CN115106122A - Preparation method and application of molecular sieve catalyst - Google Patents
Preparation method and application of molecular sieve catalyst Download PDFInfo
- Publication number
- CN115106122A CN115106122A CN202110309379.4A CN202110309379A CN115106122A CN 115106122 A CN115106122 A CN 115106122A CN 202110309379 A CN202110309379 A CN 202110309379A CN 115106122 A CN115106122 A CN 115106122A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- hours
- catalyst
- carbon monoxide
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 79
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 46
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- LCGLNKUTAGEVQW-UHFFFAOYSA-N methyl monoether Natural products COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims abstract description 84
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052680 mordenite Inorganic materials 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000003513 alkali Substances 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000013067 intermediate product Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 67
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 53
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 35
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 35
- 239000007789 gas Substances 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 29
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 22
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 21
- 150000001412 amines Chemical class 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 150000007530 organic bases Chemical class 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 125000005210 alkyl ammonium group Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 239000000908 ammonium hydroxide Substances 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 2
- 238000005810 carbonylation reaction Methods 0.000 abstract description 32
- 230000000694 effects Effects 0.000 abstract description 5
- -1 compound dimethyl ether Chemical class 0.000 abstract description 3
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 40
- 230000006315 carbonylation Effects 0.000 description 28
- 229940050176 methyl chloride Drugs 0.000 description 18
- 239000000047 product Substances 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 7
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 7
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 7
- 238000006555 catalytic reaction Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- QOTAEASRCGCJDN-UHFFFAOYSA-N [C].CO Chemical compound [C].CO QOTAEASRCGCJDN-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 2
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 2
- 101150065749 Churc1 gene Proteins 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 102100038239 Protein Churchill Human genes 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 2
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- POQKXAGEBNZGTF-UHFFFAOYSA-N [C].CC(O)=O Chemical compound [C].CC(O)=O POQKXAGEBNZGTF-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000003916 ethylene diamine group Chemical group 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/18—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
- C07C51/12—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
- C07C67/37—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by reaction of ethers with carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/38—Base treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
技术领域technical field
本申请涉及一种分子筛催化剂的制备方法及应用,属于催化领域。The present application relates to a preparation method and application of a molecular sieve catalyst, belonging to the field of catalysis.
背景技术Background technique
能源需求的持续增长和环境质量改善的迫切愿望使得我国能源发展面临前所未有的挑战。基于能源安全要求以及我国“富煤、贫油、少气”的能源结构特点,能源的“高效转化、清洁利用”是我国能源发展的必然选择。小分子化合物如甲醇、二甲醚以及卤代甲烷是可基于二氧化碳、天然气为原料的重要的平台化合物。小分子化合物定向转化制备高附加值化合物如低碳烯烃、汽油、芳烃、对二甲苯和含氧化合物如乙酸、乙酸甲酯、乙醇等是能源高效、清洁利用的有效途径。The continuous growth of energy demand and the urgent desire to improve environmental quality make my country's energy development face unprecedented challenges. Based on the requirements of energy security and the characteristics of my country's energy structure of "rich coal, lean oil, and little gas", "efficient conversion and clean utilization of energy" is an inevitable choice for my country's energy development. Small molecule compounds such as methanol, dimethyl ether and halomethane are important platform compounds that can be based on carbon dioxide and natural gas. The directional conversion of small molecular compounds to prepare high value-added compounds such as light olefins, gasoline, aromatic hydrocarbons, paraxylene and oxygenated compounds such as acetic acid, methyl acetate, ethanol, etc. is an effective way to efficiently and cleanly utilize energy.
小分子化合物(甲醇、二甲醚以及卤代甲烷)和CO羰基化定向合成C2化合物-乙酸、乙酸甲酯是C1化学转化重要的研究方向之一,具有极其重要的应用背景和良好的市场前景。具有八元环孔道结构的MOR、FER和OFF对于醚类羰基化具有催化活性,其中以丝光沸石作为催化剂,在反应压力为1MPa、温度为165℃时能获得0.163-MeOAc(g-Cat.h)-1的时空收率。在MOR催化剂上引入金属Cu、Ag后,其在反应条件下(氢气气氛、250-300℃)的羰基化性能要优于未修饰MOR样品。利用吡啶类有机胺预吸附来改善丝光沸石性质,由于吡啶类物质由于尺寸限制只能吸附毒化十二元环孔道内的酸性位点,从而抑制积碳生成来提高催化剂的羰基化稳定性,使得催化剂在反应48小时内活性保持稳定。四氯化硅蒸气改性的丝光沸石分子筛催化剂,通过选择性移除12元环孔道内的骨架铝位点可以大幅度改善催化剂在二甲醚羰基化中的稳定性。一种调控丝光沸石的酸中心落位和分布的原位合成方法,通过调控酸中心的落位,成功制备具有优异二甲醚羰基化活性的丝光沸石分子筛催化剂。以上内容主要涉及了丝光沸石催化二甲醚羰基化的研究。开展不仅适用二甲醚羰基化反应,而且也适用于甲醇及卤代甲烷羰基化反应催化剂开发的研究具有重要应用价值。Directional synthesis of C2 compounds by carbonylation of small molecular compounds (methanol, dimethyl ether and halomethane) and CO - acetic acid and methyl acetate is one of the important research directions of C1 chemical conversion, with extremely important application background and good market prospects . MOR, FER and OFF with eight-membered ring pore structure have catalytic activity for the carbonylation of ethers. Using mordenite as a catalyst, 0.163-MeOAc (g-Cat.h) can be obtained at a reaction pressure of 1 MPa and a temperature of 165 °C. )-1 for the space-time yield. After the introduction of metal Cu and Ag on the MOR catalyst, its carbonylation performance under the reaction conditions (hydrogen atmosphere, 250-300 ℃) is better than that of the unmodified MOR sample. Pre-adsorption of pyridine organic amines is used to improve the properties of mordenite. Due to the size limitation of pyridines, they can only adsorb and poison the acidic sites in the 12-membered ring pores, thereby inhibiting the formation of carbon deposits and improving the carbonylation stability of the catalyst. The activity of the catalyst remained stable within 48 hours of the reaction. The silicon tetrachloride vapor-modified mordenite molecular sieve catalyst can greatly improve the stability of the catalyst in the carbonylation of dimethyl ether by selectively removing the framework aluminum sites in the 12-membered ring pores. An in-situ synthesis method for regulating the placement and distribution of acid centers of mordenite. By regulating the placement of acid centers, a mordenite molecular sieve catalyst with excellent dimethyl ether carbonylation activity was successfully prepared. The above content mainly involves the research of mordenite catalyzed dimethyl ether carbonylation. It is of great application value to carry out researches that are not only suitable for the carbonylation of dimethyl ether, but also for the development of catalysts for the carbonylation of methanol and halomethane.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提供了一种分子筛催化剂的制备方法,将丝光沸石分子筛与有机碱混合,加热,焙烧后得到所述分子筛催化剂。该方法简单方便,可操作性强。可以实现分子筛催化剂酸性落位的调控,使催化剂具有较高的活性和目的产物选择性。In order to solve the above-mentioned problems, the present invention provides a method for preparing a molecular sieve catalyst. The molecular sieve catalyst is obtained by mixing the mordenite molecular sieve with an organic base, heating and calcining the catalyst. The method is simple and convenient, and has strong operability. The regulation of the acid placement of the molecular sieve catalyst can be realized, so that the catalyst has high activity and target product selectivity.
根据本发明的一个方面,提供了一种分子筛催化剂的制备方法,所述方法包括:(1)将含有丝光沸石分子筛和有机碱源的物料,加热,得到中间产物;(2)将所述中间产物焙烧,即可得到所述分子筛催化剂。According to one aspect of the present invention, a method for preparing a molecular sieve catalyst is provided, the method comprising: (1) heating a material containing a mordenite molecular sieve and an organic alkali source to obtain an intermediate product; (2) heating the intermediate product; The product is calcined to obtain the molecular sieve catalyst.
可选地,所述有机碱源选自有机胺;所述有机胺选自一元有机胺、二元有机胺、三元有机胺的至少一种。Optionally, the organic alkali source is selected from organic amines; the organic amines are selected from at least one of monovalent organic amines, divalent organic amines, and trivalent organic amines.
可选地,所述一元有机胺选自具有式I所示的化学式的化合物的中的至少一种:Optionally, the monovalent organic amine is selected from at least one of the compounds having the chemical formula shown in formula I:
其中,R1,R2,R3独立地选自H、C1~C10的烷基中的任意一种;R1,R2,R3不能同时为H。Wherein, R 1 , R 2 and R 3 are independently selected from any one of H and C 1 -C 10 alkyl groups; R 1 , R 2 and R 3 cannot be H at the same time.
可选地,在式I中,R1,R2,R3独立地选自H、C1~C7的烷基中的任意一种;R1,R2,R3不能同时为H。Optionally, in formula I, R 1 , R 2 , and R 3 are independently selected from any one of H and alkyl groups of C 1 to C 7 ; R 1 , R 2 , and R 3 cannot be H at the same time.
可选地,在式I中,R1,R2,R3独立地选自H、CH3-、CH3CH2-、CH3CH2CH2-、CH3(CH2)2CH2-、CH3(CH2)3CH2-、CH3(CH2)4CH2-、CH3(CH2)5CH2-、(CH3)2CH-、(CH3)2CHCH2-、CH3CH2(CH3)CH-中的任意一种。Optionally, in formula I, R 1 , R 2 , R 3 are independently selected from H, CH 3 -, CH 3 CH 2 -, CH 3 CH 2 CH 2 -, CH 3 (CH 2 ) 2 CH 2 -, CH 3 (CH 2 ) 3 CH 2 -, CH 3 (CH 2 ) 4 CH 2 -, CH 3 (CH 2 ) 5 CH 2 -, (CH 3 ) 2 CH-, (CH 3 ) 2 CHCH 2 - or CH 3 CH 2 (CH 3 )CH-.
可选地,在式I中,R1,R2,R3独立地选自H、CH3、CH3CH2-、CH3CH2CH2-、CH3(CH2)2CH2-中的一种。Optionally, in formula I, R 1 , R 2 , R 3 are independently selected from H, CH 3 , CH 3 CH 2 -, CH 3 CH 2 CH 2 -, CH 3 (CH 2 ) 2 CH 2 - one of the.
可选地,在式I中,R1,R2,R3独立地选自H、CH3、CH3CH2-中的一种。Optionally, in formula I, R 1 , R 2 , and R 3 are independently selected from one of H, CH 3 , and CH 3 CH 2 —.
可选地,R1,R2,R3相同,但不同为H。Optionally, R 1 , R 2 , R 3 are the same, but different H.
可选地,R1,R2,R3不相同。Optionally, R 1 , R 2 , R 3 are not the same.
优选地,所述一元有机胺选自三乙胺、正丁胺中的至少一种。Preferably, the monobasic organic amine is selected from at least one of triethylamine and n-butylamine.
优选地,所述二元有机胺选自二乙胺。Preferably, the divalent organic amine is selected from diethylamine.
可选地,所述一元有机胺选自烷基氢氧化铵;所述烷基氢氧化铵选自具有式II所示的化学式的化合物中的至少一种:Optionally, the monovalent organic amine is selected from alkyl ammonium hydroxide; the alkyl ammonium hydroxide is selected from at least one of the compounds having the chemical formula shown in formula II:
其中,R4,R5,R6,R7独立地选自C1~C10的烷基中的任意一种。Wherein, R 4 , R 5 , R 6 , and R 7 are independently selected from any one of C 1 -C 10 alkyl groups.
可选地,在式II中,R4,R5,R6,R7独立地选自C1~C7的烷基中的任意一种。Optionally, in formula II, R 4 , R 5 , R 6 , R 7 are independently selected from any one of C 1 -C 7 alkyl groups.
可选地,在式II中,R4,R5,R6,R7独立地选自CH3-、CH3CH2-、CH3CH2CH2-、CH3(CH2)2CH2-、CH3(CH2)3CH2-、CH3(CH2)4CH2-、CH3(CH2)5CH2-、(CH3)2CH-、(CH3)2CHCH2-、CH3CH2(CH3)CH-中的任意一种。Alternatively, in formula II, R 4 , R 5 , R 6 , R 7 are independently selected from CH 3 -, CH 3 CH 2 -, CH 3 CH 2 CH 2 -, CH 3 (CH 2 ) 2 CH 2 -, CH 3 (CH 2 ) 3 CH 2 -, CH 3 (CH 2 ) 4 CH 2 -, CH 3 (CH 2 ) 5 CH 2 -, (CH 3 ) 2 CH-, (CH 3 ) 2 CHCH Any one of 2- , CH 3 CH 2 (CH 3 )CH-.
可选地,在式II中,R4,R5,R6,R7独立地选自CH3-、CH3CH2-、CH3CH2CH2-CH3(CH2)2CH2-、CH3(CH2)3CH2-、CH3(CH2)4CH2-、CH3(CH2)5CH2-中的一种。Alternatively, in formula II, R 4 , R 5 , R 6 , R 7 are independently selected from CH 3 -, CH 3 CH 2 -, CH 3 CH 2 CH 2 -CH 3 (CH 2 ) 2 CH 2 One of -, CH 3 (CH 2 ) 3 CH 2 -, CH 3 (CH 2 ) 4 CH 2 -, and CH 3 (CH 2 ) 5 CH 2 -.
可选地,R4,R5,R6,R7不同。Optionally, R 4 , R 5 , R 6 , R 7 are different.
可选地,R4,R5,R6,R7相同。Optionally, R 4 , R 5 , R 6 , R 7 are the same.
优选地,所述烷基氢氧化铵选自四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵中的至少一种。Preferably, the alkylammonium hydroxide is selected from at least one of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
可选地,所述制备方法包括:(1)将所述丝光沸石分子筛和有机碱源混合,在密闭条件下加热,得到中间体;(2)将所述中间体焙烧,得到所述分子筛催化剂。Optionally, the preparation method includes: (1) mixing the mordenite molecular sieve and an organic alkali source, and heating under airtight conditions to obtain an intermediate; (2) calcining the intermediate to obtain the molecular sieve catalyst .
可选地,所述加热的条件为:温度为50~220℃,时间为5~100小时。Optionally, the heating conditions are as follows: the temperature is 50-220° C. and the time is 5-100 hours.
可选地,所述加热的温度上限选自60℃、70℃、80℃、90℃、100℃、120℃、140℃、150℃、160℃、170℃、180℃、200℃、210℃或220℃;下限选自50℃、60℃、70℃、80℃、90℃、100℃、120℃、140℃、150℃、160℃、170℃、180℃、200℃或210℃。Optionally, the upper temperature limit of the heating is selected from 60°C, 70°C, 80°C, 90°C, 100°C, 120°C, 140°C, 150°C, 160°C, 170°C, 180°C, 200°C, 210°C or 220°C; the lower limit is selected from 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 120°C, 140°C, 150°C, 160°C, 170°C, 180°C, 200°C or 210°C.
可选地,所述加热的时间上限选自6小时、12小时、18小时、24小时、36小时、48小时、60小时、72小时、80小时、90小时或100小时;下限选自5小时、6小时、12小时、18小时、24小时、36小时、48小时、60小时、72小时、80小时、90小时或99小时。Optionally, the upper limit of the heating time is selected from 6 hours, 12 hours, 18 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, 80 hours, 90 hours or 100 hours; the lower limit is selected from 5 hours , 6 hours, 12 hours, 18 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, 80 hours, 90 hours, or 99 hours.
可选地,在步骤(1)中,丝光沸石分子筛和有机碱源混合,在密闭反应釜中,在50~220℃温度下处理5~100小时。Optionally, in step (1), the mordenite molecular sieve and the organic alkali source are mixed, and treated in a closed reactor at a temperature of 50-220° C. for 5-100 hours.
可选地,所述加热的条件为:温度为80~200℃,时间为12~72小时。Optionally, the heating conditions are as follows: the temperature is 80-200° C. and the time is 12-72 hours.
优选地,所述加热的条件为:温度为100~200℃,时间为18~60小时。Preferably, the heating conditions are as follows: the temperature is 100-200° C. and the time is 18-60 hours.
可选地,所述焙烧的条件为:温度为450~650℃,时间为1.5~10小时。Optionally, the roasting conditions are as follows: the temperature is 450-650° C., and the time is 1.5-10 hours.
可选地,所述焙烧的温度上限为480℃、500℃、520℃、550℃、580℃、600℃或650℃;下限选自450℃、480℃、500℃、520℃、550℃或600℃。Optionally, the upper limit of the roasting temperature is 480°C, 500°C, 520°C, 550°C, 580°C, 600°C or 650°C; the lower limit is selected from 450°C, 480°C, 500°C, 520°C, 550°C or 600°C.
可选地,所述焙烧的时间上限选自2小时、2.5小时、3小时、3.5小时、4小时、4.5小时、5小时、5.5小时、6小时、6.5小时、7小时、7.5小时、8小时、8.5小时、9小时、9.5小时或10小时;下限选自1.5小时、2小时、2.5小时、3小时、3.5小时、4小时、4.5小时、5小时、5.5小时、6小时、6.5小时、7小时、7.5小时、8小时、8.5小时、9小时或9.5小时。Optionally, the upper limit of the roasting time is selected from 2 hours, 2.5 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, 5.5 hours, 6 hours, 6.5 hours, 7 hours, 7.5 hours, 8 hours , 8.5 hours, 9 hours, 9.5 hours or 10 hours; the lower limit is selected from 1.5 hours, 2 hours, 2.5 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, 5.5 hours, 6 hours, 6.5 hours, 7 hours hours, 7.5 hours, 8 hours, 8.5 hours, 9 hours or 9.5 hours.
可选地,所述焙烧的条件为:温度为450~600℃,时间为2~8小时。Optionally, the roasting conditions are as follows: the temperature is 450-600° C. and the time is 2-8 hours.
可选地,所述焙烧的条件为:温度为450~550℃,时间为3~7小时。Optionally, the roasting conditions are as follows: the temperature is 450-550° C., and the time is 3-7 hours.
优选地,所述焙烧的条件为:温度为500-580℃,时间为3~6小时。Preferably, the roasting conditions are as follows: the temperature is 500-580° C. and the time is 3-6 hours.
可选地,所述丝光沸石分子筛的硅铝原子比为:Si/Al=6~50。Optionally, the silicon-aluminum atomic ratio of the mordenite molecular sieve is: Si/Al=6-50.
可选的,所述丝光沸石分子筛的硅铝原子比的上限选自8、10、15、20、25、30、35、40、50;下限选自6、8、10、15、20、25、30、35、40或49。Optionally, the upper limit of the silicon-aluminum atomic ratio of the mordenite molecular sieve is selected from 8, 10, 15, 20, 25, 30, 35, 40, 50; the lower limit is selected from 6, 8, 10, 15, 20, 25 , 30, 35, 40 or 49.
可选地,所述丝光沸石分子筛选自Na-MOR、NH4-MOR、H-MOR分子筛的至少一种。Optionally, the mordenite molecular sieve is selected from at least one of Na-MOR, NH4 -MOR, and H-MOR molecular sieves.
可选地,所述有机碱源中还包括溶剂;所述溶剂选自水。Optionally, the organic alkali source further includes a solvent; the solvent is selected from water.
可选地,所述有机碱溶液中有机碱的质量含量为0.5%~99.9%。Optionally, the mass content of the organic base in the organic base solution is 0.5% to 99.9%.
可选地,所述有机碱溶液中有机碱的质量含量的上限选自0.8%、1.0%、1.5%、2.0%、5.0%、10.0%、20.0%、25.0%、30.0%、40.0%、50.0%、60.0%、70.0%、75.0%、80.0%、90.0%或99.9%;下限选自0.5%、0.8%、1.0%、1.5%、2.0%、5.0%、10.0%、20.0%、25.0%、30.0%、40.0%、50.0%、60.0%、70.0%、75.0%、80.0%或90.0%。Optionally, the upper limit of the mass content of the organic base in the organic base solution is selected from 0.8%, 1.0%, 1.5%, 2.0%, 5.0%, 10.0%, 20.0%, 25.0%, 30.0%, 40.0%, 50.0% %, 60.0%, 70.0%, 75.0%, 80.0%, 90.0% or 99.9%; the lower limit is selected from 0.5%, 0.8%, 1.0%, 1.5%, 2.0%, 5.0%, 10.0%, 20.0%, 25.0%, 30.0%, 40.0%, 50.0%, 60.0%, 70.0%, 75.0%, 80.0% or 90.0%.
可选地,所述丝光沸石分子筛和所述有机碱源的加入量的比值为1g:2ml~1g:20ml。Optionally, the ratio of the added amount of the mordenite molecular sieve and the organic alkali source is 1 g: 2 ml to 1 g: 20 ml.
可选地,所述所述丝光沸石分子筛和所述有机碱源的加入量的比值上限选自1g:4ml、1g:6ml、1g:8ml、1g:10ml、1g:12ml、1g:14ml、1g:15ml、1g:16ml、1g:18ml或1g:2ml;下限选自1g:2ml、1g:4ml、1g:6ml、1g:8ml、1g:10ml、1g:12ml、1g:14ml、1g:15ml、1g:16ml或1g:18ml。Optionally, the upper limit of the ratio of the added amount of the mordenite molecular sieve and the organic alkali source is selected from 1g: 4ml, 1g: 6ml, 1g: 8ml, 1g: 10ml, 1g: 12ml, 1g: 14ml, 1g : 15ml, 1g: 16ml, 1g: 18ml or 1g: 2ml; the lower limit is selected from 1g: 2ml, 1g: 4ml, 1g: 6ml, 1g: 8ml, 1g: 10ml, 1g: 12ml, 1g: 14ml, 1g: 15ml, 1g: 16ml or 1g: 18ml.
根据本申请的另一个方面,提供了一种分子筛催化剂,所述分子筛催化剂包含根据以上任一项所述制备方法得到的分子筛催化剂。According to another aspect of the present application, a molecular sieve catalyst is provided, the molecular sieve catalyst comprising the molecular sieve catalyst obtained according to any one of the above preparation methods.
根据本申请的再一个方面,提供了一种制备乙酸、乙酸甲酯的方法,在催化剂的存在下,将化合物I和含有一氧化碳的混合气接触反应,得到乙酸甲酯或乙酸;其中,所述催化剂以上任一所述的分子筛催化剂、根据以上任一所述的方法制备得到的分子筛催化剂中的至少一种;所述化合物I选自甲醇、卤代甲烷、二甲醚的至少一种。According to yet another aspect of the present application, a method for preparing acetic acid and methyl acetate is provided. In the presence of a catalyst, compound I is contacted and reacted with a mixed gas containing carbon monoxide to obtain methyl acetate or acetic acid; Catalyst At least one of the molecular sieve catalysts described above and the molecular sieve catalysts prepared according to any of the above methods; the compound I is selected from at least one of methanol, halomethane, and dimethyl ether.
可选地,所述反应的条件为:温度为150~320℃,压力为0.5~25.0MPa,时间为10~24h。Optionally, the reaction conditions are as follows: the temperature is 150-320° C., the pressure is 0.5-25.0 MPa, and the time is 10-24 h.
可选地,所述反应的压力上限选自1MPa、1.5MPa、2MPa、3MPa、3.5MPa、5MPa、8MPa、10MPa、12MPa、15MPa、18MPa、20MPa、22MPa或25MPa;下限选自0.5MPa、1MPa、1.5MPa、2MPa、3MPa、3.5MPa、8MPa、10MPa、12MPa、15MPa、18MPa、20MPa或22MPa。Optionally, the upper limit of the pressure of the reaction is selected from 1 MPa, 1.5 MPa, 2 MPa, 3 MPa, 3.5 MPa, 5 MPa, 8 MPa, 10 MPa, 12 MPa, 15 MPa, 18 MPa, 20 MPa, 22 MPa or 25 MPa; 1.5MPa, 2MPa, 3MPa, 3.5MPa, 8MPa, 10MPa, 12MPa, 15MPa, 18MPa, 20MPa or 22MPa.
可选地,所述反应的温度上限选自160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、250℃、260℃、280℃、300℃或320℃;下限选自150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、250℃、260℃、280℃或300℃。Optionally, the upper temperature limit of the reaction is selected from 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 250°C, 260°C, 280°C, 300°C or 320°C ; the lower limit is selected from 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 250°C, 260°C, 280°C or 300°C.
可选地,所述反应的时间上限选自11h、12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h或24h;下限选自10h、11h、12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h或23h。Optionally, the upper limit of the reaction time is selected from 11h, 12h, 13h, 14h, 15h, 16h, 17h, 18h, 19h, 20h, 21h, 22h, 23h or 24h; the lower limit is selected from 10h, 11h, 12h, 13h , 14h, 15h, 16h, 17h, 18h, 19h, 20h, 21h, 22h or 23h.
可选地,所述反应的条件为:温度为160~320℃,压力为1.0~20.0MPa,时间为10~24h。Optionally, the reaction conditions are as follows: the temperature is 160-320° C., the pressure is 1.0-20.0 MPa, and the time is 10-24 h.
优选地,所述反应的条件为:温度为170~300℃,压力为1.0~15.0MPa,时间为10~24h。Preferably, the reaction conditions are as follows: the temperature is 170-300° C., the pressure is 1.0-15.0 MPa, and the time is 10-24 h.
可选地,所述化合物I的进料质量空速为0.05~5h-1。Optionally, the feed mass space velocity of the compound I is 0.05˜5 h −1 .
可选地,所述化合物I的进料质量空速的上限选自0.08h-1、0.1h-1、0.25h-1、0.5h-1、0.8h-1、1.0h-1、1.50h-1、1.75h-1、2.00h-1、2.50h-1、3.00h-1、3.50h-1、4.00h-1、4.50h-1或5.00h-1;下限选自0.05h-1、0.08h-1、0.1h-1、0.25h-1、0.5h-1、0.8h-1、1.0h-1、1.50h-1、1.75h-1、2.00h-1、2.50h-1、3.00h-1、3.50h-1、4.00h-1或4.50h-1。Optionally, the upper limit of the feed mass space velocity of the compound I is selected from 0.08h -1 , 0.1h -1 , 0.25h -1 , 0.5h -1 , 0.8h -1 , 1.0h -1 , 1.50h -1 , 1.75h -1 , 2.00h -1 , 2.50h -1 , 3.00h -1 , 3.50h -1 , 4.00h -1 , 4.50h -1 or 5.00h -1 ; the lower limit is selected from 0.05h -1 , 0.08h -1 , 0.1h -1 , 0.25h -1 , 0.5h -1 , 0.8h -1 , 1.0h -1 , 1.50h -1 , 1.75h -1 , 2.00h -1 , 2.50h -1 , 3.00h -1 , 3.50h -1 , 4.00h -1 or 4.50h -1 .
可选地,所述化合物I的进料质量空速为0.1~4.5h-1。Optionally, the feed mass space velocity of the compound I is 0.1˜4.5 h −1 .
优选地,所述化合物I的进料质量空速为0.1~4h-1。Preferably, the feed mass space velocity of the compound I is 0.1˜4 h −1 .
可选地,所述一氧化碳与所述化合物I的摩尔比例为0.1:1~50:1。Optionally, the molar ratio of the carbon monoxide to the compound I is 0.1:1 to 50:1.
可选地,所述一氧化碳与所述化合物I的摩尔比例上限选自0.2:1、0.5:1、1:1、2:1、5:1、6:1、8:1、10:1、15:1、18:1、20:1、25:1、30:1、35:1、40:1、45:1或50:1;下限选自0.1:1、0.2:1、0.5:1、1:1、2:1、5:1、6:1、8:1、10:1、15:1、18:1、20:1、25:1、30:1、35:1、40:1或45:1。Optionally, the upper limit of the molar ratio of the carbon monoxide to the compound I is selected from 0.2:1, 0.5:1, 1:1, 2:1, 5:1, 6:1, 8:1, 10:1, 15:1, 18:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1 or 50:1; lower limit selected from 0.1:1, 0.2:1, 0.5:1 , 1:1, 2:1, 5:1, 6:1, 8:1, 10:1, 15:1, 18:1, 20:1, 25:1, 30:1, 35:1, 40 :1 or 45:1.
可选地,所述一氧化碳与所述化合物I的摩尔比例为0.5:1~50:1。Optionally, the molar ratio of the carbon monoxide to the compound I is 0.5:1 to 50:1.
可选地,所述一氧化碳与所述化合物I的摩尔比例为0.1:1~40:1。Optionally, the molar ratio of the carbon monoxide to the compound I is 0.1:1 to 40:1.
可选地,所述一氧化碳与所述化合物I的摩尔比例为0.5:1~40:1。Optionally, the molar ratio of the carbon monoxide to the compound I is 0.5:1 to 40:1.
优选地,所述一氧化碳与所述化合物I的摩尔比例为0.5:1~25:1。Preferably, the molar ratio of the carbon monoxide to the compound I is 0.5:1 to 25:1.
可选地,所述含有一氧化碳的混合气中一氧化碳的体积分数为20~100%。Optionally, the volume fraction of carbon monoxide in the carbon monoxide-containing gas mixture is 20-100%.
可选地,所述含有一氧化碳的混合气还包括非活性气体。所述非活性气体选自氢气、氮气、氩气、二氧化碳、甲烷、乙烷中的至少一种。Optionally, the carbon monoxide-containing gas mixture further includes an inert gas. The inert gas is selected from at least one of hydrogen, nitrogen, argon, carbon dioxide, methane, and ethane.
可选地,所述的反应器为固定床反应器。Optionally, the reactor is a fixed bed reactor.
可选地,所述化合物I选自二甲醚时,乙酸甲酯的选择性大于98%。Optionally, when the compound I is selected from dimethyl ether, the selectivity of methyl acetate is greater than 98%.
可选地,所述化合物I选自甲醇时,乙酸的选择性大于85%。Optionally, when the compound I is selected from methanol, the selectivity to acetic acid is greater than 85%.
可选地,所述化合物I选自卤代甲烷时,乙酸甲酯+乙酸的选择性大于80%。Optionally, when the compound I is selected from halomethanes, the selectivity of methyl acetate+acetic acid is greater than 80%.
本申请能产生的有益效果包括:The beneficial effects that this application can produce include:
1)本发明提供了一种制备乙酸甲酯和或乙酸的催化剂,有机碱处理后丝光沸石分子筛的强酸酸量和8元环孔道内强酸位点所占的比例明显增加,具有较高的活性和目的产物选择性。1) the invention provides a kind of catalyst for preparing methyl acetate and or acetic acid, the strong acid content of mordenite molecular sieve and the proportion of strong acid sites in the 8-membered ring channel after the organic base treatment obviously increase, and have higher activity. and target product selectivity.
2)本发明提供了一种分子筛的改性方法,该方法通过有机碱水热处理,氢氧根离子会溶解骨架原子,而非骨架原子在有机碱阳离子的诱导下能再次晶化成为骨架原子,可以实现在不明显影响晶体形貌尺寸和孔结构的前提下对丝光沸石的酸性分布、酸量和酸密度进行调控,即可以实现分子筛催化剂酸性落位的调控,为分子筛催化剂的制备提供新的策略。2) the present invention provides a kind of modification method of molecular sieve, this method is through organic alkali hydrothermal treatment, hydroxide ion can dissolve skeleton atom, and non-skeleton atom can be recrystallized into skeleton atom again under the induction of organic alkali cation, The acid distribution, acid content and acid density of mordenite can be regulated without significantly affecting the crystal morphology, size and pore structure, that is, the regulation of the acid placement of the molecular sieve catalyst can be realized, which provides a new method for the preparation of molecular sieve catalysts. Strategy.
3)本发明的催化剂不仅可以应用于多个反应,包括二甲醚羰基化、甲醇羰基化和卤代甲烷羰基化,而且反应工艺条件可调范围广,具有普适性。3) The catalyst of the present invention can not only be applied to multiple reactions, including dimethyl ether carbonylation, methanol carbonylation and halomethane carbonylation, but also has a wide adjustable range of reaction process conditions and is universal.
具体实施方式Detailed ways
下面结合具体实施例来详细说明本申请,但是本申请并不局限于下述的实施例。The present application will be described in detail below with reference to specific embodiments, but the present application is not limited to the following embodiments.
如无特殊说明,本申请的实施例中的原料均通过商业途径购买。Unless otherwise specified, the raw materials in the examples of this application are all purchased through commercial channels.
本申请实施例中的产物分析方法如下:反应后的气体经过管线导入在线气相色谱仪分析。气相色谱仪型号为Agilent 7890A,装配有PLOT Q毛细柱和TDX-1填充柱,其出口分别接到FID检测器和TCD检测器。The product analysis method in the examples of the present application is as follows: the reacted gas is introduced into an online gas chromatograph through a pipeline for analysis. The gas chromatograph model is Agilent 7890A, equipped with PLOT Q capillary column and TDX-1 packed column, and its outlet is connected to FID detector and TCD detector, respectively.
本申请的实施例中小分子的转化率和产物的选择性计算方式如下:In the examples of this application, the conversion rate of small molecules and the selectivity of products are calculated as follows:
实施例中,二甲醚或甲醇或氯甲烷的转化率和产物的选择性都是基于小分子的摩尔数进行计算:In the embodiment, the conversion rate of dimethyl ether or methanol or methyl chloride and the selectivity of the product are all calculated based on the number of moles of small molecules:
二甲醚转化率=[(原料气中二甲醚碳摩尔数)-(产物中二甲醚碳摩尔数)]÷(原料气中二甲醚碳摩尔数)×(100%)Conversion rate of dimethyl ether=[(carbon moles of dimethyl ether in raw material gas)-(carbon moles of dimethyl ether in product)]÷(carbon moles of dimethyl ether in raw material gas)×(100%)
甲醇转化率=[(原料气中甲醇碳摩尔数)-(产物中甲醇碳摩尔数)]÷(原料气中甲醇碳摩尔数)×(100%)Methanol conversion rate=[(Methanol carbon moles in raw material gas)-(Methanol carbon moles in product)]÷(Methanol carbon moles in raw material gas)×(100%)
氯甲烷转化率=[(原料气中氯甲烷碳摩尔数)-(产物中氯甲烷碳摩尔数)]÷(原料气中氯甲烷碳摩尔数)×(100%)Conversion rate of methyl chloride = [(the number of moles of methyl chloride in the feed gas) - (the number of moles of methyl chloride in the product)] ÷ (the number of moles of methyl chloride in the feed gas) × (100%)
二甲醚羰基化的乙酸甲酯选择性=(2/3)×(产物中乙酸甲酯碳摩尔数)÷[(原料气中二甲醚碳摩尔数)-(产物中二甲醚碳摩尔数)]×(100%)Methyl acetate selectivity of dimethyl ether carbonylation=(2/3)×(carbon moles of methyl acetate in product)÷[(carbon moles of dimethyl ether in feed gas)−(carbon moles of dimethyl ether in product number)] × (100%)
甲醇羰基化的乙酸选择性=(1/2)×(产物中乙酸碳摩尔数)÷[(原料气中甲醇碳摩尔数)-(产物中甲醇碳摩尔数)]×(100%)The acetic acid selectivity of methanol carbonylation=(1/2)×(the number of acetic acid carbon moles in the product)÷[(the number of methanol carbon moles in the feed gas)-(the number of methanol carbon moles in the product)]×(100%)
卤代甲烷羰基化的乙酸选择性=(1/2)×(产物中乙酸碳摩尔数)÷[(原料气中氯甲烷碳摩尔数)-(产物中氯甲烷碳摩尔数)]×(100%)The acetic acid selectivity of halomethane carbonylation=(1/2)×(the number of moles of acetic acid in the product)÷[(the number of moles of methyl chloride in the feed gas)-(the number of moles of methyl chloride in the product)]×(100 %)
实施例1Example 1
将10克NH4-MOR(Si/Al=10)分子筛分别放入100ml质量分数为3.0%的四乙基氢氧化铵溶液中(固液比为1g:10ml),搅拌直至混合均匀,接着转移到150ml高压密封反应釜中,于180℃下处理48小时,过滤,去离子水洗涤,干燥获得固体样品。所制得样品在空气气氛下、550℃,焙烧4小时制得催化剂1#。Put 10 grams of NH 4 -MOR (Si/Al=10) molecular sieves into 100 ml of tetraethylammonium hydroxide solution with a mass fraction of 3.0% (solid-to-liquid ratio of 1 g:10 ml), stir until the mixture is uniform, and then transfer Put it into a 150ml high-pressure sealed reactor, treat at 180°C for 48 hours, filter, wash with deionized water, and dry to obtain a solid sample. The prepared sample was calcined at 550°C for 4 hours in an air atmosphere to obtain catalyst 1#.
实施例2Example 2
将实施例1中的NH4-MOR(Si/Al=10)更换为Na-MOR(Si/Al=10)和H-MOR(Si/Al=10),其他条件和实施例1保持一致,依次制得催化剂2#、3#NH 4 -MOR (Si/Al=10) in Example 1 was replaced with Na-MOR (Si/Al=10) and H-MOR (Si/Al=10), and other conditions were the same as those in Example 1, Catalysts 2# and 3# were prepared in turn
实施例3Example 3
将实施例1中的NH4-MOR的硅铝原子摩尔比分别更换为6、15、20、50,其次和实施例1保持一致,依次制得催化剂4#、5#、6#、7#。The silicon-aluminum atomic molar ratios of NH 4 -MOR in Example 1 were replaced with 6, 15, 20, and 50, respectively, followed by keeping the same as in Example 1, and catalysts 4#, 5#, 6#, and 7# were prepared in turn. .
实施例4Example 4
将实施例1中的四乙基氢氧化铵更换为四甲基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵其他条件与实施例1一致,依次制得催化剂8#、9#、10#。The tetraethylammonium hydroxide in embodiment 1 is replaced with tetramethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide and other conditions are consistent with embodiment 1, and catalysts 8#, 9#, 10#.
实施例5Example 5
将实施例1中的处理温度更换为50℃、100℃、150℃、170℃、200℃、220℃,其他条件保持一致,依次制得催化剂11#、12#、13#、14#、15#、16#。The treatment temperature in Example 1 was changed to 50°C, 100°C, 150°C, 170°C, 200°C, and 220°C, and other conditions were kept the same, and catalysts 11#, 12#, 13#, 14#, 15 were obtained in turn. #, 16#.
实施例6Example 6
将实施例1中的处理时间更换为5小时、12小时、18小时、36小时、72小时、100小时,其他条件保持一致,依次制得催化剂17#、18#、19#、20#、21#、22#。The treatment time in Example 1 was changed to 5 hours, 12 hours, 18 hours, 36 hours, 72 hours, and 100 hours, and other conditions were kept the same, and catalysts 17#, 18#, 19#, 20#, 21 were successively obtained. #,twenty two#.
实施例7Example 7
将实施例1中的固液比更改为1g:2ml、1g:8ml、1g:15ml、1g:20ml,其他条件保持一致,依次制得催化剂23#、24#、25#、26#。The solid-liquid ratio in Example 1 was changed to 1g:2ml, 1g:8ml, 1g:15ml, 1g:20ml, and other conditions were kept the same, and catalysts 23#, 24#, 25#, and 26# were obtained in sequence.
实施例8Example 8
将实施1中的四乙基氢氧化铵质量浓度更改为1.5%、4.5%、7.5%、10.5%和15.0%,其他条件保持一致,依次制得催化剂27#、28#、29#、30#、31#。Change the mass concentration of tetraethylammonium hydroxide in Example 1 to 1.5%, 4.5%, 7.5%, 10.5% and 15.0%, and keep other conditions the same, and prepare catalysts 27#, 28#, 29#, 30# in turn , 31#.
实施例9Example 9
将实施例1中的四乙基氢氧化铵更换为乙二胺、三乙胺,正丁胺有机胺,其他条件保持一致,依次制得催化剂32#、33#、34#。The tetraethylammonium hydroxide in Example 1 was replaced with ethylenediamine, triethylamine, n-butylamine organic amine, and other conditions were kept the same, and catalysts 32#, 33#, and 34# were obtained in turn.
实施例10Example 10
将实施例1中的四乙基氢氧化铵更换为三乙胺,三乙胺在水溶液中的质量百分数含量为0.5%、10%、25%、50%、75%、100%,其他条件与实施例1保持一致,依次制得催化剂35#、36#、37#、38#、39#、40#。The tetraethylammonium hydroxide in Example 1 was replaced with triethylamine, and the mass percentage content of triethylamine in the aqueous solution was 0.5%, 10%, 25%, 50%, 75%, 100%, and other conditions were the same as Keeping the same in Example 1, catalysts 35#, 36#, 37#, 38#, 39#, and 40# were prepared in sequence.
实施例11Example 11
将实施例1中制得固体样品在干燥空气中焙烧的时间更改为1.5小时、3小时、5小时、6小时、10小时,其他条件保持一致,依次得到催化剂41#、42#、43#、44#、45#。The time of roasting the solid sample obtained in Example 1 in dry air was changed to 1.5 hours, 3 hours, 5 hours, 6 hours, 10 hours, and other conditions were kept the same, and catalysts 41#, 42#, 43#, 44#, 45#.
实施例12Example 12
将实施例1中的焙烧温度依次更改为450℃、500℃、600℃、650℃,其他条件保持一致,依次制得催化剂46#、47#、48#、49#。The calcination temperature in Example 1 was changed to 450°C, 500°C, 600°C, and 650°C in turn, and other conditions were kept the same, and catalysts 46#, 47#, 48#, and 49# were obtained in sequence.
实施例13Example 13
上述催化剂按照以下条件考察二甲醚羰基化生产乙酸甲酯性能。The above-mentioned catalysts were investigated according to the following conditions for the carbonylation of dimethyl ether to produce methyl acetate.
将0.5克催化剂装入内径8毫米的固定床反应器,氮气气氛下以2℃/min的速率升至400℃,保持2小时,然后在相同气氛下降温至反应温度200℃,用反应混合气将反应体系的压力提升至2MPa,同时反应混合气自上而下通过催化剂床层。其中二甲醚进料空速为1.0h-1;一氧化碳和二甲醚的摩尔比为6:1,一氧化碳原料气中含有氢气,催化反应运行10小时,反应结果见表1。Load 0.5 g of catalyst into a fixed-bed reactor with an inner diameter of 8 mm, raise it to 400 °C at a rate of 2 °C/min under nitrogen atmosphere, hold for 2 hours, and then lower the temperature to the reaction temperature of 200 °C in the same atmosphere. The pressure of the reaction system was increased to 2 MPa, and the reaction mixture was passed through the catalyst bed from top to bottom. Wherein the dimethyl ether feed space velocity is 1.0h −1 ; the mol ratio of carbon monoxide and dimethyl ether is 6:1, and the carbon monoxide feed gas contains hydrogen, and the catalytic reaction runs for 10 hours, and the reaction results are shown in Table 1.
表1不同催化剂二甲醚羰基化催化评价结果Table 1 Catalytic evaluation results of dimethyl ether carbonylation with different catalysts
实施例14Example 14
上述催化剂按照以下条件考察甲醇羰基化生产乙酸性能。The above-mentioned catalysts were investigated for the performance of methanol carbonylation to produce acetic acid according to the following conditions.
实验的催化剂为1#、5#、10#、15#样品,将1克催化剂装入内径8毫米的固定床反应器,氮气气氛下以2℃/min的速率升至400℃,保持2小时,然后在相同气氛下降温至反应温度280℃,用反应混合气将反应体系的压力提升至2MPa,同时反应混合气自上而下通过催化剂床层。其中甲醇进料空速为1.0h-1,一氧化碳和甲醇的摩尔比为50:1,一氧化碳原料气中含有氢气,催化反应运行10小时,反应结构见表2。The catalysts used in the experiment are 1#, 5#, 10#, and 15# samples. 1 gram of catalyst was loaded into a fixed bed reactor with an inner diameter of 8 mm, and the temperature was raised to 400 °C at a rate of 2 °C/min under nitrogen atmosphere for 2 hours. , and then the temperature was lowered to the reaction temperature of 280°C in the same atmosphere, the pressure of the reaction system was increased to 2MPa with the reaction mixture, and the reaction mixture passed through the catalyst bed from top to bottom. The methanol feed space velocity was 1.0 h −1 , the molar ratio of carbon monoxide and methanol was 50:1, the carbon monoxide feed gas contained hydrogen, and the catalytic reaction was run for 10 hours, and the reaction structure was shown in Table 2.
表2不同催化剂甲醇羰基化催化评价结果Table 2 Catalytic evaluation results of methanol carbonylation with different catalysts
实施例15Example 15
上述催化剂按以下条件考察卤代甲烷羰基化生产乙酸性能。The above-mentioned catalysts were investigated for the production of acetic acid by the carbonylation of halomethanes under the following conditions.
实验的催化剂为5#样品,将1克催化剂装入内径8毫米的固定床反应器,氮气气氛下以2℃/min的速率升至400℃,保持2小时,然后在相同气氛下降温至反应温度260℃,用反应混合气(氯甲烷/CO或溴甲烷/CO或碘甲烷/CO)将反应体系的压力提升至2.5MPa,同时反应混合气自上而下通过催化剂床层。其中卤代甲烷进料空速为0.5h-1,一氧化碳和卤代甲烷的摩尔比为20:1,一氧化碳原料气中不含其它气体,催化反应运行20小时,反应结构见表3。The catalyst used in the experiment was the 5# sample, 1 g of catalyst was loaded into a fixed bed reactor with an inner diameter of 8 mm, and the temperature was raised to 400 °C at a rate of 2 °C/min under nitrogen atmosphere for 2 hours, and then the temperature was lowered to the reaction in the same atmosphere. The temperature was 260°C, and the pressure of the reaction system was increased to 2.5 MPa with the reaction mixture (chloromethane/CO or bromomethane/CO or iodomethane/CO), and the reaction mixture passed through the catalyst bed from top to bottom. Wherein the halomethane feed space velocity is 0.5h -1 , the molar ratio of carbon monoxide and halomethane is 20:1, the carbon monoxide feed gas does not contain other gases, the catalytic reaction runs for 20 hours, and the reaction structure is shown in Table 3.
表3卤代甲烷羰基化催化评价结果Table 3 Results of catalytic evaluation of halomethane carbonylation
实施例16Example 16
在不同反应温度下二甲醚羰基化生产乙酸甲酯的反应结果。The reaction results of the carbonylation of dimethyl ether to produce methyl acetate at different reaction temperatures.
实验的催化剂为1#样品,将0.5克催化剂装入内径为8毫米的固定床反应器内,氮气气氛下以2℃/min的速率升至400℃,保持2小时,然后在相同气氛下降至反应温度。用反应混合气将体系压力提升至2MPa,并将反应气自上而下通过催化剂床层。其中二甲醚进料空速为1.0h-1;一氧化碳和二甲醚的摩尔比为6:1,一氧化碳原料气中含有氢气,反应温度分别为170℃、190℃、210℃、230℃、300℃。催化反应运行10小时,结果如表4所示。The catalyst used in the experiment was the 1# sample. 0.5 g of catalyst was loaded into a fixed bed reactor with an inner diameter of 8 mm, and it was raised to 400 °C at a rate of 2 °C/min under nitrogen atmosphere, kept for 2 hours, and then dropped to 400 °C in the same atmosphere. temperature reflex. The system pressure was increased to 2MPa with the reaction mixture, and the reaction gas was passed through the catalyst bed from top to bottom. Wherein the dimethyl ether feed space velocity is 1.0h -1 ; the molar ratio of carbon monoxide and dimethyl ether is 6:1, the carbon monoxide feed gas contains hydrogen, and the reaction temperatures are 170 ℃, 190 ℃, 210 ℃, 230 ℃, 300°C. The catalytic reaction was run for 10 hours and the results are shown in Table 4.
表4不同反应温度时的反应结果Table 4 Reaction results at different reaction temperatures
实施例17Example 17
在不同反应压力下进行二甲醚羰基化生产乙酸甲酯的反应结果。The reaction results of the carbonylation of dimethyl ether to produce methyl acetate under different reaction pressures.
实验的催化剂为1#样品,反应压力分别为1、3、5和15Mpa,反应温度为200℃,其他操作程序与实施例16相同。反应运行10小时,结果如表5所示。The catalyst used in the experiment was sample 1#, the reaction pressures were 1, 3, 5 and 15Mpa respectively, the reaction temperature was 200°C, and other operating procedures were the same as those in Example 16. The reaction was run for 10 hours and the results are shown in Table 5.
表5不同反应压力时的反应结果Table 5 Reaction results at different reaction pressures
实施例18Example 18
在不同二甲醚空速下的二甲醚羰基化反应结果。Results of the dimethyl ether carbonylation reaction at different dimethyl ether space velocities.
实验的催化剂为1#样品,二甲醚的进料质量空速为0.1h-1、1.5h-1、1.75h-1、2.0h-1、2.5h-1和4h-1,反应温度为200℃,其他操作条件与实施例16相同,反应结果如表6所示。The catalyst used in the experiment was sample 1#, the feed mass space velocity of dimethyl ether was 0.1h -1 , 1.5h -1 , 1.75h -1 , 2.0h -1 , 2.5h -1 and 4h -1 , and the reaction temperature was 200°C, other operating conditions are the same as in Example 16, and the reaction results are shown in Table 6.
表6不同二甲醚空速时的反应结果Table 6 Reaction results at different dimethyl ether space velocities
实施例19Example 19
不同一氧化碳与二甲醚摩尔比下的反应结果。Reaction results at different carbon monoxide to dimethyl ether molar ratios.
实验的催化剂为1#样品,一氧化碳与二甲醚的摩尔比为0.1:1、0.5:1、1:1、2:1、5:1、10:1、15:1和25:1,反应温度为200℃,其他操作条件与实施例16相同,反应结果如表7所示。The catalyst used in the experiment is sample 1#, and the molar ratio of carbon monoxide to dimethyl ether is 0.1:1, 0.5:1, 1:1, 2:1, 5:1, 10:1, 15:1 and 25:1. The temperature was 200°C, other operating conditions were the same as those in Example 16, and the reaction results were shown in Table 7.
表7不同一氧化碳与二甲醚摩尔比时的反应结果The reaction results of table 7 under different molar ratios of carbon monoxide and dimethyl ether
实施例20Example 20
在含一氧化碳的原料气中含有惰性气体时的二甲醚羰基化反应结果。Results of the carbonylation of dimethyl ether in the presence of an inert gas in the carbon monoxide-containing feed gas.
实验的催化剂为1#样品,二甲醚进料空速为0.5h-1,含一氧化碳的原料气中含有非活性气体,含一氧化碳的原料气与二甲醚的摩尔比选为5:1,其他条件同实施例13,反应结果见表8。The catalyst used in the experiment is the 1# sample, the dimethyl ether feed space velocity is 0.5h -1 , the carbon monoxide-containing feed gas contains inactive gas, and the molar ratio of the carbon monoxide-containing feed gas to dimethyl ether is selected as 5:1, Other conditions are the same as in Example 13, and the reaction results are shown in Table 8.
表8含一氧化碳原料气中含有非活性气体的反应结果Table 8 Reaction results of inert gas contained in carbon monoxide-containing raw material gas
实施例21Example 21
不同反应温度下氯甲烷羰基化生产乙酸/乙酸甲酯的反应结果。The reaction results of the carbonylation of methyl chloride to produce acetic acid/methyl acetate at different reaction temperatures.
实验的催化剂为5#样品,将1.0克催化剂装入内径为8毫米的固定床反应器内,氮气气氛下以2℃/min的速率升至400℃,保持2小时,然后在相同气氛下降至反应温度。用反应混合气将体系压力提升至2.5MPa,并将反应气自上而下通过催化剂床层。其中氯甲烷进料空速为0.5h-1;一氧化碳和氯甲烷的摩尔比为20:1,反应温度分别为180℃、230℃、280℃、300℃。催化反应运行20小时,结果如表9所示。The catalyst used in the experiment was the 5# sample. 1.0 g of the catalyst was loaded into a fixed-bed reactor with an inner diameter of 8 mm, and it was raised to 400 °C at a rate of 2 °C/min under a nitrogen atmosphere, kept for 2 hours, and then dropped to 400 °C in the same atmosphere. temperature reflex. The pressure of the system was raised to 2.5 MPa with the reaction mixture, and the reaction gas was passed through the catalyst bed from top to bottom. The feed space velocity of methyl chloride was 0.5 h -1 ; the molar ratio of carbon monoxide and methyl chloride was 20:1, and the reaction temperatures were 180° C., 230° C., 280° C. and 300° C., respectively. The catalytic reaction was run for 20 hours and the results are shown in Table 9.
表9氯甲烷不同反应温度时的羰基化反应结果The carbonylation reaction results of table 9 methyl chloride at different reaction temperatures
实施例22Example 22
在不同反应压力下进行氯甲烷羰基化生产乙酸/乙酸甲酯的反应结果。Results of the carbonylation of methyl chloride to produce acetic acid/methyl acetate at different reaction pressures.
实验的催化剂为14#样品,反应压力分别为1.5、3.5、5和15Mpa,反应温度为260℃,其他操作程序与实施例21相同。反应运行20小时,结果如表10所示。The catalyst used in the experiment was the 14# sample, the reaction pressures were 1.5, 3.5, 5 and 15Mpa respectively, the reaction temperature was 260°C, and other operating procedures were the same as those in Example 21. The reaction was run for 20 hours and the results are shown in Table 10.
表10不同反应压力下氯甲烷羰基化反应结果Table 10 Results of methyl chloride carbonylation reaction under different reaction pressures
实施例23Example 23
不同一氧化碳与氯甲烷摩尔比下的反应结果。Reaction results at different carbon monoxide to methyl chloride molar ratios.
一氧化碳与氯甲烷的摩尔比为0.1:1、5:1、10:1和25:1,反应温度为260℃,其他操作条件与实施例21相同,反应结果如表11所示。The molar ratios of carbon monoxide and methyl chloride were 0.1:1, 5:1, 10:1 and 25:1, the reaction temperature was 260° C., and other operating conditions were the same as in Example 21, and the reaction results were shown in Table 11.
表11不同一氧化碳与氯甲烷摩尔比的反应结果Table 11 Reaction results of different molar ratios of carbon monoxide and methyl chloride
实施例24Example 24
将10克NH4-MOR(Si/Al=10)分子筛分别放入100ml质量分数为3.0%的四乙基氢氧化铵溶液中(固液比为1g:10ml),搅拌混合均匀,于50℃、100℃和150℃下在常压下处理48小时,过滤,去离子水洗涤,干燥获得固体样品。所制得样品在空气气氛下、550℃,焙烧4小时制得催化剂50#、51#和52#。并在实施例13相同的条件下考察其二甲醚羰基化生成乙酸甲酯的性能,具体见表12。Put 10 grams of NH 4 -MOR (Si/Al=10) molecular sieves into 100 ml of tetraethylammonium hydroxide solution with a mass fraction of 3.0% (solid-to-liquid ratio of 1 g:10 ml), stir and mix evenly, at 50 ℃ , 100 °C and 150 °C under normal pressure for 48 hours, filtered, washed with deionized water, and dried to obtain solid samples. The prepared samples were calcined at 550°C for 4 hours in an air atmosphere to obtain catalysts 50#, 51# and 52#. And under the same conditions of Example 13, the performance of its dimethyl ether carbonylation to generate methyl acetate was investigated, and the details are shown in Table 12.
表12非密闭与密闭条件下处理催化剂的二甲醚羰基化性能对比结果Table 12 Comparison results of dimethyl ether carbonylation performance of catalysts treated under unsealed and sealed conditions
以上所述,仅是本申请的部分实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only some embodiments of the present application, and are not intended to limit the present application in any form. Although the present application is disclosed as above with preferred embodiments, it is not intended to limit the present application. Without departing from the scope of the technical solution of the present application, any changes or modifications made by using the technical content disclosed above are equivalent to equivalent implementation cases and fall within the scope of the technical solution.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110309379.4A CN115106122B (en) | 2021-03-23 | 2021-03-23 | Preparation method and application of molecular sieve catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110309379.4A CN115106122B (en) | 2021-03-23 | 2021-03-23 | Preparation method and application of molecular sieve catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115106122A true CN115106122A (en) | 2022-09-27 |
CN115106122B CN115106122B (en) | 2024-06-04 |
Family
ID=83322892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110309379.4A Active CN115106122B (en) | 2021-03-23 | 2021-03-23 | Preparation method and application of molecular sieve catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115106122B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116216738A (en) * | 2023-03-08 | 2023-06-06 | 厦门大学 | A kind of preparation method of methanol carbonylation acetic acid catalyst |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102190315A (en) * | 2010-03-03 | 2011-09-21 | 中国石油化工股份有限公司 | Mordenite with compound hole structure and preparation method thereof |
CN103964459A (en) * | 2013-01-31 | 2014-08-06 | 中国石油化工股份有限公司 | Modification method of molecular sieve |
CN111790452A (en) * | 2019-04-09 | 2020-10-20 | 中国科学院大连化学物理研究所 | A kind of methanol carbonylation catalyst and preparation method and application thereof |
CN111792994A (en) * | 2019-04-09 | 2020-10-20 | 中国科学院大连化学物理研究所 | Method for producing methyl acetate by carbonylation of dimethyl ether |
CN112390704A (en) * | 2019-08-13 | 2021-02-23 | 中国科学院大连化学物理研究所 | Method for preparing methanol and acetic acid by directly converting methane |
-
2021
- 2021-03-23 CN CN202110309379.4A patent/CN115106122B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102190315A (en) * | 2010-03-03 | 2011-09-21 | 中国石油化工股份有限公司 | Mordenite with compound hole structure and preparation method thereof |
CN103964459A (en) * | 2013-01-31 | 2014-08-06 | 中国石油化工股份有限公司 | Modification method of molecular sieve |
CN111790452A (en) * | 2019-04-09 | 2020-10-20 | 中国科学院大连化学物理研究所 | A kind of methanol carbonylation catalyst and preparation method and application thereof |
CN111792994A (en) * | 2019-04-09 | 2020-10-20 | 中国科学院大连化学物理研究所 | Method for producing methyl acetate by carbonylation of dimethyl ether |
CN112390704A (en) * | 2019-08-13 | 2021-02-23 | 中国科学院大连化学物理研究所 | Method for preparing methanol and acetic acid by directly converting methane |
Non-Patent Citations (2)
Title |
---|
SHIPING LIU等: ""Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange"", 《CATAL. SCI. TECHNOL》, vol. 10, pages 4663 - 4672 * |
韩海波等: ""超声波碱处理改性对丝光沸石结构、酸性质及其催化性能的影响"", 韩海波等, vol. 69, no. 7, pages 3001 - 3008 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116216738A (en) * | 2023-03-08 | 2023-06-06 | 厦门大学 | A kind of preparation method of methanol carbonylation acetic acid catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN115106122B (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101767038B (en) | Catalyst for preparing p-xylene by conversion of methanol and its preparation method and application | |
WO2014173229A1 (en) | Fischer-tropsch synthesis catalyst for syngas to low carbon olefins, modified molecular sieve carrier and preparation method thereof | |
CN101607864A (en) | A kind of method that methanol/dimethyl ether converts high yield and prepares p-xylene | |
JP2000501735A (en) | Use of transition metal containing small pore molecular sieve catalysts in the conversion of oxygen binding compounds. | |
CN104557423B (en) | Method for preparing arene by directly converting methane | |
CN101410353B (en) | Method for producing propylene | |
WO2020155143A1 (en) | Method for producing methyl acetate by means of carbonylation of dimethyl ether | |
CN109232188B (en) | A kind of preparation method of hydrogenated bisphenol A | |
CN106883091B (en) | Method for selectively synthesizing p-xylene from 4-methyl-3-cyclohexene formaldehyde | |
CN111514926B (en) | A kind of molecular sieve catalyst and its preparation method and application | |
CN115999629A (en) | A kind of heterogeneous catalyst for α-olefin hydroformylation to prepare aldehyde, its preparation method and application | |
CN102951993A (en) | Method for improving reaction stability for synthesizing xylene through toluene and methanol alkylation | |
CN115106122B (en) | Preparation method and application of molecular sieve catalyst | |
CN111792994B (en) | Method for producing methyl acetate by dimethyl ether carbonylation | |
CN112694907B (en) | Method for preparing hydrocarbon compound from methane | |
CN111517955A (en) | Method for producing methyl acetate by dimethyl ether carbonylation | |
CN105669453B (en) | A kind of method for preparing methyl formate co-production dimethyl ether | |
CN113996330B (en) | Zr-based MFI molecular sieve catalyst prepared by ball milling method and application thereof | |
WO2023274289A1 (en) | Method for co-production of methanol and ethanol from synthesis gas | |
CN111229296B (en) | Preparation method of shape-selective isomerization catalyst based on MFI-type structure molecular sieve | |
CN111215135B (en) | Preparation method of shape selective heterogeneous catalyst based on AFO type structure molecular sieve | |
Jeong et al. | Synthesis of high-energy-density fuel through the dimerization of bicyclo [2.2. 1] hepta-2, 5-diene over a nanoporous catalyst | |
WO2020155144A1 (en) | Molecular sieve catalyst, preparation method therefor, and application thereof | |
CN112791743B (en) | A kind of catalyst for producing methyl acetate by carbonylation of dimethyl ether, its preparation method and its application | |
CN111790452A (en) | A kind of methanol carbonylation catalyst and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |