CN115105093A - EEG signal classification and identification method based on power spectral density predetermined frequency band - Google Patents
EEG signal classification and identification method based on power spectral density predetermined frequency band Download PDFInfo
- Publication number
- CN115105093A CN115105093A CN202210594845.2A CN202210594845A CN115105093A CN 115105093 A CN115105093 A CN 115105093A CN 202210594845 A CN202210594845 A CN 202210594845A CN 115105093 A CN115105093 A CN 115105093A
- Authority
- CN
- China
- Prior art keywords
- frequency band
- signal
- spectral density
- power spectral
- eeg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000003595 spectral effect Effects 0.000 title claims abstract description 26
- 238000000605 extraction Methods 0.000 claims abstract description 19
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 238000001914 filtration Methods 0.000 claims abstract description 14
- 238000003062 neural network model Methods 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 3
- 239000011159 matrix material Substances 0.000 claims description 33
- 238000013528 artificial neural network Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000033001 locomotion Effects 0.000 abstract description 10
- 238000007781 pre-processing Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 230000002087 whitening effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000033764 rhythmic process Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000013145 classification model Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
- A61B5/374—Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychology (AREA)
- Evolutionary Computation (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Power Engineering (AREA)
- Fuzzy Systems (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明涉及一种基于功率谱密度预确定频率带的EEG信号分类识别方法,包括:获取原始信号,使用带通滤波器对原始信号进行滤波预处理;对预处理后的信号进行功率谱密度估计,得到频谱上功率最大值所对应的频率;以最大值所对应的频率为中心,按照设定长度确定频率带;在频率带下对预处理后的信号进行二次带通滤波,得到目标频率成分;使用共空间模式算法在空域上对目标频率成分进行特征提取操作,得到目标特征;使用神经网络模型对目标特征进行分类,输出得到EEG信号识别结果。与现有技术相比,本发明具有提升运动想象EEG信号的解码准确率等优点。
The invention relates to an EEG signal classification and identification method based on a predetermined frequency band based on power spectral density, comprising: obtaining an original signal, filtering and preprocessing the original signal with a bandpass filter; , obtain the frequency corresponding to the maximum power value on the spectrum; take the frequency corresponding to the maximum value as the center, and determine the frequency band according to the set length; perform secondary bandpass filtering on the preprocessed signal under the frequency band to obtain the target frequency Use the common space pattern algorithm to perform feature extraction on the target frequency components in the air domain to obtain the target features; use the neural network model to classify the target features, and output the EEG signal recognition results. Compared with the prior art, the present invention has the advantages of improving the decoding accuracy of the motion imagery EEG signal and the like.
Description
技术领域technical field
本发明涉及脑电信号处理领域,尤其是涉及一种基于功率谱密度预确定频率带的EEG信号分类识别方法。The invention relates to the field of EEG signal processing, in particular to an EEG signal classification and identification method based on a predetermined frequency band based on power spectral density.
背景技术Background technique
近年来,脑机接口(Brain Computer Interface,BCI)技术得到了广泛的研究,该技术在脑卒中后患者的康复过程中起到积极的促进作用。脑机接口技术是一种不依赖于常规大脑信息输出通路(包括外周神经系统和肌肉组织)的新型人机交互技术,它可以让使用者直接通过大脑与外界环境进行交互或者控制多种类型的外部操控设备,比如轮椅、机器人等。运动想象EEG(脑电波)是脑机接口技术中的一个重要范式,其具有不需要额外的外界刺激的优势,但是需要对被试进行较长时间的训练过程。运动想象EEG信号是一种非稳定信号,不同被试间有较大差异性,同一被试在不同时间的表现也会出现一定的差异性,此为,EEG信号还容易受到外界无关信号的干扰,例如外部环境的工频干扰、身体运动产生的肌电信号等等。因此,提升运动想象EEG信号的解码准确率仍然是脑机接口领域中的一个研究难点。In recent years, Brain Computer Interface (BCI) technology has been extensively studied, and this technology plays an active role in promoting the rehabilitation process of post-stroke patients. Brain-computer interface technology is a new type of human-computer interaction technology that does not rely on conventional brain information output pathways (including peripheral nervous system and muscle tissue). It allows users to directly interact with the external environment through the brain or control various types of External control devices, such as wheelchairs, robots, etc. Motor imagery EEG (brain wave) is an important paradigm in brain-computer interface technology, which has the advantage of not requiring additional external stimulation, but requires a longer training process for the subjects. The motor imagery EEG signal is a kind of unstable signal, there are great differences between different subjects, and the performance of the same subject at different times will also have certain differences. This is because the EEG signal is also easily interfered by external irrelevant signals. , such as the power frequency interference of the external environment, the electromyographic signal generated by the body movement, and so on. Therefore, improving the decoding accuracy of motor imagery EEG signals is still a research difficulty in the field of brain-computer interface.
专利CN202010022435.1公开了一种运动想象EEG信号的在线处理方法,使用了带通滤波器、共空间模式和支持向量机,可以实现对运动想象EEG信号的分类识别。但是,该方案对EEG信号中与运动想象相关成分的提取过程不够充分,影响最终EEG信号的解码准确率。Patent CN202010022435.1 discloses an online processing method of EEG signals of motor imagery, using band-pass filter, co-space mode and support vector machine, which can realize the classification and recognition of EEG signals of motor imagery. However, this scheme is not sufficient for the extraction of components related to motor imagery in the EEG signal, which affects the decoding accuracy of the final EEG signal.
专利CN201810044806.9公开了一种基于能量特征的运动想象脑电信号的识别方法,提取EEG信号中的能量特征,并使用基于径向基核函数的支持向量机对其进行分类,在该分类识别过程中,仅用到了信号的能量特征,没有考虑各通道间的空间特征,影响最终EEG信号的解码准确率。Patent CN201810044806.9 discloses a method for identifying motor imagery EEG signals based on energy features, extracting energy features in EEG signals, and classifying them using a support vector machine based on radial basis kernel function. In the process, only the energy feature of the signal is used, and the spatial feature between each channel is not considered, which affects the decoding accuracy of the final EEG signal.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于功率谱密度预确定频率带的EEG信号分类识别方法,对传统的共空间模式和神经网络分类器相结合的识别分类算法进行了改进,最终提升运动想象EEG信号的解码准确率。The purpose of the present invention is to provide a kind of EEG signal classification and identification method based on power spectral density pre-determined frequency band in order to overcome the above-mentioned defects in the prior art. Improvements have been made to finally improve the decoding accuracy of motor imagery EEG signals.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种基于功率谱密度预确定频率带的EEG信号分类识别方法,包括:A method for classifying and identifying EEG signals based on a predetermined frequency band based on power spectral density, comprising:
S1、获取原始信号,使用带通滤波器对原始信号进行滤波预处理;S1. Obtain the original signal, and use a band-pass filter to filter and preprocess the original signal;
S2、对预处理后的信号进行功率谱密度估计,得到频谱上功率最大值所对应的频率;S2. Perform power spectral density estimation on the preprocessed signal to obtain the frequency corresponding to the maximum power value on the spectrum;
S3、以最大值所对应的频率为中心,按照设定长度确定频率带;S3. Take the frequency corresponding to the maximum value as the center, and determine the frequency band according to the set length;
S4、在频率带下对预处理后的信号进行二次带通滤波,得到目标频率成分;S4. Perform secondary band-pass filtering on the preprocessed signal under the frequency band to obtain the target frequency component;
S5、使用共空间模式算法在空域上对目标频率成分进行特征提取操作,得到目标特征;S5, use the common space mode algorithm to perform feature extraction operation on the target frequency components in the air domain to obtain the target features;
S6、使用神经网络模型对目标特征进行分类,输出得到EEG信号识别结果。S6. Use the neural network model to classify the target features, and output the EEG signal recognition result.
进一步地,步骤S1中,使用1~30Hz的巴特沃斯带通数字滤波器对原始信号进行滤波操作,去除原始信号的基线漂移和工频信号的干扰成分。Further, in step S1, a Butterworth bandpass digital filter of 1-30 Hz is used to filter the original signal to remove the baseline drift of the original signal and the interference component of the power frequency signal.
进一步地,步骤S2中,对预处理后的信号的每个通道都进行功率谱密度计算,得到其中功率最大值所对应的频率。Further, in step S2, the power spectral density is calculated for each channel of the preprocessed signal, and the frequency corresponding to the maximum power value is obtained.
进一步地,步骤S3中,确定频率带的设定长度为3~6Hz。Further, in step S3, it is determined that the set length of the frequency band is 3-6 Hz.
进一步地,步骤S4中,二次带通滤波为在频率带的范围内使用巴特沃斯带通数字滤波器对对预处理后的信号进行滤波操作。Further, in step S4, the secondary band-pass filtering is to use a Butterworth band-pass digital filter in the range of the frequency band to perform a filtering operation on the preprocessed signal.
进一步地,步骤S5中,共空间模式算法包括:对角化目标频率成分的协方差矩阵,生成一组最优的空间滤波器,然后找到一个投影矩阵,将各个目标频率成分投影到同一个公共空间,在此公共空间中,各个目标频率成分的方差值可以得到最大化的区分,从而得到目标特征。Further, in step S5, the co-spatial mode algorithm includes: diagonalizing the covariance matrix of the target frequency components, generating a set of optimal spatial filters, and then finding a projection matrix to project each target frequency component to the same common Space, in this public space, the variance value of each target frequency component can be differentiated to the maximum, so as to obtain the target feature.
进一步地,步骤S6中,神经网络模型中的分类器采用误差反向传播神经网络。Further, in step S6, the classifier in the neural network model adopts an error back-propagation neural network.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明提出了基于功率谱密度预确定频率带的策略,提取EEG信号中与运动想象最相关的成分进行特征提取和特征分类操作,从而增强传统使用共空间模式加神经网络的运动想象EEG信号处理算法的分类性能,最终提升运动想象EEG信号的解码准确率。1. The present invention proposes a strategy of pre-determining frequency bands based on power spectral density, extracting the most relevant components of the EEG signal for feature extraction and feature classification operations, thereby enhancing the traditional motor imagery EEG using co-spatial mode and neural network. The classification performance of the signal processing algorithm ultimately improves the decoding accuracy of the motor imagery EEG signal.
2、本发明可以对运动想象EEG信号进行有效分类识别,判断被试的运动意图,将此意图转化为对应的控制指令传输给相关外设,外设在收到指令后可执行对应的操作。2. The present invention can effectively classify and identify the motor imagery EEG signal, judge the movement intention of the subject, convert the intention into a corresponding control command and transmit it to the relevant peripheral device, and the peripheral device can perform the corresponding operation after receiving the command.
附图说明Description of drawings
图1为本发明脑机接口系统的结构示意图。FIG. 1 is a schematic structural diagram of a brain-computer interface system of the present invention.
图2为本发明EEG信号分类识别方法的流程示意图。FIG. 2 is a schematic flowchart of a method for classifying and identifying EEG signals according to the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. This embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner and a specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
本实施例提供了一种基于功率谱密度预确定频率带的EEG信号分类识别方法,应用于某型号脑机接口系统。EEG信号的分类识别是整个脑机接口系统中的核心部分,识别准确率的高低决定着被试直接通过脑电与外界交互的能力,这影响整个系统的性能。但是,EEG信号具有不稳定、低信噪比、高复杂性的特点,对EEG信号的精确分析与处理往往会遇到很多困难,识别准确率也很难保持一个高值,因此对于EEG信号的解码过程仍是一个具有挑战性的研究工作。针对这一难题,本实施例提出了一种基于功率谱密度预确定频率带的EEG信号分类识别方法,对传统的共空间模式和神经网络分类器相结合的识别分类方法进行了改进,提升了EEG信号的分类准确率。This embodiment provides an EEG signal classification and identification method based on a predetermined frequency band based on power spectral density, which is applied to a certain type of brain-computer interface system. The classification and recognition of EEG signals is the core part of the entire brain-computer interface system. The recognition accuracy determines the subject's ability to directly interact with the outside world through EEG, which affects the performance of the entire system. However, EEG signals are characterized by instability, low signal-to-noise ratio, and high complexity. The precise analysis and processing of EEG signals often encounter many difficulties, and the recognition accuracy is difficult to maintain a high value. The decoding process is still a challenging research work. To solve this problem, this embodiment proposes an EEG signal classification and identification method based on power spectral density pre-determined frequency bands, which improves the traditional identification and classification method combining the co-space pattern and neural network classifier, and improves the Classification accuracy of EEG signals.
如图1所示,脑机接口系统一般可以分为三个部分:脑电信号获取模块、信号处理识别模块和控制信号输出/外部设备执行模块。As shown in Figure 1, the brain-computer interface system can generally be divided into three parts: an EEG signal acquisition module, a signal processing and identification module, and a control signal output/external device execution module.
信号处理识别模块是脑机接口系统中最核心的模块,包含对前一步获得的原始脑电信号做一系列处理。该阶段包括预处理、特征提取、特征分类三个步骤,尽可能滤去原始信号中含有的噪声,留下反映脑活动的关键成分,再经过特征提取操作,获取与被试运动意图相关的特征成分,例如运动想象(Motor Imagery,MI)自发脑电中/节律的能量信息,诱发脑电中的幅值和相位等特征信息。最后,将这些特征通过分类识别算法进行分类,从而识别被试的意图,进一步转化为相应的控制信号传输给应用与外界交互模块。本实施例重点关注信号处理模块,使用功率谱密度,对传统的共空间模式和神经网络分类器相结合的识别分类算法进行改进,提升系统对EEG信号的识别能力。The signal processing and identification module is the core module in the brain-computer interface system, which includes a series of processing on the original EEG signals obtained in the previous step. This stage includes three steps: preprocessing, feature extraction, and feature classification. The noise contained in the original signal is filtered out as much as possible, and the key components reflecting brain activity are left. After feature extraction, the features related to the subject's movement intention are obtained. Components, such as motor imagery (MI) spontaneous EEG energy information/rhythm, evoked EEG amplitude and phase and other characteristic information. Finally, these features are classified by a classification and recognition algorithm, so as to identify the intentions of the subjects, and further convert them into corresponding control signals and transmit them to the application and external interaction module. This embodiment focuses on the signal processing module, and uses the power spectral density to improve the traditional identification and classification algorithm combining the co-space pattern and the neural network classifier to improve the system's ability to identify EEG signals.
信号处理识别模块中通过软件具体执行基于功率谱密度预确定频率带的EEG信号分类识别方法,如图2所示,包括以下步骤:In the signal processing and identification module, the EEG signal classification and identification method based on the power spectral density predetermined frequency band is specifically executed by software, as shown in Figure 2, including the following steps:
一、信号预处理:1. Signal preprocessing:
获取原始信号,使用带通滤波器对原始信号进行滤波预处理。Obtain the original signal, and use the band-pass filter to filter and preprocess the original signal.
二、特征提取:2. Feature extraction:
使用功率谱密度预确定频率带的方法,提取预处理后信号所有通道在各自功率谱密度中显示的能量最大的频率的平均值附近一小段区间的频率成分,提取的频率成分即为目标频率成分,作为下一步特征提取的输入;Using the method of pre-determining the frequency band by the power spectral density, extract the frequency components of a small interval near the average value of the frequencies with the maximum energy displayed in the respective power spectral density of all channels of the preprocessed signal, and the extracted frequency components are the target frequency components. , as the input for the next feature extraction;
使用共空间模式算法在空域上对目标频率成分进行特征提取操作,得到目标特征。The feature extraction operation is performed on the target frequency components in the spatial domain by using the co-space pattern algorithm to obtain the target features.
三、特征分类:Three, feature classification:
使用神经网络模型对目标特征进行分类,输出得到EEG信号识别结果。Use the neural network model to classify the target features, and output the EEG signal recognition results.
在信号预处理过程,使用1~30Hz的巴特沃斯带通数字滤波器对原始信号进行滤波操作,主要的作用是去除信号的基线漂移和50Hz工频信号等干扰成分。巴特沃斯带通数字滤波器可用振幅的平方关于频率的函数表示,如下式:In the process of signal preprocessing, a 1-30Hz Butterworth band-pass digital filter is used to filter the original signal. The main function is to remove the baseline drift of the signal and the interference components such as the 50Hz power frequency signal. A Butterworth bandpass digital filter can be represented by the square of the amplitude as a function of frequency as follows:
其中,N表示该数字滤波器的阶数,ω表示信号频率,ωc表示截止频率,H(*)表示振幅。Among them, N represents the order of the digital filter, ω represents the signal frequency, ω c represents the cutoff frequency, and H(*) represents the amplitude.
本实施例分类识别方法的原理为:运动想象EEG信号与α节律中与运动相关的μ节律(8~13Hz)和β节律(13~30Hz)密切相关,具体的表现是,当被试执行或者想象特定的肢体运动,大脑皮层中与该运动相关的运动感觉区域处于兴奋状态,其μ/β节律能量下降,此现象被称为事件相关去同步(Event-Related Desynchronization,ERD);在几秒之后该区域又会恢复静息状态,μ/β节律能量上升,此现象被称为事件相关同步(Event-RelatedSynchronization,ERS)。研究表明,ERD和ERS现象不是独立发生的,其往往会在执行或想象特定肢体运动时伴随发生。以左手/右手运动想象为例,当被试进行左手运动想象任务时,其右半脑的运动感觉区,也就是C4电极附近的区域会出现明显的ERD现象;同时,其左半脑的运动感觉区,也就是C3电极附近的区域会出现明显的ERS现象。当被试进行右手运动想象任务时,ERD/ERS现象发生的区域刚好相反。由此,使用功率谱密度可确定C3、C4等与运动想象任务高度相关的通道信号中能量最大的频率值。然后,在该值附近取一段频率带,对预处理后的信号进行第二次带通滤波,可提取EEG信号中与运动想象最相关的信号成分,随后可对该信号成分进行特征提取和特征分类操作,实现对被试运动意图的解码。在特征提取过程中,使用共空间模式算法,该算法的关键思想是共空间对信号进行分析,充分考虑各通道间的空间特征。综上,本实施例所提出的运动想象EEG信号分析处理算法可以明显提升信号的解码准确率。The principle of the classification and identification method in this embodiment is that the motor imagery EEG signal is closely related to the movement-related μ rhythm (8-13 Hz) and β-rhythm (13-30 Hz) in the alpha rhythm. Imagining a specific limb movement, the motor-sensory area in the cerebral cortex related to the movement is in an excited state, and its μ/β rhythm energy decreases, this phenomenon is called Event-Related Desynchronization (ERD); in a few seconds After that, the region will return to a resting state, and the μ/β rhythm energy will rise, a phenomenon called Event-Related Synchronization (ERS). Studies have shown that ERD and ERS phenomena do not occur independently, and often occur concomitantly when performing or imagining specific limb movements. Taking left-hand/right-hand motor imagery as an example, when subjects performed left-hand motor imagery tasks, the motor sensory area of the right hemisphere, that is, the area near the C4 electrode, showed obvious ERD phenomenon; In the sensory area, that is, the area near the C3 electrode, there is a clear ERS phenomenon. When subjects performed a right-hand motor imagery task, the ERD/ERS phenomenon occurred in the opposite region. Therefore, the power spectral density can be used to determine the frequency value of the maximum energy in the channel signals such as C3 and C4 which are highly related to the motor imagery task. Then, take a frequency band near this value, and perform a second band-pass filter on the preprocessed signal to extract the signal component most relevant to motor imagery in the EEG signal, and then perform feature extraction and feature extraction on the signal component. The classification operation realizes the decoding of the subject's movement intention. In the process of feature extraction, the co-space mode algorithm is used. The key idea of the algorithm is to analyze the signal in a co-space, and fully consider the spatial characteristics of each channel. To sum up, the motion imagery EEG signal analysis and processing algorithm proposed in this embodiment can significantly improve the decoding accuracy of the signal.
EEG信号分类识别方法中:In the EEG signal classification and identification method:
特征提取过程具体包括以下步骤:The feature extraction process specifically includes the following steps:
步骤1、对预处理后的信号进行功率谱密度估计,绘制频谱图。Step 1. Perform power spectral density estimation on the preprocessed signal, and draw a spectrogram.
步骤2、根据频谱图中最大功率对应的频率确定频率带,即为以最大值所对应的频率为中心,按照设定长度确定频率带。确定频率带的设定长度为3~6Hz,本实施例中优选采用4Hz。Step 2: Determine the frequency band according to the frequency corresponding to the maximum power in the spectrogram, that is, take the frequency corresponding to the maximum value as the center, and determine the frequency band according to the set length. The set length of the frequency band is determined to be 3-6 Hz, and 4 Hz is preferably used in this embodiment.
步骤3、在频率带下对预处理后的信号进行二次带通滤波,得到目标频率成分。二次带通滤波为在频率带的范围内使用巴特沃斯带通数字滤波器对对预处理后的信号进行滤波操作。Step 3: Perform secondary band-pass filtering on the preprocessed signal under the frequency band to obtain the target frequency component. Secondary bandpass filtering is a filtering operation on the preprocessed signal using a Butterworth bandpass digital filter in the range of the frequency band.
步骤4、使用共空间模式算法在空域上对目标频率成分进行特征提取操作,得到目标特征。Step 4. Use the co-space pattern algorithm to perform feature extraction operation on the target frequency components in the air domain to obtain target features.
在特征提取算法执行过程中,需要确定每个通道功率谱密度分析中功率最大值对应的频率,对应的公式为:During the execution of the feature extraction algorithm, the frequency corresponding to the maximum power value in the power spectral density analysis of each channel needs to be determined. The corresponding formula is:
fmax=argmaxPSD(f)f max =argmaxPSD(f)
在确定第二次带通滤波的频率区间时,需要以fmax为中心扩展区间,对应的公式为:When determining the frequency range of the second bandpass filter, it is necessary to extend the range with f max as the center, and the corresponding formula is:
fband=[fmax-2,fmax+2]f band = [f max -2, f max +2]
第二次带通滤波操作中采用的数字滤波器与预处理步骤中的相同。The digital filters used in the second bandpass filtering operation are the same as in the preprocessing step.
经过第二次带通滤波后的信号成分会与运动想象有较高的相关性,将该信号成分输入到后续的特征提取步骤,有利于提取更加有效的特征。在特征提取模块中,我们使用到了共空间模式算法,该算法可以有效提取信号中的空间特征,被广泛用于EEG信号的识别分类中,算法的详细原理和具体步骤如下:The signal component after the second band-pass filtering will have a high correlation with motor imagery, and inputting the signal component into the subsequent feature extraction step is conducive to extracting more effective features. In the feature extraction module, we use the common spatial pattern algorithm, which can effectively extract the spatial features in the signal and is widely used in the identification and classification of EEG signals. The detailed principles and steps of the algorithm are as follows:
共空间模式(CSP)是一种空域滤波器,被广泛使用于运动想象EEG信号的特征提取中。该算法的关键思想是共空间对信号进行分析。在左/右手运动想象EEG信号的分类场景中,使用两类信号,对角化两个协方差矩阵,生成一组最优的空间滤波器,找到一个投影矩阵,将两类信号投影到同一个公共空间,在此空间中,两类信号的方差值可以得到最大化的区分。如果是在两个以上的运动想象任务场景中,可以使用级联的方式,采用多个二分类模块,实现对信号的多分类处理。算法的详细步骤如下:Co-spatial pattern (CSP) is a spatial filter that is widely used in feature extraction of motor imagery EEG signals. The key idea of the algorithm is to analyze the signal in co-space. In the classification scenario of left/right-handed motor imagery EEG signals, use two classes of signals, diagonalize two covariance matrices, generate a set of optimal spatial filters, find a projection matrix, and project the two classes of signals onto the same Common space, in this space, the variance value of the two types of signals can be maximized. If it is in two or more motor imagery task scenarios, a cascaded method can be used, and multiple binary classification modules can be used to realize multi-classification processing of signals. The detailed steps of the algorithm are as follows:
例如针对左/右手运动想象EEG信号的分类场景,假定单次EEG实验数据得到的目标频率成分为E∈RN*M,其中N是电极通道数,M是单条数据采样点的个数,首先对每次实验数据进行协方差矩阵归一化操作:For example, for the classification scene of left/right-handed motor imagery EEG signals, it is assumed that the target frequency component obtained from a single EEG experimental data is E∈R N*M , where N is the number of electrode channels, and M is the number of single data sampling points. Perform the covariance matrix normalization operation on each experimental data:
其中,C表示对每次实验数据进行协方差矩阵归一化操作后得到的结果矩阵,T表示对矩阵进行转置操作。Among them, C represents the result matrix obtained by normalizing the covariance matrix of each experimental data, and T represents the transpose operation of the matrix.
然后在类内,对左手和右手两种情况分别求平均值,表示左手平均,表示右手平均,然后对两者进行相加操作,得到合成的空间协方差矩阵:Then within the class, the left-hand and right-hand cases are averaged separately, represents the left-hand average, Represents the right-hand average, and then adds the two to obtain the composite spatial covariance matrix:
其中,表示左手平均归一化后空间协方差矩阵,表示右手平均归一化后空间协方差矩阵,CC表示由和合成的空间协方差矩阵。in, represents the left-hand average normalized spatial covariance matrix, represents the right-hand average normalized spatial covariance matrix, C C represents the and The composite spatial covariance matrix.
然后对CC进行特征值分解,根据特征值降序排列特征向量:Then perform eigenvalue decomposition on C C , and arrange the eigenvectors according to the eigenvalues in descending order:
其中,Uc表示特征向量矩阵,λC表示特征值矩阵Among them, Uc represents the eigenvector matrix, and λ C represents the eigenvalue matrix
根据白化矩阵对和进行白化变换,可得到白化后的左手/右手平均协方差矩阵为:According to the whitening matrix right and After whitening transformation, the left-hand/right-hand average covariance matrix after whitening can be obtained as:
其中,表示左手平均归一化后空间协方差矩阵,表示右手平均归一化后空间协方差矩阵,P是白化矩阵,SL和SR分别为白化后的左手和右手平均协方差矩阵。in, represents the left-hand average normalized spatial covariance matrix, represents the right-hand average normalized spatial covariance matrix, P is the whitening matrix, and SL and SR are the whitened left-hand and right-hand average covariance matrices, respectively.
根据白化变换的特点,白化后矩阵SL和SR可以由一共同特征向量A进行表示:According to the characteristics of the whitening transformation, the whitened matrices SL and SR can be represented by a common eigenvector A:
SL=AλLAT S L =Aλ L A T
SR=AλRAT S R =Aλ R A T
λL+λR=Iλ L +λ R =I
其中,A为共同特征向量,λL是白化后矩阵SL特征值分解中的特征值矩阵,λR是白化后矩阵SR特征值分解中的特征值矩阵,I是单位矩阵。Among them, A is the common eigenvector, λ L is the eigenvalue matrix in the eigenvalue decomposition of the whitened matrix SL , λ R is the eigenvalue matrix in the eigenvalue decomposition of the whitened matrix SR , and I is the identity matrix.
根据以上式子可知,当左手白化后矩阵SL取最大特征值时,右手白化后矩阵SR必然取得最小特征值,因此可以对两类信号加以区分。使用共同特征向量A的转置乘以白化矩阵P就可得到投影矩阵W,然后使用投影矩阵将单次EEG实验数据E进行投影,最后计算方差值就可得到CSP处理后的特征。通过CSP计算得到的特征值即可作为前馈神经网络分类模型的输入。详细计算步骤如下:According to the above formula, when the left-hand whitened matrix SL takes the largest eigenvalue, the right-hand whitened matrix SR must take the smallest eigenvalue, so two types of signals can be distinguished. The projection matrix W can be obtained by multiplying the transpose of the common eigenvector A by the whitening matrix P, and then using the projection matrix to project the single EEG experimental data E, and finally calculating the variance value to obtain the CSP-processed features. The eigenvalues calculated by the CSP can be used as the input of the feedforward neural network classification model. The detailed calculation steps are as follows:
W=ATPW= ATP
Zp=WE,p=1,2,3,...,2mZ p = WE, p = 1, 2, 3, ..., 2m
其中,A为共同特征向量,P为白化矩阵,W为投影矩阵,E为单次EEG实验数据得到的目标频率成分,p为特征序号,Z为E经投影后的结果矩阵,var(*)为计算向量的方差值,fp为最终计算得到的特征值。Among them, A is the common eigenvector, P is the whitening matrix, W is the projection matrix, E is the target frequency component obtained from the single EEG experimental data, p is the feature serial number, Z is the projected result matrix of E, var(*) In order to calculate the variance value of the vector, f p is the final calculated eigenvalue.
神经网络模型中的分类器在本实施例中选用误差反向传播神经网络,简称BP(Back Propagation)神经网络。BP神经网络的结构简单,具有非线性、适应性强等特点,被广泛应用于模式识别、回归分析等领域。In this embodiment, the classifier in the neural network model selects an error back propagation neural network, referred to as a BP (Back Propagation) neural network for short. BP neural network has the characteristics of simple structure, nonlinear and strong adaptability, and is widely used in pattern recognition, regression analysis and other fields.
在BP神经网络的模型结构中,有三个基本组成部分,分别是输入层、隐藏层和输出层。在本实施例的分类模型中,输入层包含3个神经元,中间层为单隐藏层,包含10个神经元,输出层包含2个神经元。In the model structure of BP neural network, there are three basic components, namely input layer, hidden layer and output layer. In the classification model of this embodiment, the input layer includes 3 neurons, the middle layer is a single hidden layer, including 10 neurons, and the output layer includes 2 neurons.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210594845.2A CN115105093A (en) | 2022-05-27 | 2022-05-27 | EEG signal classification and identification method based on power spectral density predetermined frequency band |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210594845.2A CN115105093A (en) | 2022-05-27 | 2022-05-27 | EEG signal classification and identification method based on power spectral density predetermined frequency band |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115105093A true CN115105093A (en) | 2022-09-27 |
Family
ID=83327393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210594845.2A Pending CN115105093A (en) | 2022-05-27 | 2022-05-27 | EEG signal classification and identification method based on power spectral density predetermined frequency band |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115105093A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115982558A (en) * | 2023-03-17 | 2023-04-18 | 同心智医科技(北京)有限公司 | Electroencephalogram movement intention classification model establishing method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105809124A (en) * | 2016-03-06 | 2016-07-27 | 北京工业大学 | DWT- and Parametric t-SNE-based characteristic extracting method of motor imagery EEG(Electroencephalogram) signals |
CN108542383A (en) * | 2017-09-25 | 2018-09-18 | 同济大学 | EEG signal identification method, system, medium based on Mental imagery and equipment |
CN108888264A (en) * | 2018-05-03 | 2018-11-27 | 南京邮电大学 | EMD and CSP merges power spectral density brain electrical feature extracting method |
CN109480834A (en) * | 2018-12-20 | 2019-03-19 | 浙江大学 | A kind of Method of EEG signals classification based on quick multiple dimension empirical mode decomposition |
CN112949533A (en) * | 2021-03-15 | 2021-06-11 | 成都信息工程大学 | Motor imagery electroencephalogram identification method based on relative wavelet packet entropy brain network and improved version lasso |
-
2022
- 2022-05-27 CN CN202210594845.2A patent/CN115105093A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105809124A (en) * | 2016-03-06 | 2016-07-27 | 北京工业大学 | DWT- and Parametric t-SNE-based characteristic extracting method of motor imagery EEG(Electroencephalogram) signals |
CN108542383A (en) * | 2017-09-25 | 2018-09-18 | 同济大学 | EEG signal identification method, system, medium based on Mental imagery and equipment |
CN108888264A (en) * | 2018-05-03 | 2018-11-27 | 南京邮电大学 | EMD and CSP merges power spectral density brain electrical feature extracting method |
CN109480834A (en) * | 2018-12-20 | 2019-03-19 | 浙江大学 | A kind of Method of EEG signals classification based on quick multiple dimension empirical mode decomposition |
CN112949533A (en) * | 2021-03-15 | 2021-06-11 | 成都信息工程大学 | Motor imagery electroencephalogram identification method based on relative wavelet packet entropy brain network and improved version lasso |
Non-Patent Citations (2)
Title |
---|
齐鹏, 茹画, 高凌云, 等.: "心理疲劳的神经机制——脑连接组的新见解", 《ENGINEERING》, vol. 5, no. 2, 31 December 2019 (2019-12-31), pages 276 - 286 * |
齐鹏: "三冗余系统在硝酸四合一机组中的应用研究", 《万方》, 15 June 2015 (2015-06-15) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115982558A (en) * | 2023-03-17 | 2023-04-18 | 同心智医科技(北京)有限公司 | Electroencephalogram movement intention classification model establishing method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sadiq et al. | Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces | |
CN114533086B (en) | Motor imagery brain electrolysis code method based on airspace characteristic time-frequency transformation | |
Bascil et al. | Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN | |
Huang et al. | A review of electroencephalogram signal processing methods for brain-controlled robots | |
WO2020042511A1 (en) | Motion potential brain-machine interface encoding and decoding method based on spatial filtering and template matching | |
CN101219048A (en) | Extraction method of EEG features imagining unilateral limb movement | |
CN103425249A (en) | Electroencephalogram signal classifying and recognizing method based on regularized CSP and regularized SRC and electroencephalogram signal remote control system | |
CN107132915B (en) | Brain-computer interface method based on dynamic brain function network connection | |
CN112488002B (en) | Emotion recognition method and system based on N170 | |
CN107661099A (en) | A kind of brain electricity analytical method for detecting the horizontal lower motion state of different Mental Workloads | |
Aljalal et al. | Feature extraction of EEG based motor imagery using CSP based on logarithmic band power, entropy and energy | |
Shenoy et al. | An iterative optimization technique for robust channel selection in motor imagery based brain computer interface | |
Kirar et al. | Relevant frequency band selection using Sequential forward feature selection for motor imagery brain computer interfaces | |
CN109657646B (en) | Method and device for representing and extracting features of physiological time series and storage medium | |
Yin et al. | Optimal channel-based sparse time-frequency blocks common spatial pattern feature extraction method for motor imagery classification | |
Geng et al. | [Retracted] A Fusion Algorithm for EEG Signal Processing Based on Motor Imagery Brain‐Computer Interface | |
CN115105093A (en) | EEG signal classification and identification method based on power spectral density predetermined frequency band | |
Zhang et al. | EEG recognition of motor imagery based on SVM ensemble | |
CN107292329A (en) | Event imagination sorting technique based on CI CSP algorithms | |
Siviero et al. | Motor-imagery EEG signal decoding using multichannel-empirical wavelet transform for brain computer interfaces | |
Mu et al. | A channel selection method for motor imagery EEG based on Fisher score of OVR-CSP | |
CN114358090A (en) | A classification method of motor imagery EEG based on PSD and CSP | |
Feng et al. | Intention recognition of upper limb movement on electroencephalogram signal based on CSP-CNN | |
Dezhi et al. | Research on feature extraction and classification of EEG signals based on multitask motor imagination | |
Zhang et al. | Recognition method for multi-class motor imagery EEG based on channel frequency selection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |