CN115107024A - A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology - Google Patents
A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology Download PDFInfo
- Publication number
- CN115107024A CN115107024A CN202210743875.5A CN202210743875A CN115107024A CN 115107024 A CN115107024 A CN 115107024A CN 202210743875 A CN202210743875 A CN 202210743875A CN 115107024 A CN115107024 A CN 115107024A
- Authority
- CN
- China
- Prior art keywords
- industrial robot
- laser tracker
- robot
- axis
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000005516 engineering process Methods 0.000 title claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 50
- 239000011159 matrix material Substances 0.000 claims description 23
- 230000009466 transformation Effects 0.000 claims description 9
- 238000002474 experimental method Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013488 ordinary least square regression Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了一种基于激光追踪仪多站位技术的工业机器人运动学参数辨识方法,该方法首先规划机器人工作空间内理论路径,基于激光追踪仪多站位技术测量得到机器人坐标系下规划路径对应测量点的实际三维坐标,基于激光追踪仪多站位测量模型获得机器人末端定位误差;然后,基于机器人的运动学模型,构建描述工业机器人末端定位误差与24项运动学参数误差之间关系的定位误差模型;最后,利用LASSO算法对机器人24项运动学参数进行精确辨识,实现机器人工业机器人末端定位精度的提升。
The invention discloses a kinematic parameter identification method of an industrial robot based on a laser tracker multi-station technology. The method firstly plans a theoretical path in the robot workspace, and obtains the planned path in a robot coordinate system based on the laser tracker multi-station technology measurement. Corresponding to the actual three-dimensional coordinates of the measurement points, the robot end positioning error is obtained based on the multi-station measurement model of the laser tracker; then, based on the kinematic model of the robot, a description of the relationship between the industrial robot end positioning error and 24 kinematic parameter errors is constructed. Finally, the LASSO algorithm is used to accurately identify the 24 kinematic parameters of the robot, so as to improve the positioning accuracy of the end of the robot industrial robot.
Description
技术领域technical field
本发明涉及一种对工业机器人运动学参数误差辨识方法,特别是基于多站位激光追踪仪测量的技术方法,属于工业机器人运动学参数辨识和误差补偿领域。The invention relates to an error identification method for industrial robot kinematic parameters, in particular to a technical method based on multi-station laser tracker measurement, and belongs to the field of industrial robot kinematic parameter identification and error compensation.
背景技术Background technique
随着工业机器人向精密加工和精密装配等领域的应用拓展,对其绝对定位精度的要求也越来越高,工业机器人现有绝对定位精度水平已很难满足要求,如何进一步提升工业机器人的绝对定位精度已成为当务之急。With the application of industrial robots to the fields of precision machining and precision assembly, the requirements for absolute positioning accuracy are getting higher and higher. The current level of absolute positioning accuracy of industrial robots is difficult to meet the requirements. How to further improve the absolute positioning accuracy of industrial robots? Positioning accuracy has become a top priority.
工业机器人的绝对定位误差主要是由运动学参数误差造成的,占工业机器人末端总误差的90%以上。工业机器人的运动学参数误差补偿通常可分为四个方面:建立运动学模型,搭建测量系统获取定位误差,基于机器人运动学误差模型的参数辨识以及定位误差分析和补偿。机器人运动学参数辨识之前首先获得机器人的定位误差,常用的测量设备有:球杆仪、经纬仪、三坐标测量机、多目视觉测量系统,激光跟踪测量系统等。综合考虑测量精度、测量效率、测量范围和便携性,激光跟踪测量技术无疑是检测工业机器人末端定位误差的首选。由于激光跟踪仪测量的精度有限,且随测量范围的增大测量不确定度也会增大。而激光追踪仪采用标准球设计手段,其机械旋转轴的偏差不会显著影响测量精度,使得激光追踪仪空间距离的测量精度得到了大幅度提高。The absolute positioning error of the industrial robot is mainly caused by the kinematic parameter error, which accounts for more than 90% of the total error of the end of the industrial robot. The kinematic parameter error compensation of industrial robots can usually be divided into four aspects: establishing a kinematic model, building a measurement system to obtain positioning errors, parameter identification based on the robot kinematic error model, and positioning error analysis and compensation. Before identifying the kinematic parameters of the robot, the positioning error of the robot is obtained first. The commonly used measuring equipment are: ballbar, theodolite, three-coordinate measuring machine, multi-eye vision measuring system, laser tracking measuring system, etc. Taking into account the measurement accuracy, measurement efficiency, measurement range and portability, laser tracking measurement technology is undoubtedly the first choice for detecting the positioning error of the end of industrial robots. Because the measurement accuracy of the laser tracker is limited, and the measurement uncertainty will also increase with the increase of the measurement range. The laser tracker adopts a standard ball design method, and the deviation of its mechanical rotation axis will not significantly affect the measurement accuracy, which greatly improves the measurement accuracy of the laser tracker's spatial distance.
本发明使用激光追踪仪多站位测量技术测量工业机器人的定位误差。获得工业机器人定位误差之后,建立误差模型,对机器人运动学参数进行辨识。常用最小二乘法进行参数辨识时,最小二乘计算量小且收敛速度较快,但是当复杂的系数矩阵为奇异矩阵时,将在数值计算过程中产生足以影响计算结果的误差,使得参数误差辨识精度降低。因此本发明提出一种LASSO算法对工业机器人运动学参数进行辨识,该算法在损失函数中引入正则化项,有效的解决了求解误差矩阵方程过程中,系数矩阵不可逆等问题,能更准确的辨识出运动学参数误差。The invention uses the laser tracker multi-station measurement technology to measure the positioning error of the industrial robot. After the positioning error of the industrial robot is obtained, an error model is established to identify the kinematic parameters of the robot. When the least squares method is commonly used for parameter identification, the least squares calculation is small and the convergence speed is fast. However, when the complex coefficient matrix is a singular matrix, an error will be generated in the numerical calculation process that can affect the calculation result, which makes the parameter error identification. Accuracy is reduced. Therefore, the present invention proposes a LASSO algorithm to identify the kinematic parameters of industrial robots. The algorithm introduces a regularization term into the loss function, which effectively solves the problem of irreversible coefficient matrix in the process of solving the error matrix equation, and can identify more accurately kinematic parameter error.
发明内容SUMMARY OF THE INVENTION
引用(申请号/专利号:CN201610889315.5“一种基于激光追踪仪多站位测量的四轴机床标定方法”)中激光追踪仪多站位测量技术。本发明的目的是提供一种基于该激光追踪仪多站位技术的工业机器人运动学参数辨识方法,首先使用激光追踪仪多站位技术测量得到机器人坐标系下规划路径对应测量点的三维坐标,并基于激光追踪仪多站位测量模型获得机器人定位误差;然后,基于机器人的运动学模型,构建描述工业机器人末端定位误差与24项运动学参数误差之间关系的定位误差模型;最后,利用LASSO算法对机器人24项运动学参数进行精确辨识,实现工业机器人末端定位精度的提升。Reference (application number/patent number: CN201610889315.5 "A four-axis machine tool calibration method based on laser tracker multi-station measurement") in the laser tracker multi-station measurement technology. The purpose of the present invention is to provide a kinematic parameter identification method of an industrial robot based on the multi-station technology of the laser tracker. First, the three-dimensional coordinates of the measurement points corresponding to the planned path under the robot coordinate system are obtained by using the multi-station technology of the laser tracker. And based on the multi-station measurement model of the laser tracker, the positioning error of the robot is obtained; then, based on the kinematic model of the robot, a positioning error model describing the relationship between the positioning error of the end of the industrial robot and the error of the 24 kinematic parameters is constructed; finally, using LASSO The algorithm can accurately identify the 24 kinematic parameters of the robot to improve the positioning accuracy of the end of the industrial robot.
为达到以上目的,本发明是采取如下技术方案予以实现的:In order to achieve the above object, the present invention adopts the following technical solutions to realize:
基于激光追踪仪多站位技术的工业机器人运动学参数辨识方法,该方法包括以下步骤:A method for identifying kinematic parameters of industrial robots based on laser tracker multi-station technology, the method includes the following steps:
步骤一:规划工业机器人绝对定位误差测量的理论路径,获得机器人坐标系下规划路径对应测量点的理论三维坐标。Step 1: Plan the theoretical path of the absolute positioning error measurement of the industrial robot, and obtain the theoretical three-dimensional coordinates of the measurement point corresponding to the planned path in the robot coordinate system.
步骤二:构建工业机器人坐标系下的激光追踪仪多站位测量模型。Step 2: Build the multi-station measurement model of the laser tracker in the coordinate system of the industrial robot.
机器人坐标系下规划路径对应测量点的理论三维坐标Pi(xi,yi,zi),i=1,2,3,…,n,n表示理论测量点的个数且为正整数;激光追踪仪的站位坐标为Bj(Xj,Yj,Zj),其中j=1,2,3,…,m,m表示站位坐标的个数且取正整数;激光追踪仪的站位Bj到初始测量点P1的距离为dj;测量过程中由激光追踪仪测量猫眼反射镜的相对干涉长度为lij。按三维空间两点距离公式建立下列关系式:The theoretical three-dimensional coordinates P i (x i , y i , z i ) of the measurement points corresponding to the planned path in the robot coordinate system, i=1, 2, 3, ..., n, n represents the number of theoretical measurement points and is a positive integer ; The station coordinates of the laser tracker are B j (X j , Y j , Z j ), where j=1,2,3,...,m, where m represents the number of station coordinates and takes a positive integer; laser tracking The distance from the station B j of the instrument to the initial measurement point P 1 is d j ; during the measurement process, the relative interference length of the cat's eye mirror measured by the laser tracker is l ij . According to the formula of distance between two points in three-dimensional space, the following relationship is established:
方程个数为m×n,未知数个数为4m+3n。为使方程组可解应满足m×n≥4m+3n,则有m和n满足m≥4,n≥16。The number of equations is m×n, and the number of unknowns is 4m+3n. In order to make the system of equations solvable, m×n≥4m+3n should be satisfied, then m and n satisfy m≥4 and n≥16.
步骤三:基于激光追踪仪多站位技术测量得到机器人坐标系下规划路径对应测量点的实际三维坐标。Step 3: Based on the multi-station technology measurement of the laser tracker, the actual three-dimensional coordinates of the measurement points corresponding to the planned path in the robot coordinate system are obtained.
步骤四:获得机器人末端定位误差。Step 4: Obtain the positioning error of the robot end.
Pai(xai,yai,zai)为机器人坐标系下规划路径对应测量点的实际三维坐标,ΔPi=(Δxi,Δyi,Δzi)T为测量点i处的工业机器人的末端定位误差。P ai (x ai , y ai , z ai ) is the actual three-dimensional coordinates of the measurement point corresponding to the planned path in the robot coordinate system, ΔP i =(Δx i ,Δy i , Δzi ) T is the industrial robot at the measurement point i End positioning error.
步骤五:用改进D-H法对机器人进行运动学建模,构建相邻关节参考坐标系齐次变换矩阵。Step 5: Use the improved D-H method to model the kinematics of the robot, and construct the homogeneous transformation matrix of the reference coordinate system of the adjacent joints.
步骤六:根据齐次转换矩阵建立工业机器人位置误差模型。Step 6: Establish the position error model of the industrial robot according to the homogeneous transformation matrix.
步骤七:利用LASSO算法求解工业机器人位置误差模型,准确辨识24项运动学参数误差△X。Step 7: Use the LASSO algorithm to solve the position error model of the industrial robot, and accurately identify the 24 kinematic parameter errors △X.
为了求解24项运动学参数误差需要对数据进行预处理。In order to solve the 24 kinematic parameter errors, the data need to be preprocessed.
将系数矩阵J被标准化为均值为0且为单位长度。将由定位误差组成的矩阵ΔP标准化为均值为0,即The coefficient matrix J is normalized to have mean 0 and unit length. Normalize the matrix ΔP consisting of positioning errors to have a mean of 0, i.e.
式中u—方程式个数,u=1,2,3,…,3n;where u is the number of equations, u=1,2,3,…,3n;
n—测量点个数;n—the number of measurement points;
p—第p个参数误差个数,p=24。p—the number of errors of the pth parameter, p=24.
可以得到一组线性回归系数使得则LASSO的优化目标为A set of linear regression coefficients can be obtained make Then the optimization objective of LASSO is
式中t—调和参数(大于等于零),J为系数矩阵。where t is the harmonic parameter (greater than or equal to zero), and J is the coefficient matrix.
利用LASSO算法求得24项运动学参数误差。24 kinematic parameter errors were obtained by LASSO algorithm.
综上所述,本发明与现有技术相比,具有如下优点和有益效果:To sum up, compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)激光跟踪仪要得到机器人坐标系下的测量点的三维坐标需要建立激光跟踪仪坐标系与机器人坐标系之间的转换矩阵,该矩阵通常精度较差会引入一定的误差,而本发明采用激光追踪仪多站位技术测量工业机器人定位误差能够有效避免此误差的引入。(1) To obtain the three-dimensional coordinates of the measurement point under the robot coordinate system, the laser tracker needs to establish a transformation matrix between the laser tracker coordinate system and the robot coordinate system. Usually, the matrix has poor precision and will introduce certain errors, and the present invention Using the laser tracker multi-station technology to measure the positioning error of industrial robots can effectively avoid the introduction of this error.
(2)辨识工业机器人参数误差常用的算法是最小二乘法,通过激光追踪仪测量规划路径下的测量点的定位误差得到超定方程组,求出参数误差的最小二乘解。最小二乘法具有快速收敛且计算量小等优点,但是当复杂的系数矩阵为奇异矩阵,导致不可逆或成为一个病态矩阵时,通过普通最小二乘法求解的运动学参数误差是错误的,因此该方法并不稳定。而本发明采用LASSO算法通过在损失函数中引入正则化项,有效的解决了求解工业机器人位置误差模型过程中,系数矩阵不可逆等问题,能更准确的辨识出运动学参数误差,有效提高工业机器人的绝对定位误差。(2) The commonly used algorithm for identifying the parameter errors of industrial robots is the least squares method. The overdetermined equations are obtained by measuring the positioning errors of the measurement points under the planned path by the laser tracker, and the least squares solutions of the parameter errors are obtained. The least squares method has the advantages of fast convergence and small amount of calculation, but when the complex coefficient matrix is a singular matrix, resulting in irreversible or an ill-conditioned matrix, the kinematic parameter error solved by the ordinary least squares method is wrong, so this method Not stable. In the present invention, the LASSO algorithm is used to introduce a regularization term into the loss function, which effectively solves the problem that the coefficient matrix is irreversible in the process of solving the position error model of the industrial robot, can more accurately identify the kinematic parameter error, and effectively improves the industrial robot. absolute positioning error.
附图说明Description of drawings
图1是激光追踪仪多站位技术测量工业机器人定位误差示意图;Figure 1 is a schematic diagram of the laser tracker multi-station technology to measure the positioning error of an industrial robot;
图2是改进D-H法运动学建模示意图。Figure 2 is a schematic diagram of the kinematic modeling of the improved D-H method.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。具体实施步骤如下:The present invention will be further described in detail below with reference to the accompanying drawings, so that those skilled in the art can implement it with reference to the description. The specific implementation steps are as follows:
步骤一:规划工业机器人绝对定位误差测量的理论路径。Step 1: Plan the theoretical path of the absolute positioning error measurement of the industrial robot.
《工业机器人性能规范及其试验方法GB/T12642—2013》中定位误差测量时机器人的运动要求:当机器人在各位姿间运动时,所有关节均应运动。根据此要求在工业机器人工作空间内规划球体路径,机器人坐标系下选择点(1600,0,900)为球体路径的球心点,设半径为500mm,随机生成60个球面点。示教器编程控制机器人末端从球心点出发运动至球面点并返回至球心点,依次走完60个球面点。The motion requirements of the robot during positioning error measurement in "Industrial Robot Performance Specification and Test Method GB/T12642-2013": When the robot moves between positions, all joints should move. According to this requirement, the sphere path is planned in the industrial robot workspace. In the robot coordinate system, the point (1600, 0, 900) is selected as the sphere center point of the sphere path, the radius is set to 500mm, and 60 spherical points are randomly generated. The teach pendant program controls the end of the robot to move from the ball center point to the spherical point and return to the ball center point, and walk through 60 spherical points in sequence.
步骤二:构建工业机器人的激光追踪仪多站位测量模型,模型示意图如图1所示。激光追踪仪的靶镜固定链接于工业机器人末端。机器人工作空间内规划60个球面点,考虑测量精度和实验所需时间,确定激光追踪仪站位的个数为4。Step 2: Build the multi-station measurement model of the laser tracker of the industrial robot. The schematic diagram of the model is shown in Figure 1. The target lens of the laser tracker is fixedly linked to the end of the industrial robot. 60 spherical points are planned in the robot workspace. Considering the measurement accuracy and the time required for the experiment, the number of laser tracker stations is determined to be 4.
步骤三:基于激光追踪仪多站位技术测量得到机器人坐标系下规划路径对应测量点的实际三维坐标。Step 3: Based on the multi-station technology measurement of the laser tracker, the actual three-dimensional coordinates of the measurement points corresponding to the planned path in the robot coordinate system are obtained.
步骤四:获得机器人末端定位误差。Step 4: Obtain the positioning error of the robot end.
步骤五:用改进D-H法对机器人进行运动学建模:r为工业机器人的自由度个数,r=1,2,3…,6。确定Zr轴方向为沿关节轴r的轴向;原点Or为关节轴r+1与r轴的交点或其公垂线与关节轴Zr的交点;Xr轴沿公垂线ar轴的轴向,由关节轴r指向关节轴r+1,如果关节轴r和关节轴r+1相交,则规定Xr轴垂直与这两条关节轴所在的平面;Yr轴按照右手定则确定;当第一个关节变量为0时,规定坐标系{0}和坐标系{1}重合,对于坐标系{n},其原点和xn轴的方向可以任意选取,但在选取时尽量使连杆参数为0。改进D-H法的参数含义为①连杆长度ar:定义为从Zr移动到Zr+1的距离,沿Xr轴指向为正,其实质为公垂线的长度;②连杆转角αr:定义为从Zr旋转到Zr+1的角度,绕Xi轴正向旋转为正;③连杆偏距dr:定义为从Xr-1移动到Xr的距离,沿Zr轴指向为正。其实质为两条公垂线之间的距离。④关节角θr:定义为从Xr-1旋转到Xr的角度,绕Zr轴正向旋转为正。改进D-H法是将连杆坐标系的原点建立在对应关节连杆的首端,和标准的D-H法相比建系更加清晰,易于理解和观察。改进D-H建模示意图如图2所示。Step 5: Use the improved DH method to model the kinematics of the robot: r is the number of degrees of freedom of the industrial robot, r=1,2,3...,6. Determine the direction of the Z r axis as the axial direction along the joint axis r; the origin Or is the intersection of the joint axis r +1 and the r axis or the intersection of the common vertical line and the joint axis Z r ; the X r axis is along the common vertical line a r The axial direction of the shaft points from the joint axis r to the joint axis r+1. If the joint axis r and the joint axis r+1 intersect, the X r axis is specified to be perpendicular to the plane where the two joint axes are located; the Y r axis is determined according to the right hand. Then determine; when the first joint variable is 0, it is specified that the coordinate system {0} and the coordinate system {1} coincide, and for the coordinate system {n}, the origin and the direction of the x n axis can be arbitrarily selected, but when selecting Try to make the connecting rod parameter 0. The meaning of the parameters of the improved DH method is: ① the length of the connecting rod a r : defined as the distance from Z r to Z r+1 , the direction along the X r axis is positive, and its essence is the length of the common perpendicular; ② the connecting rod rotation angle α r : Defined as the angle from Z r to Z r +1, positive rotation around the X i axis is positive; ③ Link offset distance dr : Defined as the distance from X r -1 to X r , along the Z axis The r -axis points to be positive. Its essence is the distance between two common perpendiculars. ④Joint angle θ r : It is defined as the angle of rotation from X r -1 to X r , and the positive rotation around the Z r axis is positive. The improved DH method is to establish the origin of the connecting rod coordinate system at the head end of the corresponding joint connecting rod. Compared with the standard DH method, the establishment of the system is clearer and easier to understand and observe. The schematic diagram of the improved DH modeling is shown in Figure 2.
构建相邻关节参考坐标系齐次变换矩阵为:The homogeneous transformation matrix of the adjacent joint reference coordinate system is constructed as:
步骤六:根据齐次转换矩阵建立工业机器人位置误差模型。Step 6: Establish the position error model of the industrial robot according to the homogeneous transformation matrix.
工业机器人末端在基坐标系中的位姿为:The pose of the end of the industrial robot in the base coordinate system is:
本参数识别方法只需要测量点的位置信息P(x,y,z),因此从上式可以得到:This parameter identification method only needs the position information P(x, y, z) of the measurement point, so it can be obtained from the above formula:
为了更清楚的对机器人运动学参数进行辨识,将上式线性化为In order to identify the kinematic parameters of the robot more clearly, the above formula is linearized as
P=F(a1,a2,…,a6,d1,d2,…,d6,α1,α2,…,α6,α1,α2,...,α6,θ1,θ2,...,θ6) (8)P=F(a 1 ,a 2 ,…,a 6 ,d 1 ,d 2 ,…,d 6 ,α 1 ,α 2 ,…,α 6 ,α 1 ,α 2 ,…,α 6 , θ 1 , θ 2 ,...,θ 6 ) (8)
上式中F(·)是机器人运动学参数的函数。In the above formula, F(·) is a function of the kinematic parameters of the robot.
由于实际运动学参数与机器人控制器内部运动学参数存在微小误差,导致末端定位误差。因此,工业机器人末端执行器的实际位置可写为下式:Due to the slight error between the actual kinematic parameters and the internal kinematic parameters of the robot controller, the end positioning error is caused. Therefore, the actual position of the industrial robot end effector can be written as:
Pa=F(a1+Δa1,...,a6+Δa6,d1+Δd1,...,d6+Δd6,α1+Δα1,...,α6+Δα6,θ1+Δθ1,...,θ6+Δθ6) (9)P a =F(a 1 +Δa 1 ,...,a 6 +Δa 6 ,d 1 +Δd 1 ,...,d 6 +Δd 6 ,α 1 +Δα 1 ,...,α 6 + Δα 6 ,θ 1 +Δθ 1 ,...,θ 6 +Δθ 6 ) (9)
上式中Δar表示连杆长度参数误差;Δdr表示连杆偏距参数误差;Δαr表示连杆转角参数误差;Δθr表示初始关节角参数误差。In the above formula, Δa r represents the error of the link length parameter; Δd r represents the error of the link offset parameter; Δα r represents the error of the link angle parameter; Δθ r represents the error of the initial joint angle parameter.
运动学参数ΔP的误差通常很小,因此可以通过线性化写成线性方程的形式:The error in the kinematic parameter ΔP is usually small, so it can be written in the form of a linear equation by linearization:
根据上式,机器人的末端定位误差(Δxi,Δyi,Δzi)可表示为:According to the above formula, the end positioning error (Δx i ,Δy i ,Δz i ) of the robot can be expressed as:
上式为系数矩阵,因此位置误差模型为The above formula is a coefficient matrix, so the position error model is
其中是定位误差向量,是运动学参数误差向量,是构建的系数矩阵,i=60。in is the positioning error vector, is the kinematic parameter error vector, is the constructed coefficient matrix, i=60.
步骤七:利用LASSO算法求解工业机器人位置误差模型,准确辨识24项运动学参数误差,如表1所示。Step 7: Use the LASSO algorithm to solve the position error model of the industrial robot, and accurately identify the 24 kinematic parameter errors, as shown in Table 1.
表1.运动学参数误差辨识结果Table 1. Results of kinematic parameter error identification
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210743875.5A CN115107024A (en) | 2022-06-27 | 2022-06-27 | A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210743875.5A CN115107024A (en) | 2022-06-27 | 2022-06-27 | A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115107024A true CN115107024A (en) | 2022-09-27 |
Family
ID=83329918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210743875.5A Pending CN115107024A (en) | 2022-06-27 | 2022-06-27 | A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115107024A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115816511A (en) * | 2022-12-07 | 2023-03-21 | 南京工程学院 | Device for detecting pose of parallel robot platform and calculation method |
CN117773940A (en) * | 2024-01-11 | 2024-03-29 | 四川大学 | A method for predicting and compensating absolute positioning errors of industrial robots under the influence of multiple factors |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105773609A (en) * | 2016-03-16 | 2016-07-20 | 南京工业大学 | Robot kinematics calibration method based on vision measurement and distance error model |
CN109238199A (en) * | 2018-09-03 | 2019-01-18 | 清华大学 | A kind of robot rotary shaft kinematic calibration method |
CN109676636A (en) * | 2019-03-06 | 2019-04-26 | 南京航空航天大学 | A kind of industrial robot kinematics calibration system and scaling method |
CN110281241A (en) * | 2019-06-27 | 2019-09-27 | 大连理工大学 | Mechanical arm kinematic calibration method is measured based on laser tracker |
WO2020134426A1 (en) * | 2018-12-29 | 2020-07-02 | 南京埃斯顿机器人工程有限公司 | Plane precision calibration method for industrial robot |
CN111360812A (en) * | 2018-12-26 | 2020-07-03 | 中国科学院沈阳自动化研究所 | A camera vision-based industrial robot DH parameter calibration method and calibration device |
CN111367236A (en) * | 2020-03-11 | 2020-07-03 | 北京卫星制造厂有限公司 | Mobile robot system calibration method and system for machining process |
CN112229321A (en) * | 2020-08-31 | 2021-01-15 | 北京工业大学 | A method for solving 21 geometric errors of CMM based on LASSO algorithm |
WO2021238617A1 (en) * | 2020-05-28 | 2021-12-02 | 中国科学院宁波材料技术与工程研究所 | Industrial robot absolute precision calibration system and method |
CN114474003A (en) * | 2022-03-18 | 2022-05-13 | 河北工业大学 | Vehicle-mounted construction robot error compensation method based on parameter identification |
-
2022
- 2022-06-27 CN CN202210743875.5A patent/CN115107024A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105773609A (en) * | 2016-03-16 | 2016-07-20 | 南京工业大学 | Robot kinematics calibration method based on vision measurement and distance error model |
CN109238199A (en) * | 2018-09-03 | 2019-01-18 | 清华大学 | A kind of robot rotary shaft kinematic calibration method |
CN111360812A (en) * | 2018-12-26 | 2020-07-03 | 中国科学院沈阳自动化研究所 | A camera vision-based industrial robot DH parameter calibration method and calibration device |
WO2020134426A1 (en) * | 2018-12-29 | 2020-07-02 | 南京埃斯顿机器人工程有限公司 | Plane precision calibration method for industrial robot |
CN109676636A (en) * | 2019-03-06 | 2019-04-26 | 南京航空航天大学 | A kind of industrial robot kinematics calibration system and scaling method |
CN110281241A (en) * | 2019-06-27 | 2019-09-27 | 大连理工大学 | Mechanical arm kinematic calibration method is measured based on laser tracker |
CN111367236A (en) * | 2020-03-11 | 2020-07-03 | 北京卫星制造厂有限公司 | Mobile robot system calibration method and system for machining process |
WO2021238617A1 (en) * | 2020-05-28 | 2021-12-02 | 中国科学院宁波材料技术与工程研究所 | Industrial robot absolute precision calibration system and method |
CN112229321A (en) * | 2020-08-31 | 2021-01-15 | 北京工业大学 | A method for solving 21 geometric errors of CMM based on LASSO algorithm |
CN114474003A (en) * | 2022-03-18 | 2022-05-13 | 河北工业大学 | Vehicle-mounted construction robot error compensation method based on parameter identification |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115816511A (en) * | 2022-12-07 | 2023-03-21 | 南京工程学院 | Device for detecting pose of parallel robot platform and calculation method |
CN117773940A (en) * | 2024-01-11 | 2024-03-29 | 四川大学 | A method for predicting and compensating absolute positioning errors of industrial robots under the influence of multiple factors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110281241A (en) | Mechanical arm kinematic calibration method is measured based on laser tracker | |
CN110193829A (en) | A kind of robot precision's control method of coupled motions and stiffness parameters identification | |
CN110815206B (en) | Kinematics calibration method for Stewart parallel robot | |
CN106595474A (en) | Double-robot base coordinate system calibration method based on laser tracker | |
CN113146613B (en) | An industrial robot D-H parameter three-dimensional self-calibration calibration device and method | |
CN110202582A (en) | A kind of robot calibration method based on three coordinates platforms | |
CN107214703A (en) | A kind of robot self-calibrating method of view-based access control model auxiliary positioning | |
CN102654387B (en) | Online industrial robot calibration device based on spatial curved surface restraint | |
CN113160334A (en) | Double-robot system calibration method based on hand-eye camera | |
CN113681559B (en) | Line laser scanning robot hand-eye calibration method based on standard cylinder | |
CN115107024A (en) | A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology | |
CN102825602A (en) | PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device | |
WO2018196232A1 (en) | Method for automatically calibrating robot and end effector, and system | |
CN114406991B (en) | Industrial robot calibration and spatial position measurement method based on stay wire encoder | |
CN110757504A (en) | Positioning error compensation method of high-precision movable robot | |
CN108656116A (en) | Serial manipulator kinematic calibration method based on dimensionality reduction MCPC models | |
CN115179323B (en) | Machine terminal posture measurement device and precision improvement method based on telecentric vision constraint | |
CN114474003A (en) | Vehicle-mounted construction robot error compensation method based on parameter identification | |
CN115533893A (en) | Robot TCP calibration method using floatable standard sphere | |
CN113618738A (en) | Mechanical arm kinematic parameter calibration method and system | |
CN109062139B (en) | Robot linear axis positioning error compensation method based on data driving | |
CN112828878B (en) | A three-dimensional measurement and tracking method for large-scale equipment docking process | |
Jian et al. | On-line precision calibration of mobile manipulators based on the multi-level measurement strategy | |
CN112894814B (en) | Mechanical arm DH parameter identification method based on least square method | |
CN114505865A (en) | A method and system for path generation of a robotic arm based on pose tracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |