CN115125579A - Preparation method and application of platinum monoatomic coordination cobalt-platinum alloy in limitation of nitrogen-doped porous carbon - Google Patents

Preparation method and application of platinum monoatomic coordination cobalt-platinum alloy in limitation of nitrogen-doped porous carbon Download PDF

Info

Publication number
CN115125579A
CN115125579A CN202210997129.9A CN202210997129A CN115125579A CN 115125579 A CN115125579 A CN 115125579A CN 202210997129 A CN202210997129 A CN 202210997129A CN 115125579 A CN115125579 A CN 115125579A
Authority
CN
China
Prior art keywords
solution
cobalt
ptnps
platinum
ndpcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210997129.9A
Other languages
Chinese (zh)
Other versions
CN115125579B (en
Inventor
廉孜超
李梦媛
杨伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Publication of CN115125579A publication Critical patent/CN115125579A/en
Application granted granted Critical
Publication of CN115125579B publication Critical patent/CN115125579B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The invention discloses a preparation method of limiting a platinum monatomic (Pt) in nitrogen-doped porous carbon in cooperation with cobalt-platinum alloy SA ) And cobalt platinum alloy (CoPt) nanocrystals confined to nitrogen-doped porousCarbon Frameworks (NDPCF) derived from platinum nanoparticles (PtNPs) encapsulated in amino-functionalized ZIF-67. Under alkaline and acidic conditions, CoPt-Pt SA the/NDPCF shows excellent electrocatalytic hydrogen evolution performance, including lower overpotential, smaller Tafel slope, higher current density, higher switching frequency and better cycle stability. CoPt-Pt SA The excellent electrocatalytic hydrogen evolution performance of/NDPCF is attributed to Pt protected by nitrogen-doped porous carbon skeleton SA Strong synergy with CoPt alloy nanocrystals. The method not only improves the electro-catalytic hydrogen evolution activity of the catalyst, but also solves the problems of dissolution, corrosion, agglomeration and the like of the monatomic material and the platinum alloy nanocrystal in the long-term circulation process, and fundamentally improves the catalytic activity and the long-circulation durability of the catalyst.

Description

Preparation method and application of platinum monoatomic coordination cobalt-platinum alloy in limitation of nitrogen-doped porous carbon
Technical Field
The invention relates to the technical field of electrocatalytic hydrogen evolution materials, in particular to a preparation method and application of a platinum monoatomic synergetic cobalt-platinum alloy in nitrogen-doped porous carbon.
Background
Single Atom Catalysts (SAC) with ultra-high atomic utilization and rich active sites can significantly improve the electrocatalytic performance of the catalyst and are considered as potential candidates for most catalytic reactions. Currently, much research is mainly focused on improving the electrocatalytic activity of SAC by inhibiting the agglomeration of Single Atoms (SA) during synthesis or electrocatalytic reaction. Recently, many studies have been reported to support SA on a surface of a support having a specific coordination to explore its electrocatalytic activity and cycle stability. Although the formation of strong chemical bonds with the support can modulate the intrinsic catalytic properties of SA, the long-cycle performance of SA is easily adversely affected due to its exposure on the surface of the support. Therefore, it is important to improve the cycle stability of SAC by confining SA to the inside of the carrier. Metal Organic Frameworks (MOFs) have periodic pores and unique structures, are considered to be ideal carriers for realizing cycle stability of SA, and can be designed into various functional hybrid complexes according to the selection of different kinds of coordination metals. In addition, MOFs are also considered as a new generation of ideal carriers for encapsulating Nanoparticles (NPs), and the interaction of NPs with conventional porous materials can also facilitate the transfer of protons and charges. Derivatives of MOFs are also considered to be excellent supports because their derivatives porous carbon have many advantages such as high conductivity and environmental stability.
Electrocatalytic hydrogen evolution is a promising approach to obtain chemical fuels for energy sustainability and effective reduction of carbon dioxide emissions. Of the various metals of the electrocatalytic Hydrogen Evolution (HER) catalyst, platinum (Pt) adsorbs the gibbs free energy (| Δ G) due to its inherent ultra-low H H* 0.0071eV) with low overpotential and rapid kinetic response, is the most effective active metal for HER performance improvement. However, the high cost, ultra-low utilization and poor cycle stability of Pt metal severely limit its further large-scale applications. Monoatomic Pt (Pt) SA ) The efficiency of atom utilization can be maximized, thereby reducing catalyst cost and maintaining its superior HER activity. Related studies have found that monodisperse metal atoms such as Fe, Co, Ni, Pd and Pt, and some Pt alloy nanocrystals that enhance HER activity by modulating the d-band of Pt, exhibit high electrocatalytic activity and cycling durability on various supports. However, such SA materials and Pt alloy nanocrystals still suffer from dissolution, corrosion, and agglomeration during long-term cycling, resulting in rapid degradation of catalytic activity and cycling durability. The current research has not elucidated in detail by adjusting Pt SA The ambient conditions adjust the relationship between the metal alloy and the SA.
Disclosure of Invention
The invention aims to provide a preparation method and application of a platinum monatomic synergistic cobalt platinum alloy in nitrogen-doped porous carbon, which solve the problems of dissolution, corrosion and agglomeration of an SA material and a Pt alloy nanocrystal in a long-term circulation process and increase the electrocatalytic HER activity and the circulation durability of the SA material and the Pt alloy nanocrystal.
In order to achieve the purpose, the invention provides a preparation method for limiting a platinum monatomic synergetic cobalt-platinum alloy in nitrogen-doped porous carbon, which comprises the following steps:
s1, synthesis of PtNPs:
firstly, dissolving chloroplatinic acid hexahydrate powder in deionized water to form a uniform solution, namely a solution A;
secondly, adding polyvinylpyrrolidone into the solvent to form a uniform solution, namely a solution B;
thirdly, dropwise adding the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, and uniformly dispersing in the solvent, wherein the concentration is controlled at 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving cobalt salt in a solvent to obtain a solution A;
secondly, dispersing 2-methylimidazole and the PtNPs solution in a solvent to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、Co n Pt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 containing Co with different proportions to 500-900 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere in a tube furnace, and calcining for 2h to obtain Co n Pt-Pt SA /NDPCF, wherein n is 0.5 or 1 or 2.
Preferably, Pt/ZIF-67 containing Co in various proportions is obtained by adjusting the contents of cobalt salt and PtNPs.
Preferably, the cobalt salt is one of cobalt sulfate heptahydrate, cobalt nitrate hexahydrate and cobalt chloride hexahydrate.
Preferably, the solvent is one of methanol, ethanol, acetone and water.
Preferably, the purity of the Ar atmosphere in step S3 is 99.999%.
Preferably, the preparation method of limiting the platinum monoatomic synergetic cobalt-platinum alloy in the nitrogen-doped porous carbon comprises the following steps:
s1, synthesis of PtNPs:
firstly, dissolving 0.120mmol of chloroplatinic acid hexahydrate powder in 20mL of deionized water to form a uniform solution, namely solution A;
secondly, 0.015mmol of polyvinylpyrrolidone is added into 60mL of ethanol to form a uniform solution, namely a solution B;
thirdly, dripping 20mL of the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, uniformly dispersing the PtNPs in ethanol, and controlling the concentration to be 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving 12mmol of cobalt sulfate heptahydrate in 120mL of ethanol to obtain a solution A;
secondly, dispersing 48mmol of 2-methylimidazole and 8.8mL of the PtNPs solution in 40mL of ethanol to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、CoPt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 to 900 ℃ at a heating rate of 2 ℃/min in Ar atmosphere in a tubular furnace, and calcining for 2h to obtain CoPt-Pt SA /NDPCF。
An application of a platinum monoatomic synergetic cobalt-platinum alloy in electrocatalytic hydrogen evolution limited in nitrogen-doped porous carbon.
Mixing Pt SA And cobalt platinum (CoPt) alloy nanocrystals confined to a nitrogen-doped porous carbon framework (CoPt-Pt) SA NDPCF), the framework is derived fromPtNPs encapsulated in amino-functionalized ZIF-67. CoPt-Pt in comparison to commercial 10% Pt/C catalysts under basic and acidic conditions SA the/NDPCF all showed excellent electrocatalytic HER performance including lower overpotential, smaller Tafel slope, higher current density, higher switching frequency (TOF) and better cycling stability. CoPt-Pt SA The excellent performance of/NDPCF is attributed to Pt SA Strong synergy with CoPt alloy nanocrystals protected by nitrogen-doped porous carbon backbone (NDPCF). The theoretical calculation of density functional shows that Pt SA With ultra-low | Δ G in combination with CoPt alloy nanocrystals in NDPCF H* L (-0.059 eV), which is a key factor that enhances the reaction kinetics affecting HER activity. In addition, the synergistic effect of SAs and the metal alloy nanocrystalline electrocatalyst coated by the porous carbon material provides a new strategy for constructing high-efficiency SACs.
Therefore, the preparation method and the application of the platinum monoatomic and cobalt platinum alloy in the nitrogen-doped porous carbon limit are adopted, the problems of dissolution, corrosion and agglomeration of the SA material and the Pt alloy nanocrystal in the long-term circulation process are solved, and the electrocatalytic HER activity and the circulation durability are improved.
The technical solution of the present invention is further described in detail by the accompanying drawings and embodiments.
Drawings
FIG. 1 is CoPt-Pt SA A synthetic schematic diagram of/NDPCF;
FIG. 2 is CoPt-Pt SA TEM picture of/NDPCF;
FIG. 3 shows CoPt-Pt SA EDX element distribution map of/NDPCF;
FIG. 4 shows CoPt-Pt SA HAADF-STEM diagram of/NDPCF;
FIG. 5 is an XRD pattern of Pt-ZIF-67 through different sintering temperatures;
FIG. 6 is CoPt-Pt SA EXAFS and a corresponding fitting curve of the NDPCF in the R space of the Co K-edge;
FIG. 7 is CoPt-Pt SA NDPCF on Pt L 3 -EXAFS and corresponding fitted curve in R-space of the edge;
FIG. 8 shows Co/NDPCF and CoPt-Pt SA N of/NDPCF 2 Adsorption-desorption isotherms;
FIG. 9 is CoPt-Pt SA Polarization curves of/NDPCF and other catalysts in 1M KOH solution;
FIG. 10 is a graph of commercial 10% Pt/C and 5% Pt/C catalysts, CoPt-Pt SA Activity of the/NDPCF catalyst per unit mass of Pt;
FIG. 11 shows CoPt-Pt SA The current density of the/NDPCF catalyst is-10 mA cm -2 And-50 mA cm -2 I-t cycle performance under conditions;
FIG. 12 shows different catalysts in acid (0.5 MH) 2 SO 4 ) iR compensated Linear Sweep Voltammetry (LSV) curve under conditions;
FIG. 13 is CoPt-Pt SA Activity plot of Pt per unit mass of/NDPCF catalyst under 0.5M acidic conditions.
Detailed Description
The invention provides a preparation method for limiting a platinum monatomic synergetic cobalt-platinum alloy in nitrogen-doped porous carbon, which comprises the following steps of:
s1, synthesis of PtNPs:
firstly, dissolving cobalt salt in deionized water to form a uniform solution, namely solution A;
secondly, adding polyvinylpyrrolidone into a solvent to form a uniform solution, namely a solution B;
thirdly, dropwise adding the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing excessive solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, and uniformly dispersing in the solvent, wherein the concentration is controlled at 3mg/mL to obtain the PtNPs solution.
S2, synthesis of Pt/ZIF-67:
firstly, dissolving cobalt salt in a solvent to obtain a solution A;
secondly, dispersing 2-methylimidazole and the PtNPs solution in a solvent to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67; Pt/ZIF-67 containing Co in different proportions was obtained by adjusting the contents of cobalt salt and PtNPs.
S3、Co n Pt-Pt SA Synthesis of/NDPCF: heating Pt/ZIF-67 containing Co with different proportions to 500-900 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere (with the purity of 99.999%) in a tubular furnace, and calcining for 2h to obtain Co n Pt-Pt SA /NDPCF, wherein n is 0.5 or 1 or 2.
The cobalt salt used is one of cobalt sulfate heptahydrate, cobalt nitrate hexahydrate and cobalt chloride hexahydrate. The solvent is one of methanol, ethanol, acetone and water.
The technical scheme of the invention is further explained by the attached drawings and the embodiment.
Example 1
As shown in fig. 1, a preparation method of limiting a platinum monoatomic coordination cobalt platinum alloy in nitrogen-doped porous carbon comprises the following steps:
s1, synthesis of PtNPs:
firstly, dissolving 0.120mmol of chloroplatinic acid hexahydrate powder in 20mL of deionized water to form a uniform solution, namely solution A;
secondly, 0.015mmol of polyvinylpyrrolidone is added into 60mL of ethanol to form a uniform solution, which is solution B;
thirdly, dropwise adding 20mL of the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, and uniformly dispersing in ethanol, wherein the concentration is controlled at 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving 12mmol of cobalt sulfate heptahydrate in 120mL of ethanol to obtain a solution A;
secondly, dispersing 48mmol of 2-methylimidazole and 8.8mL of the PtNPs solution in 40mL of ethanol to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、CoPt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 to 500 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere in a tubular furnace, and calcining for 2h to obtain CoPt-Pt SA /NDPCF。
Example 2
As shown in fig. 1, a preparation method of limiting a platinum monoatomic coordination cobalt platinum alloy in nitrogen-doped porous carbon comprises the following steps:
s1, synthesis of PtNPs:
firstly, dissolving 0.120mmol of chloroplatinic acid hexahydrate powder in 20mL of deionized water to form a uniform solution, namely solution A;
secondly, 0.015mmol of polyvinylpyrrolidone is added into 60mL of ethanol to form a uniform solution, namely a solution B;
thirdly, dripping 20mL of the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, and uniformly dispersing in ethanol, wherein the concentration is controlled at 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving 12mmol of cobalt sulfate heptahydrate in 120mL of ethanol to obtain a solution A;
secondly, dispersing 48mmol of 2-methylimidazole and 8.8mL of the PtNPs solution in 40mL of ethanol to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、CoPt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 to 750 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere in a tubular furnace, and calcining for 2h to obtain CoPt-Pt SA /NDPCF。
Example 3
As shown in fig. 1, a preparation method of limiting a platinum monoatomic coordination cobalt platinum alloy in nitrogen-doped porous carbon comprises the following steps:
s1, synthesis of PtNPs:
firstly, dissolving 0.120mmol of chloroplatinic acid hexahydrate powder in 20mL of deionized water to form a uniform solution, namely solution A;
secondly, 0.015mmol of polyvinylpyrrolidone is added into 60mL of ethanol to form a uniform solution, namely a solution B;
thirdly, dripping 20mL of the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, and uniformly dispersing in ethanol, wherein the concentration is controlled at 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving 12mmol of cobalt sulfate heptahydrate in 120mL of ethanol to obtain a solution A;
secondly, dispersing 48mmol of 2-methylimidazole and 8.8mL of the PtNPs solution in 40mL of ethanol to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、CoPt-Pt SA synthesis of/NDPCF: Pt/ZIF-67 was placed in a tube furnace at 2 deg.C/mi in an Ar atmospheren, raising the temperature to 900 ℃ at the temperature rise rate, and calcining for 2h to obtain CoPt-Pt SA /NDPCF。
Example 4
As shown in fig. 1, a preparation method of limiting a platinum monatomic synergetic cobalt-platinum alloy in nitrogen-doped porous carbon comprises the following steps:
s1, synthesis of PtNPs:
firstly, dissolving 0.120mmol of chloroplatinic acid hexahydrate powder in 20mL of deionized water to form a uniform solution, namely solution A;
secondly, 0.015mmol of polyvinylpyrrolidone is added into 60mL of ethanol to form a uniform solution, namely a solution B;
thirdly, dripping 20mL of the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, uniformly dispersing in ethanol, and controlling the concentration at 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving 0.5M cobalt sulfate heptahydrate in 120mL of ethanol to obtain a solution A;
secondly, dispersing 48mmol of 2-methylimidazole and 10mL of PtNPs solution in 40mL of ethanol to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、CoPt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 to 900 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere in a tubular furnace, and calcining for 2h to obtain Co 0.5 Pt-Pt SA /NDPCF。
Example 5
As shown in fig. 1, a preparation method of limiting a platinum monatomic synergetic cobalt-platinum alloy in nitrogen-doped porous carbon comprises the following steps:
s1, synthesis of PtNPs:
firstly, dissolving 0.120mmol of chloroplatinic acid hexahydrate powder in 20mL of deionized water to form a uniform solution, namely solution A;
secondly, 0.015mmol of polyvinylpyrrolidone is added into 60mL of ethanol to form a uniform solution, which is solution B;
thirdly, dropwise adding 20mL of the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method to obtain PtNPs, then washing with anhydrous acetone and chloroform for three times respectively to collect the final PtNPs, uniformly dispersing in ethanol, and controlling the concentration at 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving 2M cobalt sulfate heptahydrate in 120mL of ethanol to obtain a solution A;
secondly, dispersing 48mmol of 2-methylimidazole and 15mL of PtNPs solution in 40mL of ethanol to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、CoPt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 to 900 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere in a tubular furnace, and calcining for 2h to obtain Co 2 Pt-Pt SA /NDPCF。
FIG. 1 shows CoPt-Pt SA The synthesis process of the/NDPCF is shown schematically.
Comparative example 1
Commercial 10% Pt/C catalyst.
Comparative example 2
Commercial 5% Pt/C catalyst.
The performance of CoPt-PtSA/NDPCF is characterized as follows:
the TEM image of FIG. 2 shows CoPt-Pt SA the/NDPCF has a typical regular dodecahedron structure, the diameter is about 700nm, and CoPt-Pt subjected to high-temperature sintering SA the/NDPCF structure did not collapse.
FIG. 3 shows elemental mapping of energy dispersive X-ray spectroscopy (EDX) to indicate that Co, Pt, N and C elements are uniformly distributed in ordered CoPt-Pt SA In the/NDPCF structure.
FIG. 4 shows CoPt-Pt SA the/NDPCF contains CoPt alloy and Pt SA In which Pt is supported on CoPt-Pt in two forms SA the/NDPCF surface, one was CoPt alloyed with Co, as shown in FIG. 4 a. In addition, Pt is supported on the surface of the carrier in a single atom form, as shown in FIG. 4c
FIG. 5 is an XRD pattern showing that Pt-ZIF-67 does not significantly carbonize at 500 ℃ for 2 h. In addition, a small amount of Co is formed at 500 deg.C 3 O 4 (PDF #43-1003), which further demonstrates that Pt-ZIF-67 does not carbonize completely at 500 ℃ for 2 h. As the sintering temperature was gradually increased to 750 ℃ and 900 ℃, the carbon (C) and Co peaks of the composite increased significantly. As a result of the formation of the CoPt alloy, a small amount of Pt was replaced by Co, and the XRD peak of the CoPt alloy disappeared.
FIG. 6 is a graph of CoPt-Pt SA R-space of/NDPCF and corresponding fitted extended X-ray absorption fine structure spectral curve in
Figure BDA0003805826000000111
There is a peak from the Co-Co cluster. In addition to this, the present invention is,
Figure BDA0003805826000000112
and
Figure BDA0003805826000000113
the small peaks at (A) correspond to Co-N and Co-Pt, respectively, which further confirms that Co forms coordination with N and Pt.
In FIG. 7, CoPt-Pt SA Extended X-ray absorption fine structure spectral curve of/NDPCF confirms Pt SA In that
Figure BDA0003805826000000121
Is coordinated to about 2N atoms. In that
Figure BDA0003805826000000122
It is shown that it forms mainly alloyed nanocrystals with Co.
FIG. 8 shows Co/NDPCF and CoPt-Pt SA N of/NDPCF 2 The adsorption-desorption isotherms showed that their specific surface areas were 297.72 and 254.04m, respectively 2 /g。
FIG. 9 is an iR compensated Linear Sweep Voltammetry (LSV) curve under basic (1MKOH) conditions for different catalysts. The results show that the catalyst, CoPt-Pt SA NDPCF at a current density of-10 mA cm -2 It exhibited the highest HER activity, with an overpotential as low as 31mV compared to the Reversible Hydrogen Electrode (RHE), much lower than pure Co/NDPCF (309mV), approaching commercial 10% Pt/C (38 mV). Due to Co content to Pt SA The distribution of (a) has a great influence, and we focus on the influence of the Co content on the electrocatalytic HER activity of the composite material. Co 0.25 Pt-Pt SA NDPCF and Co 2 Pt-Pt SA The overpotentials for/NDPCF were 47 and 38mV, respectively, indicating that Co content has a significant effect on HER activity. The main reason is Co 0.25 Pt-Pt SA The Co content in the/NDPCF composite material is too low to form the active site of the CoPt alloy. When Co is present 2 Pt-Pt SA When the Co content in the/NDPCF is too high, the Co occupies too many sites, which is not beneficial to Pt SA Is uniformly dispersed. Furthermore, CoPt-Pt SA The current density of the/NDPCF in 1M KOH reaches-1000 mA cm at 474mV -2 And is far better than the current density of 10% Pt/C.
FIG. 10 is CoPt-Pt SA The activity of the/NDPCF catalyst on the unit mass Pt under the alkaline condition of 1MKOH is as high as 19.3A mg -1 Further validation of Pt was achieved by 33.9 and 77.2 times (test conditions: overpotential. eta. 50mV) that of commercial 10% Pt/C and 5% Pt/C catalysts, respectively SA And CoPt alloys are limited to CoPt-Pt SA The electrocatalytic HER activity of the material can be enhanced in the structure of the/NDPCF.
FIG. 11 is a diagram of CoPt-Pt SA The current density of the/NDPCF catalyst is-10 mA cm -2 And-50 mA cm -2 I-t cycle performance under conditions. The results show that CoPt-Pt SA NDPCF at-10 mA cm -2 Current density lower cycle 100The h current has substantially no decay. And at-50 mA cm -2 Can be stabilized for 50 hours under the condition of high current, and shows excellent cycling stability.
FIG. 12 shows different catalysts in acidic (0.5 MH) 2 SO 4 ) Under the condition, an iR compensated Linear Sweep Voltammetry (LSV) curve is obtained. The results show that CoPt-Pt SA NDPCF at a current density of-10 mA cm -2 It exhibited the highest HER activity, with an overpotential as low as 20mV compared to Reversible Hydrogen Electrode (RHE), much lower than pure Co/NDPCF (285mV), better than commercial 10% Pt/C (37 mV). Due to Co content versus Pt SA The distribution of (a) has a great influence, and we focus on the influence of the Co content on the electrocatalytic HER activity of the composite material. Co 0.25 Pt-Pt SA NDPCF and Co 2 Pt-Pt SA The overpotentials for/NDPCF were 32 and 27mV, respectively, indicating that Co content has a significant effect on HER activity. Moreover, CoPt-Pt SA NDPCF at 0.5M H 2 SO 4 The current density in the medium reaches-1000 mA cm at 258mV -2 And is far better than the current density of 10% Pt/C.
FIG. 13 shows CoPt-Pt SA The activity of the/NDPCF catalyst on the unit mass Pt under the 0.5M acidic condition is as high as 74.31A mg -1 Further validation of Pt was achieved with 130.3 and 285.8 times the commercial 10% Pt/C and 5% Pt/C catalysts, respectively (test conditions: overpotential η ═ 50mV) SA And CoPt alloys are limited to CoPt-Pt SA The electrocatalytic hydrogen evolution activity of the material can be enhanced in the structure of the/NDPCF.
Therefore, the preparation method and application of the platinum monoatomic synergetic cobalt-platinum alloy limited in the nitrogen-doped porous carbon have superior alkaline and acidic electrocatalytic HER reaction activity compared with a commercial 10% Pt/C catalyst, simultaneously solve the problems of dissolution, corrosion and agglomeration of SA materials and Pt alloy nanocrystals in a long-term circulation process, and increase the electrocatalytic HER activity and the circulation durability of the SA materials and the Pt alloy nanocrystals.
Finally, it should be noted that: the above embodiments are only for illustrating the technical solutions of the present invention and not for limiting the same, and although the present invention is described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that: modifications and equivalents may be made to the invention without departing from the spirit and scope of the invention.

Claims (7)

1. A preparation method for limiting a platinum monatomic synergetic cobalt-platinum alloy in nitrogen-doped porous carbon is characterized by comprising the following steps of:
s1, synthesis of PtNPs:
firstly, dissolving chloroplatinic acid hexahydrate powder in deionized water to form a uniform solution, namely a solution A;
secondly, adding polyvinylpyrrolidone into a solvent to form a uniform solution, namely a solution B;
thirdly, dropwise adding the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under the atmosphere, removing redundant solvent by a rotary evaporation method, washing with anhydrous acetone and chloroform for three times respectively to collect the final PtNPs, and uniformly dispersing in the solvent, wherein the concentration is controlled at 3mg/mL to obtain a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving cobalt salt in a solvent to obtain a solution A;
secondly, dispersing 2-methylimidazole and the PtNPs solution in a solvent to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and then aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、Co n Pt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 containing Co with different proportions to 500-900 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere in a tube furnace, and calcining for 2h to obtain Co n Pt-Pt SA a/NDPCF in which n is 0.5 or 1 or 2.
2. The method for preparing the nitrogen-doped porous carbon limited by the platinum monoatomic synergetic cobalt-platinum alloy according to claim 1, wherein the method comprises the following steps: Pt/ZIF-67 containing Co in different proportions was obtained by adjusting the contents of cobalt salt and PtNPs.
3. The method for preparing the nitrogen-doped porous carbon limited by the platinum monoatomic synergetic cobalt-platinum alloy according to claim 2, wherein the method comprises the following steps: the cobalt salt is one of cobalt sulfate heptahydrate, cobalt nitrate hexahydrate and cobalt chloride hexahydrate.
4. The method for preparing the porous carbon doped with nitrogen by limiting the platinum monoatomic cooperated with the cobalt platinum alloy according to the claim 3, wherein the method comprises the following steps: the solvent is one of methanol, ethanol, acetone and water.
5. The method for preparing the porous carbon doped with nitrogen by limiting the platinum monoatomic cooperated with the cobalt platinum alloy according to the claim 4, wherein the method comprises the following steps: the purity of the Ar atmosphere in step S3 was 99.999%.
6. The method for preparing the nitrogen-doped porous carbon limited by the platinum monoatomic synergetic cobalt platinum alloy according to claim 5, wherein the method comprises the following steps of:
s1, synthesis of PtNPs:
firstly, dissolving 0.120mmol of chloroplatinic acid hexahydrate powder in 20mL of deionized water to form a uniform solution, namely solution A;
secondly, 0.015mmol of polyvinylpyrrolidone is added into 60mL of ethanol to form a uniform solution, which is solution B;
thirdly, dripping 20mL of the solution A into the solution B, and stirring for 0.5h to obtain a mixed solution;
finally, the above mixed solution was heated to 73 ℃ and heated to N 2 Refluxing for 3h under atmosphere, removing excessive solvent by rotary evaporation to obtain PtNPs, washing with anhydrous acetone and chloroform for three times respectively to collect final PtNPs, uniformly dispersing PtNPs in ethanol with concentration of 3mg/mL,obtaining a PtNPs solution;
s2, synthesis of Pt/ZIF-67:
firstly, dissolving 12mmol of cobalt sulfate heptahydrate in 120mL of ethanol to obtain a solution A;
secondly, dispersing 48mmol of 2-methylimidazole and 8.8mL of the PtNPs solution in 40mL of ethanol to obtain a solution B;
thirdly, dropwise adding the solution A into the solution B, stirring for 2 hours, and aging for 24 hours to obtain a purple precipitate;
finally, washing the obtained purple precipitate with methanol for 3 times, and drying in a vacuum drying oven at 60 ℃ for 12 hours to obtain Pt/ZIF-67;
S3、CoPt-Pt SA synthesis of/NDPCF: heating Pt/ZIF-67 to 900 ℃ at a heating rate of 2 ℃/min in an Ar atmosphere in a tubular furnace, and calcining for 2h to obtain CoPt-Pt SA /NDPCF。
7. An application of a platinum monoatomic synergetic cobalt-platinum alloy in electrocatalytic hydrogen evolution limited in nitrogen-doped porous carbon.
CN202210997129.9A 2022-05-19 2022-08-19 Preparation method and application of platinum monoatomic synergistic cobalt-platinum alloy limited in nitrogen-doped porous carbon Active CN115125579B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210552608X 2022-05-19
CN202210552608.XA CN114892208A (en) 2022-05-19 2022-05-19 Preparation method and application of platinum monoatomic coordination cobalt-platinum alloy in limitation of nitrogen-doped porous carbon

Publications (2)

Publication Number Publication Date
CN115125579A true CN115125579A (en) 2022-09-30
CN115125579B CN115125579B (en) 2023-05-12

Family

ID=82723318

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210552608.XA Withdrawn CN114892208A (en) 2022-05-19 2022-05-19 Preparation method and application of platinum monoatomic coordination cobalt-platinum alloy in limitation of nitrogen-doped porous carbon
CN202210997129.9A Active CN115125579B (en) 2022-05-19 2022-08-19 Preparation method and application of platinum monoatomic synergistic cobalt-platinum alloy limited in nitrogen-doped porous carbon

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210552608.XA Withdrawn CN114892208A (en) 2022-05-19 2022-05-19 Preparation method and application of platinum monoatomic coordination cobalt-platinum alloy in limitation of nitrogen-doped porous carbon

Country Status (1)

Country Link
CN (2) CN114892208A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602862B (en) * 2022-10-24 2024-03-26 同济大学 Low-platinum catalyst with high electrocatalytic activity and preparation method and application thereof
CN115780799A (en) * 2022-12-06 2023-03-14 中国科学院长春应用化学研究所 Sensitive material containing nitrogen porous carbon loaded with metal nanoparticles as well as preparation method and application of sensitive material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328960A (en) * 2016-10-08 2017-01-11 华南理工大学 ZIF-67 template method for preparing cobalt-platinum core-shell particle/porous carbon composite material and catalytic application of composite material in cathode of fuel cell
CN107626294A (en) * 2017-10-23 2018-01-26 清华大学 A kind of preparation method of the monatomic site catalyst of metal
CN109962246A (en) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 The loaded low platinum nucleocapsid catalyst of one kind and its preparation and application
CN110368931A (en) * 2019-07-31 2019-10-25 合肥工业大学 A kind of preparation method of the monatomic composite material of covalent organic frame material derived carbon skeleton adulteration metal
CN111135841A (en) * 2019-12-20 2020-05-12 北京化工大学 Preparation method and application of PtCu monatomic alloy nano-catalyst
CN111841610A (en) * 2020-08-04 2020-10-30 西北工业大学 Electron-rich single-atom Pt alloy intermetallic compound catalyst and preparation method thereof
CN112774707A (en) * 2019-11-04 2021-05-11 北京氦舶科技有限责任公司 Ru-N-C monatomic catalyst and preparation method and application thereof
CN113828339A (en) * 2020-06-08 2021-12-24 中国石油大学(北京) M-Co monatomic alloy catalyst and preparation method and application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328960A (en) * 2016-10-08 2017-01-11 华南理工大学 ZIF-67 template method for preparing cobalt-platinum core-shell particle/porous carbon composite material and catalytic application of composite material in cathode of fuel cell
CN107626294A (en) * 2017-10-23 2018-01-26 清华大学 A kind of preparation method of the monatomic site catalyst of metal
CN109962246A (en) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 The loaded low platinum nucleocapsid catalyst of one kind and its preparation and application
CN110368931A (en) * 2019-07-31 2019-10-25 合肥工业大学 A kind of preparation method of the monatomic composite material of covalent organic frame material derived carbon skeleton adulteration metal
CN112774707A (en) * 2019-11-04 2021-05-11 北京氦舶科技有限责任公司 Ru-N-C monatomic catalyst and preparation method and application thereof
CN111135841A (en) * 2019-12-20 2020-05-12 北京化工大学 Preparation method and application of PtCu monatomic alloy nano-catalyst
CN113828339A (en) * 2020-06-08 2021-12-24 中国石油大学(北京) M-Co monatomic alloy catalyst and preparation method and application thereof
CN111841610A (en) * 2020-08-04 2020-10-30 西北工业大学 Electron-rich single-atom Pt alloy intermetallic compound catalyst and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FEI GUO等: ""Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
NANA DU等: "\"N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction\"", 《NANO RESEARCH》 *
SONG LIN ZHANG等: ""Engineering Platinum-Cobalt Nano-alloys in Porous Nitrogen-Doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution"", 《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》 *
WEIWEI YANG等: ""Tuning the Cobalt–Platinum Alloy Regulating Single‐Atom Platinum for Highly Efficient Hydrogen Evolution Reaction"", 《ADVANCED FUNCTIONAL MATERIALS》 *

Also Published As

Publication number Publication date
CN114892208A (en) 2022-08-12
CN115125579B (en) 2023-05-12

Similar Documents

Publication Publication Date Title
Li et al. A review on CeO2‐based electrocatalyst and photocatalyst in energy conversion
Chen et al. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range
CN115125579B (en) Preparation method and application of platinum monoatomic synergistic cobalt-platinum alloy limited in nitrogen-doped porous carbon
Wan et al. Oxygen-evolution catalysts based on iron-mediated nickel metal–organic frameworks
Liu et al. Surface engineering of MOFs as a route to cobalt phosphide electrocatalysts for efficient oxygen evolution reaction
CN113422073B (en) Preparation method of cobalt-modified carbon-supported superfine platinum nano alloy catalyst
Li et al. Iron-doped NiCo-MOF hollow nanospheres for enhanced electrocatalytic oxygen evolution
CN111871427B (en) Precious metal/molybdenum-nickel composite material and preparation method and application thereof
CN112736259A (en) Method for preparing metal monoatomic electrocatalytic oxygen reduction catalyst through confined space
KR102211841B1 (en) Heterogeneous atom doped Metal Single Atom Catalyst for oxygen reduction reaction and Manufacturing method of the Same
CN112510221A (en) Fuel cell electrocatalyst and preparation method and application thereof
Xu et al. MOFs derived NiFeP porous nanoflowers for boosted electrocatalytic water splitting
CN113699554A (en) Preparation method and application of rare earth metal and transition metal co-doped carbon-based material
Li et al. Rational design of self-supported WC/Co3W3N/Co@ NC yolk/shell nitrogen-doped porous carbon catalyst for highly efficient overall water splitting
He et al. In-situ growth of VS4 nanorods on Ni-Fe sulfides nanoplate array towards achieving a highly efficient and bifunctional electrocatalyst for total water splitting
Zhang et al. The synergistic effect of Co3O4 and KNbO3 in Co3O4@ KNbO3 composite for enhanced performance of water oxidation
Qin et al. Ru/Ir‐based electrocatalysts for oxygen evolution reaction in acidic conditions: From mechanisms, optimizations to challenges
CN115074771A (en) Nitrogen-doped carbon nanotube coated Ni 3 ZnC 0.7 /Ni heterogeneous nano particle electrocatalyst and preparation method thereof
Fu et al. Surface morphology and interface electronic structure tailoring of cobalt carbonate hydroxide via Ce doping for enhanced oxygen evolution reaction
CN114864967A (en) Preparation method of carbon-based single-atom catalyst
Li et al. Directly converting metal organic framework into designable complex architectures with rich co-arranged active species for efficient solar-driven water splitting
CN110947408B (en) Iron monatomic catalyst and preparation method and application thereof
CN110729495A (en) CNSs-Ni@Pt/PM-g-C3N4Electrocatalyst and method of making
CN117463342B (en) Preparation method of porous hollow tubular heterojunction catalyst for electrolyzing seawater and oxygen evolution application of porous hollow tubular heterojunction catalyst
CN113769769B (en) Nickel-iron phosphide/graphene/nickel composite material, and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant