求值时,冷冻水机组还以定频50HZ的频率来运行;大功率耗电设备长期以这种方式工作运行,所消耗的电能也不容小觑,这在能源上也是一种浪费。At present, general hydrogen refueling stations use air-cooled glycol chilled water units dedicated to H2 cooling systems. The chilled water units use AC three-phase electricity with a working frequency of 380V50HZ as power energy. The power of the chilled water unit used in the hydrogen refueling station is 15KW to 260KW; in production and use, the chilled water unit runs with the start and stop of the hydrogen booster compressor and hydrogen refueling machine. During this period, the chilled water unit runs. It runs at a fixed frequency of 50HZ; when the outlet water temperature of the chilled water unit reaches the demand value, the chilled water unit also runs at a fixed frequency of 50HZ; high-power power-consuming equipment operates in this way for a long time. The power consumption is also not to be underestimated, which is also a waste of energy.
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。The above content is only used to assist the understanding of the technical solutions of the present invention, and does not mean that the above content is the prior art.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于,解决现有技术中,H2冷却系统专用风冷式乙二醇冷冻水机组耗电量过大的技术问题。The main purpose of the present invention is to solve the technical problem of excessive power consumption of the air-cooled glycol chilled water unit dedicated to the H 2 cooling system in the prior art.
为实现上述目的,本发明提供一种变频器控制的冷水机节能系统,包括:供气单元、氢气压缩机、第一冷水单元、第二冷水单元、换热器、加氢机、放散单元和加氢车辆;In order to achieve the above purpose, the present invention provides an energy-saving system for a chiller controlled by a frequency converter, comprising: an air supply unit, a hydrogen compressor, a first chiller unit, a second chiller unit, a heat exchanger, a hydrogenation machine, a venting unit and Hydrogenated vehicles;
所述供气单元与所述氢气压缩机连接,所述氢气压缩机与所述第一冷水单元连接,所述氢气压缩机的放散口与所述放散单元的第一入口连接,所述氢气压缩机的氢气出口与所述换热器的进气口连接,所述换热器与所述第二冷水单元连接,所述换热器的出气口与所述加氢机的进气口连接,所述加氢机的加注口与所述加氢车辆连接,所述加氢机的放散口与所述放散单元的第二入口连接。The air supply unit is connected to the hydrogen compressor, the hydrogen compressor is connected to the first cold water unit, the discharge port of the hydrogen compressor is connected to the first inlet of the discharge unit, and the hydrogen compressor is connected to the first inlet of the discharge unit. The hydrogen outlet of the machine is connected to the air inlet of the heat exchanger, the heat exchanger is connected to the second cold water unit, the air outlet of the heat exchanger is connected to the air inlet of the hydrogenation machine, The filling port of the hydrogenation machine is connected with the hydrogenation vehicle, and the venting port of the hydrogenation machine is connected with the second inlet of the venting unit.
优选地,所述供气单元与所述氢气压缩机连接具体为:Preferably, the connection between the gas supply unit and the hydrogen compressor is specifically:
所述供气单元的氮气出口与第一气阀的一端连接,所述第一气阀的另一端与所述氢气压缩机的氮气入口连接;The nitrogen outlet of the air supply unit is connected to one end of the first air valve, and the other end of the first air valve is connected to the nitrogen inlet of the hydrogen compressor;
所述供气单元的氢气出口与第二气阀的一端连接,所述第二气阀的另一端与所述氢气压缩机的氢气入口连接。The hydrogen outlet of the gas supply unit is connected to one end of the second gas valve, and the other end of the second gas valve is connected to the hydrogen inlet of the hydrogen compressor.
优选地,所述第一冷水单元包括:第四水阀、第五水阀、第一温度传感器、第二温度传感器和第一冷水机组;Preferably, the first chiller unit includes: a fourth water valve, a fifth water valve, a first temperature sensor, a second temperature sensor and a first chiller;
所述氢气压缩机与所述第一冷水单元连接具体为:The connection between the hydrogen compressor and the first cold water unit is specifically:
所述氢气压缩机的出水口与所述第二温度传感器和所述第五水阀的一端连接,所述第五水阀的另一端与所述第一冷水机组的进水口连接;The water outlet of the hydrogen compressor is connected to one end of the second temperature sensor and the fifth water valve, and the other end of the fifth water valve is connected to the water inlet of the first chiller;
所述氢气压缩机的进水口与所述第一温度传感器和所述第四水阀的一端连接,所述第四水阀的另一端与所述第一冷水机组的出水口连接。The water inlet of the hydrogen compressor is connected to one end of the first temperature sensor and the fourth water valve, and the other end of the fourth water valve is connected to the water outlet of the first chiller.
优选地,所述第一冷水机组包括:第一变频器、第一冷水压缩机、第一散热风扇、第一控制器和第一导流叶片;Preferably, the first chiller comprises: a first frequency converter, a first chiller compressor, a first cooling fan, a first controller and a first guide vane;
所述第一控制器与所述第一温度传感器、所述第二温度传感器、所述第一变频器和所述第一导流叶片电性连接,所述变频器与所述第一冷水压缩机电性连接,所述第一冷水压缩机与所述第一散热风扇电性连接。The first controller is electrically connected with the first temperature sensor, the second temperature sensor, the first frequency converter and the first guide vane, and the frequency converter is connected with the first cold water compression Electrically connected, the first cold water compressor is electrically connected with the first cooling fan.
优选地,所述第二冷水单元包括:第六水阀、第七水阀、第三温度传感器、第四温度传感器和第二冷水机组;Preferably, the second chiller unit includes: a sixth water valve, a seventh water valve, a third temperature sensor, a fourth temperature sensor and a second chiller;
所述氢气压缩机的氢气出口与所述换热器的进气口连接,所述换热器与所述第二冷水单元连接,具体为:The hydrogen outlet of the hydrogen compressor is connected to the air inlet of the heat exchanger, and the heat exchanger is connected to the second cold water unit, specifically:
所述氢气压缩机的氢气出口与第三气阀的一端连接,所述第三气阀的另一端与所述换热器的进气口连接;The hydrogen outlet of the hydrogen compressor is connected to one end of the third air valve, and the other end of the third air valve is connected to the air inlet of the heat exchanger;
所述换热器的出水口与所述第四温度传感器和所述第七水阀的一端连接,所述第七水阀的另一端与所述第二冷水机组的进水口连接;The water outlet of the heat exchanger is connected to one end of the fourth temperature sensor and the seventh water valve, and the other end of the seventh water valve is connected to the water inlet of the second chiller;
所述换热器的进水口与所述第三温度传感器和所述第六水阀的一端连接,所述第六水阀的另一端与所述第二冷水机组的出水口连接。The water inlet of the heat exchanger is connected to one end of the third temperature sensor and the sixth water valve, and the other end of the sixth water valve is connected to the water outlet of the second chiller.
优选地,所述第二冷水机组包括:第二变频器、第二冷水压缩机、第二散热风扇、第二控制器和第二导流叶片;Preferably, the second chiller comprises: a second frequency converter, a second chiller compressor, a second cooling fan, a second controller and a second guide vane;
所述第二控制器与所述第三温度传感器、所述第四温度传感器、所述第二变频器和所述第二导流叶片电性连接,所述变频器与所述第二冷水压缩机电性连接,所述第二冷水压缩机与所述第二散热风扇电性连接。The second controller is electrically connected with the third temperature sensor, the fourth temperature sensor, the second frequency converter and the second guide vane, and the frequency converter is compressed with the second cold water Electrically connected, the second cold water compressor is electrically connected with the second cooling fan.
优选地,所述换热器的出气口与所述加氢机的进气口连接具体为:Preferably, the connection between the air outlet of the heat exchanger and the air inlet of the hydrogenation machine is as follows:
所述换热器的出气口与第八气阀的一端连接,所述第八气阀的另一端与所述加氢机的进气口连接。The air outlet of the heat exchanger is connected to one end of the eighth air valve, and the other end of the eighth air valve is connected to the air inlet of the hydrogenation machine.
一种变频器控制的冷水机节能方法,基于所述的变频器控制的冷水机节能系统实现,包括步骤:An energy-saving method for a chiller controlled by a frequency converter, which is realized based on the energy-saving system for a water chiller controlled by the frequency converter, comprising the steps of:
S1:启动所述变频器控制的冷水机节能系统,设置所述第一冷水机组中所述第一导流叶片的负荷范围,和所述第二冷水机组中所述第二导流叶片的负荷范围;S1: Start the chiller energy-saving system controlled by the inverter, set the load range of the first guide vanes in the first chiller, and the load of the second guide vanes in the second chiller scope;
S2:所述第一温度传感器实时检测所述第一冷水机组的出水温度T1,所述第二温度传感器实时检测所述第一冷水机组的进水温度T2;所述第三温度传感器实时检测所述第二冷水机组的出水温度T3,所述第四温度传感器实时检测所述第二冷水机组的进水温度T4;S2: The first temperature sensor detects the water outlet temperature T 1 of the first chiller in real time, the second temperature sensor detects the inlet water temperature T 2 of the first chiller in real time; the third temperature sensor detects in real time Detecting the outlet water temperature T 3 of the second chiller, and the fourth temperature sensor detects the inlet water temperature T 4 of the second chiller in real time;
S3:根据所述第一导流叶片的负荷范围、所述第一冷水机组的出水温度T1和所述第一冷水机组的进水温度T2调节所述第一冷水机组的工作状态;根据所述第二导流叶片的负荷范围、所述第二冷水机组的出水温度T3和所述第二冷水机组的进水温度T4调节所述第二冷水机组的工作状态。S3 : Adjust the working state of the first chiller according to the load range of the first guide vane, the outlet water temperature T1 of the first chiller, and the inlet water temperature T2 of the first chiller; The load range of the second guide vane, the outlet water temperature T3 of the second chiller unit and the inlet water temperature T4 of the second chiller unit adjust the working state of the second chiller unit.
优选地,步骤S3具体为:Preferably, step S3 is specifically:
S31:若所述第一导流叶片的负荷范围在70%~100%则所述第一导流叶片为全开;若所述第一导流叶片的负荷范围低于70%则所述第一导流叶片开始闭合,当所述第一导流叶片的负荷范围为50%时所述第一导流叶片为全闭;若所述第一导流叶片的负荷范围低于50%则所述第一冷水压缩机开始增加功率,当所述第一导流叶片的负荷范围为20%时所述第一冷水压缩机增加到最大130%;S31: If the load range of the first guide vane is 70% to 100%, the first guide vane is fully opened; if the load range of the first guide vane is lower than 70%, the first guide vane is A guide vane begins to close, when the load range of the first guide vane is 50%, the first guide vane is fully closed; if the load range of the first guide vane is lower than 50%, the The first cold water compressor starts to increase power, and when the load range of the first guide vane is 20%, the first cold water compressor increases to a maximum of 130%;
若所述出水温度T1减去所述进水温度T2的值大于预设值T5,则所述第一冷水压缩机调整为当前运行功率的150%工作,否则所述第一冷水压缩机按照当前运行功率工作;If the value of the outlet water temperature T 1 minus the inlet water temperature T 2 is greater than the preset value T 5 , the first cold water compressor is adjusted to work at 150% of the current operating power, otherwise the first cold water compressor The machine works according to the current operating power;
S32:若所述第二导流叶片的负荷范围在70%~100%则所述第二导流叶片为全开;若所述第二导流叶片的负荷范围低于70%则所述第二导流叶片开始闭合,当所述第二导流叶片的负荷范围为50%时所述第二导流叶片为全闭;若所述第二导流叶片的负荷范围低于50%则所述第二冷水压缩机开始增加功率,当所述第二导流叶片的负荷范围为20%时所述第二冷水压缩机增加到最大130%;S32: If the load range of the second guide vane is 70% to 100%, the second guide vane is fully opened; if the load range of the second guide vane is lower than 70%, the second guide vane is The second guide vane begins to close, and the second guide vane is fully closed when the load range of the second guide vane is 50%; if the load range of the second guide vane is lower than 50%, the second guide vane is fully closed. The second cold water compressor starts to increase power, and when the load range of the second guide vane is 20%, the second cold water compressor increases to a maximum of 130%;
若所述出水温度T3减去所述进水温度T4的值大于预设值T6,则所述第二冷水压缩机调整为当前运行功率的150%工作,否则所述第二冷水压缩机按照当前运行功率工作。If the value of the outlet water temperature T 3 minus the inlet water temperature T 4 is greater than the preset value T 6 , the second cold water compressor is adjusted to work at 150% of the current operating power, otherwise the second cold water compressor The machine works according to the current operating power.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1、根据冷水机组的进水口与出水口的水温差,以及导流叶片的负荷范围调节冷水机组的功率,使得冷水机组的启动运行均有明显的节能效果;1. Adjust the power of the chiller according to the water temperature difference between the water inlet and the outlet of the chiller and the load range of the guide vanes, so that the startup and operation of the chiller have obvious energy-saving effects;
2、采用变频器驱动冷水机组,改善了冷水机组的运行性能,防止了喘振,增强了运行调节的灵活性。2. The frequency converter is used to drive the chiller, which improves the running performance of the chiller, prevents surge, and enhances the flexibility of operation adjustment.
附图说明Description of drawings
图1为本发明实施例的系统结构图;1 is a system structure diagram of an embodiment of the present invention;
图2为本发明实施例的方法流程图;2 is a flow chart of a method according to an embodiment of the present invention;
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
参照图1,本发明提供一种变频器控制的冷水机节能系统,包括:供气单元13、氢气压缩机14、第一冷水单元、第二冷水单元、换热器17、加氢机19、放散单元16和加氢车辆20;1, the present invention provides an energy-saving system for a chiller controlled by a frequency converter, including: an
所述供气单元13与所述氢气压缩机14连接,所述氢气压缩机14与所述第一冷水单元连接,所述氢气压缩机14的放散口与所述放散单元16的第一入口连接,所述氢气压缩机14的氢气出口与所述换热器17的进气口连接,所述换热器17与所述第二冷水单元连接,所述换热器17的出气口与所述加氢机19的进气口连接,所述加氢机19的加注口与所述加氢车辆20连接,所述加氢机19的放散口与所述放散单元16的第二入口连接。The
本实施例中,所述供气单元13与所述氢气压缩机14连接具体为:In this embodiment, the connection between the
所述供气单元13的氮气出口与第一气阀1的一端连接,所述第一气阀1的另一端与所述氢气压缩机14的氮气入口连接;The nitrogen outlet of the
所述供气单元13的氢气出口与第二气阀2的一端连接,所述第二气阀2的另一端与所述氢气压缩机14的氢气入口连接。The hydrogen outlet of the
本实施例中,所述第一冷水单元包括:第四水阀4、第五水阀5、第一温度传感器9、第二温度传感器10和第一冷水机组15;In this embodiment, the first chiller unit includes: a fourth water valve 4 , a fifth water valve 5 , a
所述氢气压缩机14与所述第一冷水单元连接具体为:The connection between the
所述氢气压缩机14的出水口与所述第二温度传感器10和所述第五水阀5的一端连接,所述第五水阀5的另一端与所述第一冷水机组15的进水口连接;The water outlet of the
所述氢气压缩机14的进水口与所述第一温度传感器9和所述第四水阀4的一端连接,所述第四水阀4的另一端与所述第一冷水机组15的出水口连接。The water inlet of the
本实施例中,所述第一冷水机组15包括:第一变频器、第一冷水压缩机、第一散热风扇、第一控制器和第一导流叶片;In this embodiment, the
所述第一控制器与所述第一温度传感器9、所述第二温度传感器10、所述第一变频器和所述第一导流叶片电性连接,所述变频器与所述第一冷水压缩机电性连接,所述第一冷水压缩机与所述第一散热风扇电性连接;The first controller is electrically connected to the
具体实现中,第一冷水压缩机由其内部的电机通过增速齿轮带动第一散热风扇的叶轮高速旋转,叶轮高速旋转的离心力压缩制冷剂气体并使气体的大部分动能转变为压力能;显然,制冷剂气体从叶轮获得的能量最终是通过电机输入的,而电机的输入功率满足以下关系式:In the specific implementation, the first cold water compressor drives the impeller of the first cooling fan to rotate at a high speed through the speed-increasing gear, and the centrifugal force of the high-speed rotation of the impeller compresses the refrigerant gas and converts most of the kinetic energy of the gas into pressure energy; obviously , the energy obtained by the refrigerant gas from the impeller is finally input through the motor, and the input power of the motor satisfies the following relationship:
P=KDV/nP=KDV/n
其中,P为电机输入功率,D制冷剂气体的全压,V为制冷剂气体的体积流量,n为电机效率,K为计算常数;Among them, P is the input power of the motor, D is the full pressure of the refrigerant gas, V is the volume flow of the refrigerant gas, n is the motor efficiency, and K is the calculation constant;
上式中D与电机的转速平方成正比,V与电机的转速成正比,由此可得,电机功率与电机的转速的立方成正比,即减小转速,将大大减小功率,同时提高第一冷水压缩机的效率,降低第一冷水机组15的功耗;第一变频器根据第一冷水机组15的出水温度和第一冷水压缩机的压头来优化电机的转速和第一导流叶片的开度,从而使第一冷水机组15始终在最佳状态区运行;第一变频器控制的基本参数是冷水出水温度实际值与设定值的温差;当第一冷水机组15在满负荷工况下运行时,第一导流叶片全开,电机根据速度逻辑完成温差控制,随着负荷的下降,电机转速将减小,并通过第一冷水压缩机的压头和系统最小允许转速来控制电机,直至转速达到最小为止;此时,电机将保持在最小转速,并由电机转速来给第一导流叶片的控制提供信号,使其减小导流叶片的开度;随着负荷的继续下降,来自第一冷水压缩机的转速信号继续关闭第一导流叶片,并进一步降低电机的转速。In the above formula, D is proportional to the square of the speed of the motor, and V is proportional to the speed of the motor. From this, it can be obtained that the power of the motor is proportional to the cube of the speed of the motor, that is, reducing the speed will greatly reduce the power and improve the first speed. The efficiency of the first chiller compressor reduces the power consumption of the
本实施例中,所述第二冷水单元包括:第六水阀6、第七水阀7、第三温度传感器11、第四温度传感器12和第二冷水机组18;In this embodiment, the second chiller unit includes: a sixth water valve 6 , a seventh water valve 7 , a
所述氢气压缩机14的氢气出口与所述换热器17的进气口连接,所述换热器17与所述第二冷水单元连接,具体为:The hydrogen outlet of the
所述氢气压缩机14的氢气出口与第三气阀3的一端连接,所述第三气阀3的另一端与所述换热器17的进气口连接;The hydrogen outlet of the
所述换热器17的出水口与所述第四温度传感器12和所述第七水阀7的一端连接,所述第七水阀7的另一端与所述第二冷水机组18的进水口连接;The water outlet of the heat exchanger 17 is connected to the
所述换热器17的进水口与所述第三温度传感器11和所述第六水阀6的一端连接,所述第六水阀6的另一端与所述第二冷水机组18的出水口连接。The water inlet of the heat exchanger 17 is connected to the
本实施例中,所述第二冷水机组18包括:第二变频器、第二冷水压缩机、第二散热风扇、第二控制器和第二导流叶片;In this embodiment, the
所述第二控制器与所述第三温度传感器11、所述第四温度传感器12、所述第二变频器和所述第二导流叶片电性连接,所述变频器与所述第二冷水压缩机电性连接,所述第二冷水压缩机与所述第二散热风扇电性连接;The second controller is electrically connected to the
具体实现中,第二冷水机组18的工作原理与第一冷水机组15相同。In specific implementation, the working principle of the
本实施例中,所述换热器17的出气口与所述加氢机19的进气口连接具体为:In this embodiment, the connection between the air outlet of the heat exchanger 17 and the air inlet of the
所述换热器17的出气口与第八气阀8的一端连接,所述第八气阀8的另一端与所述加氢机19的进气口连接。The air outlet of the heat exchanger 17 is connected to one end of the eighth air valve 8 , and the other end of the eighth air valve 8 is connected to the air inlet of the
本发明提供一种变频器控制的冷水机节能方法,基于上述的变频器控制的冷水机节能系统实现,包括步骤:The present invention provides an energy-saving method for a chiller controlled by a frequency converter, which is realized based on the above-mentioned frequency-converter-controlled energy-saving system for a water chiller, and includes the steps:
S1:启动所述变频器控制的冷水机节能系统,设置所述第一冷水机组15中所述第一导流叶片的负荷范围,和所述第二冷水机组18中所述第二导流叶片的负荷范围;S1: Start the chiller energy-saving system controlled by the inverter, set the load range of the first guide vanes in the
S2:所述第一温度传感器9实时检测所述第一冷水机组15的出水温度T1,所述第二温度传感器10实时检测所述第一冷水机组15的进水温度T2;所述第三温度传感器11实时检测所述第二冷水机组18的出水温度T3,所述第四温度传感器12实时检测所述第二冷水机组18的进水温度T4;S2: The
S3:根据所述第一导流叶片的负荷范围、所述第一冷水机组15的出水温度T1和所述第一冷水机组15的进水温度T2调节所述第一冷水机组15的工作状态;根据所述第二导流叶片的负荷范围、所述第二冷水机组18的出水温度T3和所述第二冷水机组18的进水温度T4调节所述第二冷水机组18的工作状态。S3: Adjust the operation of the
本实施例中,步骤S3具体为:In this embodiment, step S3 is specifically:
S31:若所述第一导流叶片的负荷范围在70%~100%则所述第一导流叶片为全开;若所述第一导流叶片的负荷范围低于70%则所述第一导流叶片开始闭合,当所述第一导流叶片的负荷范围为50%时所述第一导流叶片为全闭;若所述第一导流叶片的负荷范围低于50%,为避免出现喘振,所述第一冷水压缩机开始增加功率,当所述第一导流叶片的负荷范围为20%时所述第一冷水压缩机增加到最大130%,这样可有效加大第一冷水机组15的运行范围;S31: If the load range of the first guide vane is 70% to 100%, the first guide vane is fully opened; if the load range of the first guide vane is lower than 70%, the first guide vane is A guide vane starts to close, when the load range of the first guide vane is 50%, the first guide vane is fully closed; if the load range of the first guide vane is lower than 50%, it is To avoid surge, the first cold water compressor starts to increase power, and when the load range of the first guide vane is 20%, the first cold water compressor increases to a maximum of 130%, which can effectively increase the first cold water compressor. an operating range of the
若所述出水温度T1减去所述进水温度T2的值大于预设值T5,则所述第一冷水压缩机调整为当前运行功率的150%工作,否则所述第一冷水压缩机按照当前运行功率工作;预设值T5可根据实际情况具体设置;If the value of the outlet water temperature T 1 minus the inlet water temperature T 2 is greater than the preset value T 5 , the first cold water compressor is adjusted to work at 150% of the current operating power, otherwise the first cold water compressor The machine works according to the current operating power; the preset value T5 can be set according to the actual situation;
S32:若所述第二导流叶片的负荷范围在70%~100%则所述第二导流叶片为全开;若所述第二导流叶片的负荷范围低于70%则所述第二导流叶片开始闭合,当所述第二导流叶片的负荷范围为50%时所述第二导流叶片为全闭;若所述第二导流叶片的负荷范围低于50%,为避免出现喘振,所述第二冷水压缩机开始增加功率,当所述第二导流叶片的负荷范围为20%时所述第二冷水压缩机增加到最大130%,这样可有效加大第二冷水机组18的运行范围;S32: If the load range of the second guide vane is 70% to 100%, the second guide vane is fully opened; if the load range of the second guide vane is lower than 70%, the second guide vane is The second guide vanes begin to close, and when the load range of the second guide vane is 50%, the second guide vane is fully closed; if the load range of the second guide vane is lower than 50%, it is To avoid surge, the second cold water compressor starts to increase power, and when the load range of the second guide vane is 20%, the second cold water compressor increases to a maximum of 130%, which can effectively increase the power of the second cold water compressor. The operating range of the
若所述出水温度T3减去所述进水温度T4的值大于预设值T6,则所述第二冷水压缩机调整为当前运行功率的150%工作,否则所述第二冷水压缩机按照当前运行功率工作;预设值T6可根据实际情况具体设置。If the value of the outlet water temperature T 3 minus the inlet water temperature T 4 is greater than the preset value T 6 , the second cold water compressor is adjusted to work at 150% of the current operating power, otherwise the second cold water compressor The machine works according to the current operating power; the preset value T6 can be set according to the actual situation.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or system comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or system. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为标识。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. do not denote any order, and these words may be construed as identifications.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110779432.7A CN115127246B (en) | 2021-07-09 | 2021-07-09 | Energy-saving system and method for chiller controlled by frequency converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110779432.7A CN115127246B (en) | 2021-07-09 | 2021-07-09 | Energy-saving system and method for chiller controlled by frequency converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115127246A true CN115127246A (en) | 2022-09-30 |
CN115127246B CN115127246B (en) | 2025-02-14 |
Family
ID=83375362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110779432.7A Active CN115127246B (en) | 2021-07-09 | 2021-07-09 | Energy-saving system and method for chiller controlled by frequency converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115127246B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1904503A (en) * | 2006-08-01 | 2007-01-31 | 周锋 | Compressor variable frequency energy saving reforming method of constant speed centrifugal water cooling machine set |
CN207716086U (en) * | 2018-01-11 | 2018-08-10 | 上海氢枫能源技术有限公司 | The hydrogenation system of hydrogen compressor skid hydrogenation plant |
CN209943985U (en) * | 2019-06-13 | 2020-01-14 | 北京海珀尔氢能科技有限公司 | Skid-mounted hydrogenation station |
CN110792922A (en) * | 2018-08-01 | 2020-02-14 | 乔治洛德方法研究和开发液化空气有限公司 | Device and method for filling a container with a pressurized gas |
CN111365614A (en) * | 2020-04-02 | 2020-07-03 | 江苏国富氢能技术装备有限公司 | Compression hydrogenation device for hydrogenation machine |
CN112212208A (en) * | 2020-09-11 | 2021-01-12 | 浙江浙能航天氢能技术有限公司 | Filling system and method for combined work of hydrogenation machine and supercharging equipment |
CN112253990A (en) * | 2020-09-11 | 2021-01-22 | 浙江浙能航天氢能技术有限公司 | High-pressure hydrogen filling system based on temperature rise control and filling method thereof |
CN113074315A (en) * | 2021-03-01 | 2021-07-06 | 国网浙江省电力有限公司电力科学研究院 | Heat management system and heat management control method of hydrogen station |
-
2021
- 2021-07-09 CN CN202110779432.7A patent/CN115127246B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1904503A (en) * | 2006-08-01 | 2007-01-31 | 周锋 | Compressor variable frequency energy saving reforming method of constant speed centrifugal water cooling machine set |
CN207716086U (en) * | 2018-01-11 | 2018-08-10 | 上海氢枫能源技术有限公司 | The hydrogenation system of hydrogen compressor skid hydrogenation plant |
CN110792922A (en) * | 2018-08-01 | 2020-02-14 | 乔治洛德方法研究和开发液化空气有限公司 | Device and method for filling a container with a pressurized gas |
CN209943985U (en) * | 2019-06-13 | 2020-01-14 | 北京海珀尔氢能科技有限公司 | Skid-mounted hydrogenation station |
CN111365614A (en) * | 2020-04-02 | 2020-07-03 | 江苏国富氢能技术装备有限公司 | Compression hydrogenation device for hydrogenation machine |
CN112212208A (en) * | 2020-09-11 | 2021-01-12 | 浙江浙能航天氢能技术有限公司 | Filling system and method for combined work of hydrogenation machine and supercharging equipment |
CN112253990A (en) * | 2020-09-11 | 2021-01-22 | 浙江浙能航天氢能技术有限公司 | High-pressure hydrogen filling system based on temperature rise control and filling method thereof |
CN113074315A (en) * | 2021-03-01 | 2021-07-06 | 国网浙江省电力有限公司电力科学研究院 | Heat management system and heat management control method of hydrogen station |
Also Published As
Publication number | Publication date |
---|---|
CN115127246B (en) | 2025-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111595605B (en) | Comprehensive experiment system for compressor and expander | |
CN110329113A (en) | A kind of control method of automobile integrated thermal management system | |
CN110329112B (en) | Comprehensive thermal management system for automobile | |
CN104632356B (en) | Parallel type engine two-stage pressurization system with compressed air storage device and vehicle | |
CN109751911B (en) | Self-adaptive adjusting method for fan frequency of cooling tower and air conditioning system | |
CN110529422B (en) | Anti-surge control system of compressor | |
CN104929913A (en) | Multi-stage compression cooling system of natural gas compressor and method for controlling same | |
CN218376997U (en) | Series centrifugal compressor unit and air conditioning equipment | |
CN202628579U (en) | Condensing fan for bus air conditioner | |
CN108679449A (en) | A kind of pressure charging system of gas-steam combined unit | |
CN210003340U (en) | multistage expansion generator start-up phase exhaust gas regulation system | |
CN115799722A (en) | Energy-saving liquid cooling control method and system integrating PCS and battery cluster | |
CN115127246A (en) | Energy-saving system and method of chiller controlled by frequency converter | |
CN208619399U (en) | A kind of antisurge control system of compressor | |
CN110793801B (en) | A hybrid intercooling compressor experimental system | |
CN210981753U (en) | An experimental system for a double-closed intercooling compressor | |
CN102022861B (en) | Hybrid type variable frequency air conditioning system with two working modes and control method thereof | |
CN219492688U (en) | Compressor with adjustable guide vanes and energy storage thermal management system | |
CN212318105U (en) | Frequency conversion waste heat generating set | |
CN110736275A (en) | A speed control method of variable frequency fan for optimizing refrigeration system efficiency | |
CN218896687U (en) | PCS and battery cluster integrated energy-saving liquid cooling system and energy storage system | |
CN208028806U (en) | Compressor drive control circuit and inverter air conditioner comprising same | |
CN211625756U (en) | Refrigerating unit with low energy consumption, high efficiency and stability and capable of preventing surge | |
CN210981752U (en) | Hybrid indirect cooling compressor experiment system | |
JP2012087690A (en) | Control device of radial steam turbine system and its operating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |