CN115125292A - Single-base resolution positioning analysis method for inosine modification in RNA assisted by endonuclease - Google Patents
Single-base resolution positioning analysis method for inosine modification in RNA assisted by endonuclease Download PDFInfo
- Publication number
- CN115125292A CN115125292A CN202210623985.8A CN202210623985A CN115125292A CN 115125292 A CN115125292 A CN 115125292A CN 202210623985 A CN202210623985 A CN 202210623985A CN 115125292 A CN115125292 A CN 115125292A
- Authority
- CN
- China
- Prior art keywords
- rna
- inosine
- endonuclease
- reaction
- assisted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 title claims abstract description 20
- 230000004048 modification Effects 0.000 title claims abstract description 20
- 238000012986 modification Methods 0.000 title claims abstract description 20
- 229930010555 Inosine Natural products 0.000 title claims abstract description 19
- 229960003786 inosine Drugs 0.000 title claims abstract description 19
- 108010042407 Endonucleases Proteins 0.000 title claims abstract description 15
- 102000004533 Endonucleases Human genes 0.000 title claims abstract 7
- 238000004458 analytical method Methods 0.000 title claims description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 34
- 101000880860 Homo sapiens Endonuclease V Proteins 0.000 claims abstract description 26
- 102100037696 Endonuclease V Human genes 0.000 claims abstract description 25
- 238000012163 sequencing technique Methods 0.000 claims abstract description 14
- 230000000903 blocking effect Effects 0.000 claims abstract description 4
- 239000002299 complementary DNA Substances 0.000 claims description 15
- 238000010839 reverse transcription Methods 0.000 claims description 15
- 230000004807 localization Effects 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 239000011535 reaction buffer Substances 0.000 claims description 7
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 claims description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 3
- 238000012408 PCR amplification Methods 0.000 claims description 3
- 239000007853 buffer solution Substances 0.000 claims description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 2
- 239000007983 Tris buffer Substances 0.000 claims 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 21
- 238000010276 construction Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 238000006731 degradation reaction Methods 0.000 abstract description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 62
- 238000003776 cleavage reaction Methods 0.000 description 15
- 102100031780 Endonuclease Human genes 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 239000003161 ribonuclease inhibitor Substances 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 8
- 230000007017 scission Effects 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 230000007026 protein scission Effects 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108010007577 Exodeoxyribonuclease I Proteins 0.000 description 5
- 102100029075 Exonuclease 1 Human genes 0.000 description 5
- 101710163270 Nuclease Proteins 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 108020004566 Transfer RNA Proteins 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 4
- 102100029791 Double-stranded RNA-specific adenosine deaminase Human genes 0.000 description 3
- 101000865408 Homo sapiens Double-stranded RNA-specific adenosine deaminase Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 238000003559 RNA-seq method Methods 0.000 description 3
- 108020004459 Small interfering RNA Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 108091070501 miRNA Proteins 0.000 description 3
- 239000002679 microRNA Substances 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 229940015043 glyoxal Drugs 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical group CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- 102000006902 5-HT2C Serotonin Receptor Human genes 0.000 description 1
- 108010072553 5-HT2C Serotonin Receptor Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 102000055025 Adenosine deaminases Human genes 0.000 description 1
- 108020005098 Anticodon Proteins 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 102100038191 Double-stranded RNA-specific editase 1 Human genes 0.000 description 1
- 102100024692 Double-stranded RNA-specific editase B2 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 101000742223 Homo sapiens Double-stranded RNA-specific editase 1 Proteins 0.000 description 1
- 101000686486 Homo sapiens Double-stranded RNA-specific editase B2 Proteins 0.000 description 1
- 108020005198 Long Noncoding RNA Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- NSZRHSBZBUAXLO-QYVSTXNMSA-N O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CN(CCC#N)C2=O)=C2N=C1 Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CN(CCC#N)C2=O)=C2N=C1 NSZRHSBZBUAXLO-QYVSTXNMSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 230000026279 RNA modification Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 208000024714 major depressive disease Diseases 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种内切酶辅助的RNA中肌苷修饰的单碱基分辨率定位方法。The invention belongs to the field of biotechnology, and in particular relates to an endonuclease-assisted single-base resolution positioning method for inosine modification in RNA.
背景技术Background technique
RNA由四种典型的碱基包括A、U、G、C组合而成,除了四种标准碱基的核苷酸外,RNA上已发现150多种具有重要功能的表观遗传学修饰。肌苷(Ino)是哺乳动物RNA上最重要的转录后修饰之一,广泛存在于mRNA、tRNA、lncRNA、miRNA和siRNA上。Ino是通过作用于RNA的腺苷脱氨酶(ADAR)家族蛋白催化腺苷C6位的氨基水解脱氨产生,此转变也被称为A-to-InoRNA编辑。目前已在哺乳动物中鉴定出3种ADAR蛋白,具有酶促活性的ADAR1、ADAR2和不具备酶促活性的ADAR3。RNA is composed of four typical bases including A, U, G, and C. In addition to the nucleotides of the four standard bases, more than 150 epigenetic modifications with important functions have been found on RNA. Inosine (Ino) is one of the most important post-transcriptional modifications on mammalian RNA and is widely present on mRNA, tRNA, lncRNA, miRNA and siRNA. Ino is produced by the adenosine deaminase (ADAR) family of proteins acting on RNA catalyzes the aminohydrolytic deamination of adenosine C6, a transition also known as A-to-InoRNA editing. Three ADAR proteins have been identified in mammals, ADAR1, ADAR2 with enzymatic activity and ADAR3 without enzymatic activity.
A-to-Ino编辑具有重要的生物学功能。由于在逆转录过程中与C配对,Ino被细胞机制识别为G,因此A-to-Ino编辑可在转录后改变基因信息。mRNA上的A-to-Ino编辑可能导致氨基酸变化、剪接位点和终止密码子的产生或缺失,造成翻译后蛋白的变化,有利于蛋白质的多样性。tRNA上的Ino位于反密码子环的34号位,该位置的Ino允许通过摆动配对识别多个密码子,增强tRNA的解码能力。miRNA和siRNA能够以高度特异性的方式调节靶基因,A-to-Ino编辑调控miRNA和siRNA的成熟、结构和功能。A-to-Ino editing has important biological functions. Since Ino is recognized as G by cellular machinery due to pairing with C during reverse transcription, A-to-Ino editing can alter gene information post-transcriptionally. A-to-Ino editing on mRNA may result in amino acid changes, creation or deletion of splice sites and stop codons, resulting in post-translational protein changes that favor protein diversity. Ino on tRNA is located at position 34 of the anticodon loop, and Ino at this position allows multiple codons to be recognized by wobble pairing, enhancing the decoding ability of tRNA. miRNAs and siRNAs can modulate target genes in a highly specific manner, and A-to-Ino editing regulates the maturation, structure, and function of miRNAs and siRNAs.
异常的A-to-Ino编辑水平已被证明与多种人类疾病相关,包括多种癌症、神经性和神经退行性疾病、精神障碍和自身免疫性疾病等。一些转录本上A-to-Ino编辑位点的异常编辑水平已被证明与疾病的发生机制相关。例如,5羟色胺2C受体pre-mRNA的A-to-Ino编辑发生在外显子5的5个保守位点(命名为A到E),抑郁症自杀受害者的大脑中A位点的编辑水平提高,重度抑郁症患者的E位点编辑水平显着增加。但大多数A-to-Ino编辑位点的意义尚不清楚,准确鉴定A-to-Ino编辑在全转录组的位置是深入了解每一个位点的生物学功能和意义的基础。Aberrant A-to-Ino editing levels have been shown to be associated with a variety of human diseases, including various cancers, neurological and neurodegenerative diseases, psychiatric disorders, and autoimmune diseases. Aberrant editing levels at A-to-Ino editing sites on some transcripts have been shown to be associated with disease mechanisms. For example, A-to-Ino editing of serotonin 2C receptor pre-mRNA occurs at 5 conserved sites (designated A to E) in
目前转录组范围A-to-Ino编辑的单碱基定位方法主要为RNA-seq。Ino在逆转录过程与C配对使其在测序过程中被读作G,因此可根据A-to-G转换来识别A-to-Ino编辑位点。尽管原理简单,在实际分析过程中由于比对错误、单核苷酸多态性、体细胞突变等干扰因素,RNA-seq会产生大量的假阳性位点。尽管统计建模、过滤和/或比对以及整合其他基因组信息等生物信息学手段被开发用来等减少假阳性,RNA-seq识别A-to-Ino编辑位点的准确性仍然较差。转录组范围内鉴定A-to-Ino编辑位点的化学方法之一是“ICE-seq”,Ino与丙烯腈反应产生的N1-氰乙基肌苷在逆转录中阻碍cDNA延伸,产生截断的cDNA因片段过短在文库构建中被筛除,从而在测序中产生的“擦除”的信号可用来鉴定A-to-Ino编辑位点,但此方法无法鉴定出100%编辑的位点。另一种涉及化学反应的方法是Ino特异性测序,核酸酶T1的特性是在G或Ino处切割RNA,硼酸盐存在下G与乙二醛形成稳定的加合物从而抵御核酸酶T1的切割,而Ino因无法形成稳定的加合物被核酸酶T1切割。此方法首先通过化学反应氧化和生物素化RNA 3’末端,随后乙二醛和硼酸盐处理保护RNA上的G,接着通过生物素-链霉素亲和作用使RNA固定在链霉素功能性磁珠上,核酸酶T1在Ino处切割RNA,随后切割下的RNA进行文库构建和测序分析A-to-Ino编辑位点。此方法的不足是程序复杂,且若不能实现G的100%保护,G也能被核酸酶T1切割会造成假阳性位点。化学方法的共同不足之处在于剧烈的化学反应会造成RNA的严重降解,因此温和的酶促反应方法应被开发用于单碱基分辨率定位分析A-to-Ino编辑。The current single-base mapping method for transcriptome-wide A-to-Ino editing is mainly RNA-seq. Ino is paired with a C during reverse transcription so that it is read as a G during sequencing, so A-to-Ino editing sites can be identified based on the A-to-G transition. Although the principle is simple, in the actual analysis process, RNA-seq will generate a large number of false positive sites due to interference factors such as alignment errors, single nucleotide polymorphisms, and somatic mutations. Although bioinformatic approaches such as statistical modeling, filtering and/or alignment, and integration of other genomic information have been developed to reduce false positives, RNA-seq remains less accurate in identifying A-to-Ino editing sites. One of the chemical methods for the identification of A-to-Ino editing sites on a transcriptome scale is "ICE-seq", N1 - cyanoethylinosine produced by the reaction of Ino with acrylonitrile hinders cDNA extension during reverse transcription, resulting in truncation The cDNA was screened during library construction due to the short fragments, so the "erasure" signal generated in sequencing can be used to identify A-to-Ino editing sites, but this method cannot identify 100% edited sites . Another method involving chemical reactions is Ino-specific sequencing. The property of nuclease T1 is to cleave RNA at G or Ino, and G forms a stable adduct with glyoxal in the presence of borate to resist nuclease T1. cleavage, while Ino is cleaved by nuclease T1 due to its inability to form stable adducts. This method begins by chemically oxidizing and biotinylating the 3' end of the RNA, followed by glyoxal and borate treatment to protect the G on the RNA, followed by biotin-streptomycin affinity to immobilize the RNA to the streptomycin function On the magnetic beads, nuclease T1 cleaved RNA at Ino, and then the cleaved RNA was subjected to library construction and sequencing analysis of A-to-Ino editing sites. The disadvantage of this method is that the procedure is complicated, and if 100% protection of G cannot be achieved, G can also be cleaved by nuclease T1, resulting in false positive sites. A common disadvantage of chemical methods is that severe chemical reactions can cause severe RNA degradation, so mild enzymatic methods should be developed for single-base resolution mapping analysis of A-to-Ino editing.
hEndoV(人源核酸内切酶V)作为RNA上Ino的核酸内切酶,可特异性识别并切割RNA上的Ino,在其下游3’端第二个磷酸二脂键产生一个3’OH和5’磷酸的切口。根据此特性我们提出一种内切酶辅助的RNA中Ino的单碱基分辨率定位方法的发明。hEndoV (human endonuclease V), as an endonuclease of Ino on RNA, can specifically recognize and cleave Ino on RNA, and generate a 3'OH and a second phosphodiester bond at its downstream 3' end. 5' Phosphate cut. According to this feature, we propose the invention of an endonuclease-assisted method for single-base resolution mapping of Ino in RNA.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术存在的缺点与不足,提供一种内切酶辅助的RNA中肌苷修饰的单碱基分辨率定位分析方法,即一种能应用于RNA修饰测序领域中,无需化学试剂处理,无需复杂的生物信息学算法,具有高灵敏度、高选择性、操作简便的Ino单碱基分辨率定位分析方法。The object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide an endonuclease-assisted single-base resolution localization analysis method for inosine modification in RNA, that is, a method that can be applied to the field of RNA modification sequencing, No chemical reagent processing, no complex bioinformatics algorithm, high sensitivity, high selectivity, easy to operate Ino single base resolution localization analysis method.
本发明的目的通过下述技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种内切酶辅助的RNA中肌苷修饰的单碱基分辨率定位分析方法,包括以下步骤:An endonuclease-assisted single-base resolution localization analysis method for inosine modification in RNA, comprising the following steps:
(1)将细胞或组织样品的RNA片段化;(1) Fragmenting the RNA of the cell or tissue sample;
(2)对片段化的RNA进行3’OH末端封闭:使用polyA聚合酶催化3’deoxy-ATP添加3’deoxy-A到片段化的RNA的3’OH末端,用来封闭RNA的3’OH末端,随后纯化出RNA;(2) 3'OH end blocking of fragmented RNA: use polyA polymerase to catalyze 3'deoxy-ATP to add 3'deoxy-A to the 3'OH end of fragmented RNA to block the 3'OH end of RNA end, followed by purification of RNA;
(3)使用hEndoV蛋白切割上述3’OH末端封闭的RNA,在肌苷处产生新的RNA 3’OH;(3) Use hEndoV protein to cleave above-mentioned 3'OH end-blocked RNA to generate new RNA 3'OH at inosine;
(4)对切割后的RNA进行3’多聚尿苷化:使用polyU聚合酶催化UTP添加U尾到RNA3’OH末端,进行3’多聚尿苷化;(4) 3' polyuridylation of the cleaved RNA: using polyU polymerase to catalyze UTP to add a U tail to the 3' OH end of the RNA to carry out 3' polyuridylation;
(5)以3’多聚尿苷化的RNA为模板,采用带有多聚腺苷和3’接头的逆转录引物进行逆转录反应,获得cDNA;(5) using 3' polyuridylated RNA as a template, using reverse transcription primers with polyadenosine and 3' linkers to carry out reverse transcription reaction to obtain cDNA;
(6)采用带有5’接头的引物通过DNA聚合酶延伸反应在cDNA上添加5’接头,获得用于扩增的DNA;(6) using a primer with a 5' linker to add a 5' linker to the cDNA through a DNA polymerase extension reaction to obtain DNA for amplification;
(7)以上述DNA为模板进行PCR扩增,扩增的产物进行测序;(7) PCR amplification is carried out with the above-mentioned DNA as a template, and the amplified product is sequenced;
(8)肌苷修饰的单碱基识别:测序结果中去掉双端接头后3’到5’的第二个碱基G为肌苷修饰的碱基。(8) Inosine-modified single-base recognition: in the sequencing results, the second base G from 3' to 5' after removing the double-end linker is an inosine-modified base.
本发明方法通过hEndoV蛋白对Ino的特异性切割,通过测序获得Ino的单碱基分辨率定位信息。The method of the present invention obtains the single-base resolution positioning information of Ino through the specific cleavage of Ino by hEndoV protein and sequencing.
上述的hEndoV蛋白切割反应:采用NEBuffer 4(NEB公司,货号B7004)为反应缓冲液,该缓冲反应液的缓冲体系为Tris-CH3COOH,Mg2+的浓度为10mM,采用一定量的hEndoV蛋白(具体根据实际蛋白的活性来确定),反应的条件优选为37℃反应30min。The above-mentioned hEndoV protein cleavage reaction: NEBuffer 4 (NEB company, product number B7004) was used as the reaction buffer, the buffer system of the buffer reaction solution was Tris-CH 3 COOH, the concentration of Mg 2+ was 10mM, and a certain amount of hEndoV protein was used. (specifically determined according to the activity of the actual protein), the reaction conditions are preferably 37°C for 30min.
上述hEndoV蛋白切割反应是指hEndoV蛋白对RNA上Ino的特异性切割反应。The above hEndoV protein cleavage reaction refers to the specific cleavage reaction of Ino on RNA by hEndoV protein.
本发明的优点及有益效果如下:The advantages and beneficial effects of the present invention are as follows:
1)本发明原理直接,方法简便,无需复杂的前处理。1) The principle of the present invention is direct, the method is simple, and no complicated pretreatment is required.
2)本发明无需化学反应处理RNA,不会造成RNA的剧烈降解。2) The present invention does not require chemical reaction to process RNA, and will not cause severe degradation of RNA.
3)本发明中hEndoV蛋白切割反应仅需30分钟可完成,极大缩短了整体的实验时间。3) In the present invention, the hEndoV protein cleavage reaction can be completed in only 30 minutes, which greatly shortens the overall experimental time.
4)本发明涉及的切割反应具有高度特异性(仅切割Ino,不切割A)和高效性(完全切割),利于定位分析。4) The cleavage reaction involved in the present invention has high specificity (only Ino cleavage, not A) and high efficiency (complete cleavage), which is beneficial to localization analysis.
5)本发明涉及的RNA建库方法无需单链连接反应,建库效率高,利于测序和位点分析。5) The RNA library construction method involved in the present invention does not require single-strand ligation reaction, has high library construction efficiency, and is beneficial to sequencing and site analysis.
6)本发明不涉及复杂的生物信息学算法,利于A-to-Ino编辑位点的鉴定。6) The present invention does not involve complex bioinformatics algorithms, which is beneficial to the identification of A-to-Ino editing sites.
附图说明Description of drawings
图1为本发明的内切酶辅助的RNA中肌苷修饰的的单碱基分辨率定位分析方法的示意图。RNA的3’OH末端首先被3’-deoxy-A封闭,然后通过hEndoV蛋白切割在Ino的3’第二个磷酸二脂键处产生新的3’OH,新产生的3’OH随后被3’多聚尿苷化,经由文库构建和测序,实现Ino的单碱基分辨率定位分析。FIG. 1 is a schematic diagram of the single-base resolution localization analysis method of inosine modification in endonuclease-assisted RNA of the present invention. The 3'OH terminus of the RNA was first blocked by 3'-deoxy-A, and then a new 3'OH was generated at the 3' second phosphodiester bond of Ino by hEndoV protein cleavage, and the newly generated 3'OH was subsequently blocked by 3'-OH 'Polyuridylation, enabling single-base resolution mapping analysis of Ino via library construction and sequencing.
图2为本发明中hEndoV蛋白对人工合成的含有Ino修饰RNA特异性切割的PAGE胶图。(A)hEndoV切割RNA上有Ino修饰的示意图;(B)以合成的含有Ino修饰的RNA链(Ino-RNA-1和Ino-RNA-2,序列见表2)为底物评估hEndoV蛋白的切割效果,(C)以不含有Ino修饰的RNA链(A-RNA-1,序列见表2)为底物评估hEndoV蛋白的切割特异性。Fig. 2 is a PAGE gel image of the specific cleavage of synthetic RNA containing Ino modified by hEndoV protein in the present invention. (A) Schematic diagram of hEndoV cleaving RNA with Ino modifications; (B) Using synthetic RNA strands containing Ino modifications (Ino-RNA-1 and Ino-RNA-2, sequences are shown in Table 2) as substrates to evaluate hEndoV protein Cleavage effect, (C) The cleavage specificity of hEndoV protein was evaluated by using RNA strand without Ino modification (A-RNA-1, see Table 2 for sequence) as substrate.
图3为本发明中对人工合成的45nt的Ino-RNA-1寡核苷酸链进行单碱基分辨率定位分析肌苷修饰的测序效果图。FIG. 3 is a diagram showing the sequencing effect of the single-base resolution localization analysis of inosine modification on an artificially synthesized 45nt Ino-RNA-1 oligonucleotide chain in the present invention.
具体实施方式Detailed ways
在一些实施方案中,本发明的内切酶辅助的RNA中肌苷修饰的单碱基分辨率定位分析方法,具体包括如下步骤:In some embodiments, the single-base resolution localization analysis method of inosine modification in endonuclease-assisted RNA of the present invention specifically comprises the following steps:
(1)片段化;取5μg从生物样品组织或细胞中提取的mRNA,使用NEBNext RNA Mg++片段化模块(NEB,货号E6150)将mRNA片段化,长度为1000nt左右。(1) Fragmentation: Take 5 μg of mRNA extracted from biological sample tissues or cells, and use NEBNext RNA Mg ++ Fragmentation Module (NEB, Cat. No. E6150) to fragment the mRNA with a length of about 1000 nt.
(2)上述RNA进行3’OH末端封闭:向上述mRNA中加入5U polyA聚合酶(NEB,货号M0276)、1×polyA反应缓冲液(随酶配送)、1mM 3’deoxy-ATP(Sigma-Aldrich,货号C9137)和20U RNase inhibitor,37℃反应30min后用RNA Clean&Concentrator Kits(ZYMORESEARCH,货号R1013)纯化出RNA(10μL洗脱)。(2) 3'OH end blocking of the above RNA: add 5U polyA polymerase (NEB, Cat. No. M0276), 1×polyA reaction buffer (delivered with the enzyme), 1mM 3'deoxy-ATP (Sigma-Aldrich) to the above mRNA , Cat. No. C9137) and 20U RNase inhibitor, after 30 min of reaction at 37°C, RNA was purified (10 μL elution) with RNA Clean & Concentrator Kits (ZYMORESEARCH, Cat. No. R1013).
(3)上述RNA进行hEndoV切割:向上述10μL的RNA中加入一定量的hEndoV蛋白、1×NEBuffer 4缓冲液(NEB,货号B7004)和20U RNase inhibitor,终体积为20μL,切割反应在37℃进行30min。(3) hEndoV cleavage of the above RNA: add a certain amount of hEndoV protein, 1×
其中,hEndoV蛋白表达过程如下,hEndoV的全长编码序列(见表1)插入pET-28a(+)质粒得到hEndoV-pET-28a(+)重组质粒,转化到大肠杆菌BL21(DE3)中;诱导蛋白表达的条件是IPTG浓度为1mM、诱导温度为25℃、诱导时间为10h;蛋白采用BeyoGold His-tagPurification Resin(耐还原螯合型)(碧云天生物技术,货号P2210)进行纯化。hEndoV蛋白活性评估过程如下,含有1μM RNA(Ino-RNA-1、Ino-RNA-2和A-RNA-1,序列见表2)、一定量的hEndoV、20U RNase inhibitor和1×NEBuffer 4缓冲液(NEB,货号B7004)的共10μL反应体系在37℃下孵育30min后,向此体系加入1μL 10×loading buffer(Takara,货号9157)来终止反应,通过20%PAGE鉴定反应结果(图2)。Among them, the expression process of hEndoV protein is as follows. The full-length coding sequence of hEndoV (see Table 1) is inserted into pET-28a(+) plasmid to obtain hEndoV-pET-28a(+) recombinant plasmid, which is transformed into E. coli BL21(DE3); induction The conditions for protein expression were IPTG concentration of 1 mM, induction temperature of 25 °C, and induction time of 10 h; the protein was purified by BeyoGold His-tag Purification Resin (reduction-resistant chelation type) (Biyuntian Biotechnology, Cat. No. P2210). The evaluation process of hEndoV protein activity is as follows, containing 1 μM RNA (Ino-RNA-1, Ino-RNA-2 and A-RNA-1, sequences are shown in Table 2), a certain amount of hEndoV, 20U RNase inhibitor and 1×
(4)上述RNA进行3’多聚尿苷化:向上述20μL的反应体系加入1U polyU聚合酶(NEB,货号M0337)、1×NEBuffer 2缓冲液(随酶配送)、100μM UTP和20U RNase inhibitor,终体积为40μL。此体系在37℃进行8min后使用RNA Clean&Concentrator Kits(ZYMORESEARCH,货号R1013)纯化出RNA(20μL洗脱)。(4) 3' polyuridylation of the above RNA: add 1U polyU polymerase (NEB, Cat. No. M0337), 1×NEBuffer 2 (delivered with the enzyme), 100μM UTP and 20U RNase inhibitor to the above 20μL reaction system , the final volume is 40 μL. RNA was purified (20 μL elution) using RNA Clean & Concentrator Kits (ZYMORESEARCH, Cat. No. R1013) after the system was incubated at 37°C for 8 min.
(5)上述RNA进行逆转录合成cDNA:30μL的逆转录体系由20μL上述RNA、200UM-MuLV逆转录酶(生工生物,货号B500517)、1×RT反应缓冲液(随酶配送)、0.33μM 3’adaptor-A20NC引物(序列见表2)、0.5mM dNTP和20U RNase inhibitor组成,此体系在42℃下反应90min。(5) The above RNA was reverse transcribed to synthesize cDNA: 30 μL of reverse transcription system was composed of 20 μL of the above RNA, 200 UM-MuLV reverse transcriptase (Sangong Bio, Cat. No. B500517), 1× RT reaction buffer (delivered with the enzyme), 0.33 μM 3'adaptor-A 20 NC primer (see Table 2 for the sequence), 0.5mM dNTP and 20U RNase inhibitor, this system was reacted at 42°C for 90min.
(6)去除RNA和纯化cDNA:向逆转录反应(30μL)中加入1μL核酸外切酶I(NEB,货号M0293)、5μL核酸外切酶I反应缓冲液(随酶配送)和14μL H2O,于37℃反应30min以去除过量的逆转录引物;然后向此外切酶I反应体系(50μL)中加入10μL NaOH(1M)和10μL EDTA(0.5M),65℃反应15min去除体系中的RNA,采用Oligo Clean&Concentrator Kits(ZYMORESEARCH,货号D4060)回收cDNA(10μL洗脱)。(6) Removal of RNA and purification of cDNA: To the reverse transcription reaction (30 μL), add 1 μL of Exonuclease I (NEB, Cat. No. M0293), 5 μL of Exonuclease I Reaction Buffer (delivered with the enzyme) and 14 μL of H 2 O , react at 37°C for 30min to remove excess reverse transcription primer; then add 10μL NaOH (1M) and 10μL EDTA (0.5M) to the exonuclease I reaction system (50μL), and react at 65°C for 15min to remove RNA in the system, cDNA was recovered (10 μL elution) using Oligo Clean & Concentrator Kits (ZYMORESEARCH, Cat. No. D4060).
(7)上述cDNA进行延伸反应添加5’接头:反应体系(30μL)由10μL上述cDNA、5U BsuDNA聚合酶(NEB,货号M0330)、1×NEBuffer 2缓冲液(随酶配送)、0.33μM 5’adaptor-N6引物(序列见表2)、1mM dNTP组成,此体系37℃下反应1h。(7) Carry out the extension reaction of the above cDNA and add 5' adapter: The reaction system (30 μL) consists of 10 μL of the above cDNA, 5U BsuDNA polymerase (NEB, Cat. No. M0330), 1×NEBuffer 2 (delivered with the enzyme), 0.33 μM 5' The adaptor-N 6 primer (see Table 2 for the sequence) and 1 mM dNTP were used to react in this system for 1 h at 37°C.
(8)DNA纯化:向前体系(30μL)中加入1μL核酸外切酶I(NEB,货号M0293)、5μL核酸外切酶I反应缓冲液(随酶配送)和14μL H2O,37℃下反应30min去除过量的5’adaptor-N6引物,采用Oligo Clean&Concentrator Kits(ZYMO RESEARCH,货号D4060)回收DNA(15μL洗脱)。(8) DNA purification: add 1 μL exonuclease I (NEB, Cat. No. M0293), 5 μL exonuclease I reaction buffer (delivered with the enzyme) and 14 μL H 2 O to the previous system (30 μL), at 37°C The excess 5'adaptor-N 6 primer was removed after the reaction for 30 min, and DNA was recovered (15 μL elution) using Oligo Clean & Concentrator Kits (ZYMO RESEARCH, Cat. No. D4060).
(9)上述DNA进行PCR扩增:PCR体系(50μL)由15μL上述DNA、2×扩增缓冲液(翌圣生物,货号10136ES01)、0.5μM P5和P7引物(序列见表2)组成。扩增循环时间程序:①98℃变性1min;②98℃变性10sec;③60℃退火25sec;④72℃延伸50sec;②-④步重复30次;72℃延伸10min,放置4℃进行贮存。(9) PCR amplification of the above DNA: The PCR system (50 μL) consists of 15 μL of the above DNA, 2× amplification buffer (Yisheng Bio, Cat. No. 10136ES01), 0.5 μM P5 and P7 primers (see Table 2 for the sequence). Amplification cycle time program: ① 98°C denaturation for 1 min; ② 98°C denaturation for 10 sec; ③ 60°C annealing for 25 sec; ④ 72°C extension for 50 sec;
(10)所得的扩增产物进行测序。(10) The amplified product obtained is sequenced.
表1hEndoV全长编码序列Table 1 hEndoV full-length coding sequence
表2具体实施方式中涉及的寡核苷酸链Table 2 Oligonucleotide chains involved in the specific embodiment
以下实施例用于进一步说明本发明,但不应理解为对本发明的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The following examples are used to further illustrate the present invention, but should not be construed as a limitation of the present invention. Any other changes, modifications, substitutions, combinations, and simplifications that do not deviate from the spirit and principle of the present invention should be equivalent. The replacement modes are all included in the protection scope of the present invention.
若未特别指明,实施例中所用的技术手段包括核酸提取、试剂盒纯化、逆转录反应、聚合酶链式反应为本领域技术人员所熟知的常规手段。Unless otherwise specified, the technical means used in the examples including nucleic acid extraction, kit purification, reverse transcription reaction, and polymerase chain reaction are conventional means well known to those skilled in the art.
实施例1:标准合成RNA分析Example 1: Standard Synthetic RNA Analysis
(1)在10μL的反应体系中加入100ng人工合成的Ino-RNA-1链(序列见表3)、5UpolyA聚合酶、1mM 3’deoxy-ATP、1×polyA反应缓冲液和20U RNase inhibitor,37℃反应30min后用试剂盒纯化出RNA。(1) Add 100ng of artificially synthesized Ino-RNA-1 chain (see Table 3 for the sequence), 5U polyA polymerase, 1mM 3'deoxy-ATP, 1×polyA reaction buffer and 20U RNase inhibitor to a 10μL reaction system, 37 After 30 min of reaction at °C, the RNA was purified with a kit.
(2)上述RNA进行hEndoV蛋白切割反应。向上述RNA中加入一定量的hEndoV蛋白、1×NEBuffer 4和20U RNase inhibitor,使得终体积为20μL,切割反应在37℃进行30min。(2) The above RNA is subjected to hEndoV protein cleavage reaction. A certain amount of hEndoV protein, 1×NEBuffer 4 and 20U RNase inhibitor were added to the above RNA to make the final volume 20 μL, and the cleavage reaction was carried out at 37°C for 30min.
(3)上述RNA进行多聚尿苷化反应。向上述20μL的反应体系加入1U polyU聚合酶、100μM UTP、1×NEBuffer 2和20U RNase inhibitor,终体积为40μL。此体系在37℃进行8min后使用试剂盒纯化出RNA。(3) The above RNA is subjected to a polyuridylation reaction. 1U polyU polymerase, 100 μM UTP, 1×NEBuffer 2 and 20U RNase inhibitor were added to the above 20 μL reaction system to a final volume of 40 μL. After this system was carried out at 37°C for 8 min, the kit was used to purify the RNA.
(4)上述RNA进行逆转录反应。逆转录体系(30μL)包括10μL上述RNA、0.33μM 3’adaptor-A20GC引物(序列见表3)、0.5mM dNTP、200U逆转录酶、1×逆转录缓冲液、20U RNaseinhibitor,此体系在42℃下反应90min。由于使用Ino-RNA-1的标准合成RNA分析体系简单,此处回收cDNA的步骤简化为向反应结束的逆转录体系加入1μL核糖核酸酶A,于37℃下反应30min以去除RNA,通过试剂盒回收cDNA。(4) The above RNA is subjected to reverse transcription reaction. The reverse transcription system (30 μL) includes 10 μL of the above RNA, 0.33 μM 3’adaptor-A 20 GC primer (see Table 3 for the sequence), 0.5 mM dNTP, 200 U reverse transcriptase, 1× reverse transcription buffer, 20 U RNaseinhibitor, this system is in The reaction was carried out at 42 °C for 90 min. Since the standard synthetic RNA analysis system using Ino-RNA-1 is simple, the step of recovering cDNA here is simplified as adding 1 μL of ribonuclease A to the reverse transcription system at the end of the reaction, and reacting at 37°C for 30 minutes to remove RNA, and then pass through the kit. cDNA was recovered.
(5)上述cDNA进行5’接头添加反应。5’接头添加反应体系(30μL)包括10μL上述cDNA、5U Bsu DNA聚合酶、0.33μM 5’adaptor引物(序列见表3)、1mM dNTP、1×NEBuffer 2,此体系在37℃下反应1h。(5) The above cDNA is subjected to a 5' adapter addition reaction. The 5' adapter addition reaction system (30 μL) included 10 μL of the above cDNA, 5U Bsu DNA polymerase, 0.33 μM 5’ adapter primer (see Table 3 for the sequence), 1 mM dNTP, and 1×
(6)取上述反应DNA进行聚合酶链式扩增反应。25μL PCR反应体系由2μL上述DNA、12.5μL 2×扩增缓冲液、10μM P5、P7引物(序列见表3)各1.25μL和8μL H2O组成。扩增循环时间程序:①98℃变性1min;②98℃变性10sec;③60℃退火25sec;④72℃延伸50sec;②-④步重复30次;72℃延伸10min,放置4℃进行贮存。样品可直接进行Sanger测序,测序结果见图3,测序图中去除接头后3’到5’第二个碱基为G(方框标记),此位点为初始Ino-RNA-1中的肌苷修饰。(6) Take the above-mentioned reaction DNA and carry out polymerase chain amplification reaction. The 25 μL PCR reaction system consisted of 2 μL of the above DNA, 12.5 μL of 2× amplification buffer, 10 μM of P5 and P7 primers (see Table 3 for sequences), 1.25 μL of each, and 8 μL of H 2 O. Amplification cycle time program: ① 98°C denaturation for 1 min; ② 98°C denaturation for 10 sec; ③ 60°C annealing for 25 sec; ④ 72°C extension for 50 sec; The sample can be directly sequenced by Sanger. The sequencing result is shown in Figure 3. The second base from 3' to 5' in the sequencing diagram is G (marked by a box), and this site is the muscle in the original Ino-RNA-1. glycoside modification.
表3实施例1中涉及到的寡核苷酸链The oligonucleotide chains involved in Table 3 Example 1
序列表sequence listing
<110> 武汉大学<110> Wuhan University
<120> 一种内切酶辅助的RNA中肌苷修饰的单碱基分辨率定位分析方法<120> An endonuclease-assisted single-base resolution mapping method for inosine modification in RNA
<160> 1<160> 1
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 846<211> 846
<212> DNA<212> DNA
<213> Homo sapiens<213> Homo sapiens
<400> 1<400> 1
atggccctgg aggcggcggg agggccgccg gaggaaacgc tgtcactgtg gaaacgggag 60atggccctgg aggcggcggg agggccgccg gaggaaacgc tgtcactgtg gaaacgggag 60
caagctcggc tgaaggccca cgtcgtagac cgggacaccg aggcgtggca gcgagacccc 120caagctcggc tgaaggccca cgtcgtagac cgggacaccg aggcgtggca gcgagacccc 120
gccttctcgg gtctgcagag ggtcgggggc gttgacgtgt ccttcgtgaa aggggacagt 180gccttctcgg gtctgcagag ggtcgggggc gttgacgtgt ccttcgtgaa aggggacagt 180
gtccgcgctt gtgcttccct ggtggtgctc agcttccctg agctcgaggt ggtgtatgag 240gtccgcgctt gtgcttccct ggtggtgctc agcttccctg agctcgaggt ggtgtatgag 240
gagagccgca tggtcagcct cacagccccc tacgtgtcgg gcttcctggc cttccgagag 300gagagccgca tggtcagcct cacagccccc tacgtgtcgg gcttcctggc cttccgagag 300
gtgcccttct tgctggagct ggtgcagcag ctgcgggaga aggagccggg cctcatgccc 360gtgcccttct tgctggagct ggtgcagcag ctgcgggaga aggagccggg cctcatgccc 360
caggtccttc ttgtggatgg aaacggggta ctccaccacc gaggctttgg ggtggcctgc 420caggtccttc ttgtggatgg aaacggggta ctccaccacc gaggctttgg ggtggcctgc 420
caccttggcg tccttacaga cctgccgtgt gttggggtgg ccaagaaact tctgcaggtg 480caccttggcg tccttacaga cctgccgtgt gttggggtgg ccaagaaact tctgcaggtg 480
gatgggctgg agaacaacgc cctgcacaag gagaagatcc gactcctgca gactcgagga 540gatgggctgg agaacaacgc cctgcacaag gagaagatcc gactcctgca gactcgagga 540
gactcattcc ctctgctggg agactctggg actgtcctgg gaatggccct gaggagccac 600gactcattcc ctctgctggg agactctggg actgtcctgg gaatggccct gaggagccac 600
gaccgcagca ccaggcccct ctacatctcc gtgggccaca ggatgagcct ggaggccgct 660gaccgcagca ccaggcccct ctacatctcc gtgggccaca ggatgagcct ggaggccgct 660
gtgcgcctga cttgctgctg ctgcaggttc cggatcccag agcccgtgcg ccaggctgac 720gtgcgcctga cttgctgctg ctgcaggttc cggatcccag agcccgtgcg ccaggctgac 720
atctgctccc gagagcacat ccgcaagtcg ctgggactcc ccgggccacc cacaccgagg 780atctgctccc gagagcacat ccgcaagtcg ctgggactcc ccgggccacc cacaccgagg 780
agcccgaagg cgcagaggcc agtggcatgc cccaaaggag actccggaga gtcctcagca 840agcccgaagg cgcagaggcc agtggcatgc cccaaaggag actccggaga gtcctcagca 840
ctttgt 846ctttgt 846
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210623985.8A CN115125292B (en) | 2022-06-02 | 2022-06-02 | A single-base resolution localization analysis method for inosine modification in RNA assisted by endonuclease |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210623985.8A CN115125292B (en) | 2022-06-02 | 2022-06-02 | A single-base resolution localization analysis method for inosine modification in RNA assisted by endonuclease |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115125292A true CN115125292A (en) | 2022-09-30 |
CN115125292B CN115125292B (en) | 2025-02-07 |
Family
ID=83377322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210623985.8A Active CN115125292B (en) | 2022-06-02 | 2022-06-02 | A single-base resolution localization analysis method for inosine modification in RNA assisted by endonuclease |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115125292B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115927571A (en) * | 2022-10-19 | 2023-04-07 | 武汉大学 | A method for the single-base resolution quantitative detection of inosine in RNA |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070020639A1 (en) * | 2005-07-20 | 2007-01-25 | Affymetrix, Inc. | Isothermal locus specific amplification |
WO2007018169A1 (en) * | 2005-08-08 | 2007-02-15 | The University Of Tokyo | Method for detection of inosine-containing site in rna |
CN102732629A (en) * | 2012-08-01 | 2012-10-17 | 复旦大学 | Method for concurrently determining gene expression level and polyadenylic acid tailing by using high-throughput sequencing |
CN105492629A (en) * | 2013-07-18 | 2016-04-13 | 哈佛学院院长及董事 | Specific nucleic acid amplification with compounded selectivity |
WO2018090373A1 (en) * | 2016-11-21 | 2018-05-24 | 深圳华大智造科技有限公司 | Method for repairing dna terminal end and adding a |
CN108841934A (en) * | 2018-08-06 | 2018-11-20 | 中国科学院动物研究所 | A kind of method and kit of the N7- methylguanosine modification of the full inside transcript profile range single base resolution ratio detection RNA |
US20190284624A1 (en) * | 2018-03-15 | 2019-09-19 | Massachusetts Institute Of Technology | Methods of quantifying rna and dna variants through sequencing employing phosphorothioates |
CN110358817A (en) * | 2019-06-25 | 2019-10-22 | 武汉大学 | 5- carboxyl cytimidine modifies single base resolution ratio method for positioning analyzing in the DNA of deaminase auxiliary |
CN111154837A (en) * | 2019-09-02 | 2020-05-15 | 浙江大学 | A method and kit for the detection of RNA N6-methyladenine modification with single-base resolution across the whole transcriptome |
CN112301118A (en) * | 2020-10-30 | 2021-02-02 | 浙江大学 | A method and kit for simultaneously obtaining RNA abundance and active RNA polymerase sites across the whole transcriptome |
CN114134205A (en) * | 2021-11-25 | 2022-03-04 | 武汉大学 | Deaminase-mediated N in DNA4Single base resolution positioning analysis method of-methylcytosine |
-
2022
- 2022-06-02 CN CN202210623985.8A patent/CN115125292B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070020639A1 (en) * | 2005-07-20 | 2007-01-25 | Affymetrix, Inc. | Isothermal locus specific amplification |
WO2007018169A1 (en) * | 2005-08-08 | 2007-02-15 | The University Of Tokyo | Method for detection of inosine-containing site in rna |
CN102732629A (en) * | 2012-08-01 | 2012-10-17 | 复旦大学 | Method for concurrently determining gene expression level and polyadenylic acid tailing by using high-throughput sequencing |
CN105492629A (en) * | 2013-07-18 | 2016-04-13 | 哈佛学院院长及董事 | Specific nucleic acid amplification with compounded selectivity |
WO2018090373A1 (en) * | 2016-11-21 | 2018-05-24 | 深圳华大智造科技有限公司 | Method for repairing dna terminal end and adding a |
US20190284624A1 (en) * | 2018-03-15 | 2019-09-19 | Massachusetts Institute Of Technology | Methods of quantifying rna and dna variants through sequencing employing phosphorothioates |
CN108841934A (en) * | 2018-08-06 | 2018-11-20 | 中国科学院动物研究所 | A kind of method and kit of the N7- methylguanosine modification of the full inside transcript profile range single base resolution ratio detection RNA |
CN110358817A (en) * | 2019-06-25 | 2019-10-22 | 武汉大学 | 5- carboxyl cytimidine modifies single base resolution ratio method for positioning analyzing in the DNA of deaminase auxiliary |
CN111154837A (en) * | 2019-09-02 | 2020-05-15 | 浙江大学 | A method and kit for the detection of RNA N6-methyladenine modification with single-base resolution across the whole transcriptome |
CN112301118A (en) * | 2020-10-30 | 2021-02-02 | 浙江大学 | A method and kit for simultaneously obtaining RNA abundance and active RNA polymerase sites across the whole transcriptome |
CN114134205A (en) * | 2021-11-25 | 2022-03-04 | 武汉大学 | Deaminase-mediated N in DNA4Single base resolution positioning analysis method of-methylcytosine |
Non-Patent Citations (5)
Title |
---|
CHEN LQ等: "Mapping and editing of nucleic acid modifications",Chen LQ等,Comput Struct Biotechnol J,第18卷,第661-667页,公开日期:20200319", COMPUT STRUCT BIOTECHNOL J, vol. 18, 19 March 2020 (2020-03-19), pages 661 - 667 * |
JUAN-JUAN CHEN等: "Single-Base Resolution Detection of Adenosine-to-Inosine RNA Editing by Endonuclease-Mediated SequencingSingle-Base Resolution Detection of Adenosine-to-Inosine RNA Editing by Endonuclease-Mediated Sequencing", ANALYTICAL CHEMISTRY, vol. 94, 9 June 2022 (2022-06-09), pages 8740 - 8747 * |
KNUTSON SD等: "EndoVIPER-seq for Improved Detection of A-to-I Editing Sites in Cellular RNA", CURR PROTOC CHEM BIOL, vol. 12, no. 2, 30 June 2020 (2020-06-30), pages 1 - 30 * |
朱文煜等: "基于高通量测序的RNA修饰检测技术", 生命科学, vol. 33, no. 3, 31 March 2021 (2021-03-31), pages 292 - 302 * |
游雪娇;袁必锋;冯钰;: "RNA修饰分析方法研究进展", 分析测试学报, no. 10, 22 October 2018 (2018-10-22), pages 15 - 29 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115927571A (en) * | 2022-10-19 | 2023-04-07 | 武汉大学 | A method for the single-base resolution quantitative detection of inosine in RNA |
Also Published As
Publication number | Publication date |
---|---|
CN115125292B (en) | 2025-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3737774B1 (en) | Method for analyzing nucleic acid | |
US11676682B1 (en) | Methods for accurate sequence data and modified base position determination | |
EP3947723B1 (en) | Methods and compositions for analyzing nucleic acid | |
Morozova et al. | Applications of next-generation sequencing technologies in functional genomics | |
US8841073B2 (en) | Methods for identifying RNA segments bound by RNA-binding proteins or ribonucleoprotein complexes | |
CN115125292A (en) | Single-base resolution positioning analysis method for inosine modification in RNA assisted by endonuclease | |
CN103374759B (en) | A kind of detection of lung cancer shifts method and the application thereof of significant SNP | |
EP4172357B1 (en) | Methods and compositions for analyzing nucleic acid | |
CN114787385A (en) | Methods and systems for detecting nucleic acid modifications | |
EP4353832A1 (en) | Method and kit for detecting n6-methyladenosine in nucleic acid molecules | |
JP3845416B2 (en) | Gene tag acquisition method | |
JP2011103827A (en) | Method for detecting 2'-o-methylated region of rna | |
CN113817723A (en) | Polynucleotide and standard substance, kit and application thereof | |
CN110029149A (en) | A method of identification base modification | |
US20250019693A1 (en) | Methods and compositions for analyzing nucleic acid | |
Shagin et al. | Molecular biology applications of the red king crab duplex-specific nuclease | |
CN115786463A (en) | A method and application for efficiently removing residual primers in a reverse transcription system | |
WO2024054517A1 (en) | Methods and compositions for analyzing nucleic acid | |
CN113774121A (en) | A low-volume m6A high-throughput sequencing method based on RNA-linked tags | |
CN115109845A (en) | A high-throughput sequencing method for the detection of hypoxanthine in RNA | |
CN116287166A (en) | Methylation sequencing joint and application thereof | |
Miller et al. | Use of Sequenom Sample ID PlusH SNP Genotyping in Identification of FFPE Tumor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |