CN115097814A - Path planning method, system and application of mobile robot based on improved PSO algorithm - Google Patents
Path planning method, system and application of mobile robot based on improved PSO algorithm Download PDFInfo
- Publication number
- CN115097814A CN115097814A CN202111596904.1A CN202111596904A CN115097814A CN 115097814 A CN115097814 A CN 115097814A CN 202111596904 A CN202111596904 A CN 202111596904A CN 115097814 A CN115097814 A CN 115097814A
- Authority
- CN
- China
- Prior art keywords
- path planning
- path
- particle
- individual
- mobile robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000002245 particle Substances 0.000 claims abstract description 74
- 238000005457 optimization Methods 0.000 claims abstract description 36
- 230000003044 adaptive effect Effects 0.000 claims abstract description 18
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 16
- 230000006870 function Effects 0.000 claims abstract description 15
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims 1
- 238000012163 sequencing technique Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 4
- 230000003068 static effect Effects 0.000 abstract description 4
- 230000009977 dual effect Effects 0.000 abstract description 3
- 230000006399 behavior Effects 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000002028 premature Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0217—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Feedback Control In General (AREA)
- Manipulator (AREA)
Abstract
本发明属于移动机器人路径规划领域,本发明公开了一种基于改进PSO算法的移动机器人路径规划方法、系统及应用,构造适应度函数综合了两个分别考虑路径长度和障碍风险度的评价函数;改进的PSO算法中引入双向学习策略来扩大粒子的搜索范围、丰富种群多样性;在双向学习策略中,为了克服在优化复杂函数时无法很好地调节寻优进程的问题,提出了双重自适应策略,更好地平衡群体中粒子的搜索行为。然后通过吸引‑排斥策略,使粒子能够分别被全局最优粒子和全局最差粒子所引导进而朝着更优的方向进化,提高了算法的局部寻优性能和收敛能力。本发明完成了基于改进PSO算法的路径规划方法框架,实现了静态环境下的机器人最优路径规划。
The invention belongs to the field of mobile robot path planning, and discloses a mobile robot path planning method, system and application based on an improved PSO algorithm, and constructing a fitness function synthesizes two evaluation functions respectively considering path length and obstacle risk; In the improved PSO algorithm, a bidirectional learning strategy is introduced to expand the search range of particles and enrich the diversity of the population. In the bidirectional learning strategy, in order to overcome the problem that the optimization process cannot be well adjusted when optimizing complex functions, a dual adaptive strategy to better balance the search behavior of particles in the swarm. Then, through the attraction-repulsion strategy, the particles can be guided by the global optimal particle and the global worst particle respectively and evolve towards a better direction, which improves the local optimization performance and convergence ability of the algorithm. The invention completes the path planning method framework based on the improved PSO algorithm, and realizes the optimal path planning of the robot in a static environment.
Description
技术领域technical field
本发明属于移动机器人路径规划领域,具体涉及一种基于改进PSO算法的移动机器人路径规划方法。The invention belongs to the field of mobile robot path planning, in particular to a mobile robot path planning method based on an improved PSO algorithm.
背景技术Background technique
随着科技的发展移动机器人在不同领域得到了广泛应用,如机器人救援、机器人巡逻、机器人监视等,其中路径规划是移动机器人重要技能之一。合理的路径规划可以使在机器人在执行任务时规划出从起点到目标点最短且无碰撞的平滑路径。由于机器人工作环境复杂,很难找到最短且平滑的路径。因此,如何在满足各项约束条件的前提下,规划出最优指标(时间、距离、能耗等)下的路径具有重要的理论价值与实际意义。With the development of science and technology, mobile robots have been widely used in different fields, such as robot rescue, robot patrol, robot monitoring, etc. Among them, path planning is one of the important skills of mobile robots. Reasonable path planning can make the robot plan the shortest and collision-free smooth path from the starting point to the target point when performing the task. Due to the complex working environment of the robot, it is difficult to find the shortest and smooth path. Therefore, how to plan the path under the optimal indicators (time, distance, energy consumption, etc.) under the premise of satisfying various constraints has important theoretical value and practical significance.
目前经典路径规划方法可分为两大类。At present, the classical path planning methods can be divided into two categories.
一种路径规划方法是一些通用方法的变体,如人工势场法和路线图规划法。人工势场法中当某一点引力和斥力相等、方向相反时,机器人会认为已经到达目标点,停止移动或在某一区域徘徊。路线图规划方法当障碍物增加时,其顶点之间的连接数量也会随之增加,导致规划复杂度和规划时间的增加。A path planning method is a variant of some general methods, such as artificial potential field method and roadmap planning method. In the artificial potential field method, when the gravitational force and repulsion force at a certain point are equal and opposite in direction, the robot will think that it has reached the target point and stop moving or wandering in a certain area. Roadmap Planning Methods When obstacles increase, the number of connections between their vertices also increases, resulting in an increase in planning complexity and planning time.
另一种路径规划方法是启发式方法,机器人路径规划中采用的主要元启发式方法有模拟退火、遗传算法、粒子群算法。使用启发式算法,虽不保证能找到解决方案,但是如果找到了解决方案,将比确定性方法快得多。Another path planning method is heuristic method. The main meta-heuristic methods used in robot path planning include simulated annealing, genetic algorithm, and particle swarm optimization. With heuristics, there is no guarantee that a solution will be found, but if a solution is found, it will be much faster than deterministic methods.
PSO算法作为一种智能优化算法,具有搜索速度快、易于实现等优点,被广泛应用于求解路径规划和目标搜索等问题。为了防止粒子群算法在搜索过程中因过早收敛而陷入局部最优,国内外学者提出了许多改进的粒子群算法。但由于该算法惯性权重w和学习因子c等可调参数的存在,如果设置不当会导致算法在寻优过程中存在过早收敛和收敛速度慢的问题,造成规划路径不是最优。As an intelligent optimization algorithm, PSO algorithm has the advantages of fast search speed and easy implementation. It is widely used in solving problems such as path planning and target search. In order to prevent particle swarm optimization from falling into local optimum due to premature convergence in the search process, scholars at home and abroad have proposed many improved particle swarm optimization. However, due to the existence of adjustable parameters such as inertia weight w and learning factor c of the algorithm, if the settings are improper, the algorithm will have problems of premature convergence and slow convergence in the optimization process, resulting in a suboptimal planning path.
为了克服以上缺点,因此希望开发出新的PSO优化方法,实现移动机器人路径规划最短且无碰撞。In order to overcome the above shortcomings, it is hoped to develop a new PSO optimization method to realize the shortest and collision-free path planning of mobile robots.
解决上述现有技术存在的问题的难度:由于PSO算法种群大小、惯性权重和学习因子等参数的可调性,如何合理的设置此类参数设置的数值,以及避免 PSO算法在局部最优问题中出现过早收敛、甚至缺乏种群多样性的现象,使得算法性能提高,使得移动机器人规划出最优路径、减少资源浪费是该技术的难点。The difficulty of solving the problems existing in the above-mentioned prior art: due to the adjustability of parameters such as the population size, inertia weight, and learning factor of the PSO algorithm, how to reasonably set the value of such parameter settings, and avoid the PSO algorithm in the local optimal problem The phenomenon of premature convergence or even lack of population diversity improves the performance of the algorithm, making it difficult for the mobile robot to plan the optimal path and reduce waste of resources.
解决上述现有技术存在的问题的意义:本公开一种基于改进PSO算法的移动机器人路径规划方法可以显著的提高基本PSO算法的优化效果,有效克服基本PSO算法应用于路径规划时,出现的路径过长、路径不平滑等问题,具有能耗低、磨损小等优点。The significance of solving the problems existing in the above-mentioned prior art: a mobile robot path planning method based on the improved PSO algorithm of the present disclosure can significantly improve the optimization effect of the basic PSO algorithm, and effectively overcome the path that occurs when the basic PSO algorithm is applied to path planning. It has the advantages of low energy consumption and low wear and tear.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种基于改进PSO算法的移动机器人路径规划方法。Aiming at the problems existing in the prior art, the present invention provides a path planning method for a mobile robot based on an improved PSO algorithm.
本发明是这样实现的,针对在复杂环境中工作的移动机器人寻找出低能耗的无障碍路径。The present invention is implemented in this way, finding a low-energy-consumption barrier-free path for a mobile robot working in a complex environment.
一种基于改进PSO算法的移动机器人路径规划方法,该方法构造的适应度函数综合了两个分别考虑路径长度和障碍风险度的评价函数;A path planning method for mobile robots based on improved PSO algorithm, the fitness function constructed by this method combines two evaluation functions considering path length and obstacle risk respectively;
改进的PSO算法中引入双向学习策略来扩大粒子的搜索范围、丰富种群多样性;The two-way learning strategy is introduced into the improved PSO algorithm to expand the search range of particles and enrich the diversity of the population;
在双向学习策略中,利用双重自适应策略平衡群体中粒子的搜索行为;通过吸引-排斥策略,使粒子能够分别被全局最优粒子和全局最差粒子所引导进而朝着更优的方向进化;In the bidirectional learning strategy, the dual adaptive strategy is used to balance the search behavior of particles in the group; through the attraction-repulsion strategy, the particles can be guided by the global optimal particle and the global worst particle respectively and evolve towards a better direction;
基于改进PSO算法的路径规划方法框架,实现静态环境下的机器人最优路径规划。Based on the path planning method framework of the improved PSO algorithm, the optimal path planning of the robot in the static environment is realized.
进一步,包括以下步骤:Further, include the following steps:
步骤1:根据路径长度代价L、机器人躲避障碍物代价Ls构建路径规划优化模型f;Step 1: Construct a path planning optimization model f according to the path length cost L and the robot avoiding obstacle cost Ls;
步骤2:初始化粒子群算法相关参数;Step 2: Initialize the relevant parameters of the particle swarm algorithm;
步骤3:评估路径规划优化模型f;Step 3: Evaluate the path planning optimization model f;
步骤4:将f由优到差排序,每个个体从群体中随机选取一个较优个体作为学习对象xk,更新全局最优个体gbesti和全局最差个体gworsti;Step 4: Sort f from good to bad, each individual randomly selects a better individual from the group as the learning object xk, and updates the global optimal individual gbesti and the global worst individual gworsti;
步骤5:通过所述相关参数自适应更新学习因子c、惯性权重w和抉择因子F;Step 5: adaptively update the learning factor c, the inertia weight w and the decision factor F through the relevant parameters;
步骤6:若R<F采用双向学习策略,更新粒子的位置xi、速度vi;反之采用吸引排斥策略,更新粒子位置xi;Step 6: If R<F adopts the bidirectional learning strategy, update the position xi and velocity vi of the particle; otherwise, adopt the attraction and repulsion strategy to update the particle position xi;
步骤7:更新适应度函数值f;Step 7: Update the fitness function value f;
步骤8:判断迭代次数,如果迭代次数t达到最大次数T,则输出最优结果,停止运算;否则,t=t+1,返回步骤4。Step 8: Judging the number of iterations, if the number of iterations t reaches the maximum number T, output the optimal result and stop the operation; otherwise, t=t+1, and return to step 4.
进一步,所述路径长度L的具体计算公式为:Further, the specific calculation formula of the path length L is:
其中,(xi,yi)是路径节点,总共有n个路径节点,L是时间t时相邻路径节点的长度之和,表示时间t时路径的长度;Among them, (xi,yi) is the path node, there are a total of n path nodes, L is the sum of the lengths of adjacent path nodes at time t, indicating the length of the path at time t;
第m条路径的障碍威胁代价Ls定义为:The obstacle threat cost Ls of the mth path is defined as:
其中,假设其为圆形障碍,rk为圆形障碍物的半径,k为第k(k=1,2,…, g)个障碍物;lk为圆心到各段路径的距离,则为路径到障碍物的最短距离;Among them, assuming that it is a circular obstacle, rk is the radius of the circular obstacle, k is the kth (k=1, 2,..., g) obstacle; lk is the distance from the center of the circle to each path, then is the shortest distance from the path to the obstacle;
根据公式(1)、公式(2)计算移动机器人路径规划优化模型f:Calculate the mobile robot path planning optimization model f according to formula (1) and formula (2):
f=u1L+u2Ls (3)f=u 1 L+u 2 L s (3)
其中u1、u2为[0,1]内的惯重因子。where u 1 and u 2 are inertia factors in [0,1].
进一步,所述步骤2中,初始化的相关参数包括:种群规模M,粒子维数 D,最大迭代次数T,自适应学习因子c,学习因子最大值cmax、最小值cmin;惯性权重w,惯性权重最大值wmax、最小值wmin;粒子初始位置xi和速度参数 vi;自适应抉择因子F。Further, in the
进一步,通过所述相关参数更新自适应学习因子c的具体公式为:Further, the specific formula for updating the adaptive learning factor c through the relevant parameters is:
其中,fit为当前粒子个体的适应度值,fitmax为当代粒子中最大的适应度值。Among them, fit is the fitness value of the current particle individual, and fit max is the largest fitness value in the contemporary particle.
进一步,通过所述相关参数更新自适应惯性权重w的具体公式为:Further, the specific formula for updating the adaptive inertia weight w through the relevant parameters is:
其中,A为控制曲线曲率的参数,t为当前迭代次数;T为最大迭代次数。Among them, A is the parameter that controls the curvature of the curve, t is the current iteration number, and T is the maximum iteration number.
进一步,通过所述相关参数更新自适抉择因子F的具体公式为:Further, the specific formula for updating the adaptive decision factor F through the relevant parameters is:
其中,d1、d2为抉择因子上下限,a为控制曲线曲率的参数,t为当前迭代次数;T为最大迭代次数。Among them, d 1 and d 2 are the upper and lower limits of the decision factor, a is the parameter controlling the curvature of the curve, t is the current iteration number, and T is the maximum iteration number.
进一步,计算粒子速度vi与粒子位置xi的具体公式为:Further, the specific formula for calculating particle velocity vi and particle position xi is:
1)如果R<F采用双向学习策略,则粒子速度vi与粒子位置xi计算公式为:1) If R<F adopts the bidirectional learning strategy, the calculation formula of particle velocity vi and particle position xi is:
xi(t+1)=xi(t)+vi(t+1) (8)xi(t+1)=xi(t)+vi(t+1) (8)
其中,i为第i个粒子,i=1,2,…N;xk为学习对象,r1为均匀随机数。Among them, i is the ith particle, i=1,2,...N; xk is the learning object, and r1 is a uniform random number.
2)如果R≥F采用吸引排斥策略,则粒子速度vi与粒子位置xi计算公式为:2) If R≥F adopts the attraction and repulsion strategy, the calculation formula of particle velocity vi and particle position xi is:
xi(t+1)=r2xi(t)+r3(gbesti(t)-xi(t))-r3(gworsti(t)-xi(t)) (9)x i (t+1)=r 2 x i (t)+r 3 (gbest i (t)-x i (t))-r 3 (gworst i (t)-x i (t)) (9)
其中,r2为均匀随机数,r3=1/2(1-r2),gbesti全局最优个体、gworsti全局最差个体。Among them, r 2 is a uniform random number, r 3 =1/2(1-r 2 ), gbest i global best individual, gworst i global worst individual.
本发明的另一目的在于提供应用所述的基于改进PSO算法的移动机器人路径规划方法的基于改进PSO算法的移动机器人路径规划系统,包括:环境建模单元、初始化参数单元、路径寻找单元和最优路径输出单元;Another object of the present invention is to provide a mobile robot path planning system based on the improved PSO algorithm using the mobile robot path planning method based on the improved PSO algorithm, including: an environment modeling unit, an initialization parameter unit, a path finding unit and a maximum optimal path output unit;
所述环境建模单元利用机器人自带传感器组采集工作环境信息,并根据路径长度代价L、机器人躲避障碍物代价Ls构建路径规划优化模型f;The environment modeling unit uses the robot's own sensor group to collect working environment information, and constructs a path planning optimization model f according to the path length cost L and the robot avoiding obstacle cost Ls;
所述初始化参数单元用于初始化粒子群算法相关参数;The initialization parameter unit is used to initialize the relevant parameters of the particle swarm algorithm;
所述路径寻找单元通过所述相关参数自适应更新学习因子c、惯性权重w 和抉择因子F;The path finding unit adaptively updates the learning factor c, the inertia weight w and the decision factor F through the relevant parameters;
若R<F采用双向学习策略,更新粒子的位置xi、速度vi;反之采用吸引排斥策略,更新粒子位置xi;更新适应度函数值f;If R<F adopts the bidirectional learning strategy, update the position xi and velocity vi of the particle; otherwise, adopt the attraction and repulsion strategy, update the particle position xi; update the fitness function value f;
所述最优路径输出单元用于评估路径规划优化模型f,将f由优到差排序,每个个体从群体中随机选取一个较优个体作为学习对象xk,更新全局最优个体 gbesti和全局最差个体gworsti。The optimal path output unit is used to evaluate the path planning optimization model f, sort f from good to bad, each individual randomly selects a better individual from the group as the learning object xk, and updates the global optimal individual gbesti and the global optimal individual. Poor individual gworsti.
本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:Another object of the present invention is to provide a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, causes the processor to perform the following steps:
利用机器人自带传感器组采集工作环境信息,并根据路径长度代价L、机器人躲避障碍物代价Ls构建路径规划优化模型f;Use the robot's own sensor group to collect the working environment information, and construct the path planning optimization model f according to the path length cost L and the robot avoiding obstacle cost Ls;
初始化粒子群算法相关参数;Initialize the parameters related to particle swarm optimization;
所述路径寻找单元通过所述相关参数自适应更新学习因子c、惯性权重w 和抉择因子F;The path finding unit adaptively updates the learning factor c, the inertia weight w and the decision factor F through the relevant parameters;
若R<F采用双向学习策略,更新粒子的位置xi、速度vi;反之采用吸引排斥策略,更新粒子位置xi;更新适应度函数值f;If R<F adopts the bidirectional learning strategy, update the position xi and velocity vi of the particle; otherwise, adopt the attraction and repulsion strategy, update the particle position xi; update the fitness function value f;
评估路径规划优化模型f,将f由优到差排序,每个个体从群体中随机选取一个较优个体作为学习对象xk,更新全局最优个体gbesti和全局最差个体 gworsti。Evaluate the path planning optimization model f, sort f from the best to the worst, each individual randomly selects a better individual from the group as the learning object xk, and updates the global optimal individual gbesti and the global worst individual gworsti.
本发明的另一目的在于提供一种信息数据处理终端,所述信息数据处理终端用于实现上述的基于改进PSO算法的移动机器人路径规划系统。Another object of the present invention is to provide an information data processing terminal for implementing the above-mentioned mobile robot path planning system based on the improved PSO algorithm.
本发明的优点及积极效果为:The advantages and positive effects of the present invention are:
本发明的基于改进PSO算法的移动机器人路径规划方法,构造了包括路径长度、移动机器人与障碍物之间的碰撞惩罚在内的路径规划目标函数。提出一种双向学习的策略与吸引排斥策略相结合的方法,使改进的PSO算法在提高了全局寻优能力的同时提高了局部搜索能力。此外还采用了双重自适应优化策略,对双向学习策略中的惯性权重和学习因子进行自适应调整,使算法的全局寻优能力和局部寻优能力达到更好的平衡能力。最后,本发明利用改进的PSO算法完成了移动机器人路径规划的框架。本发明不仅可以实现全局搜索能力和局部搜索能力的平衡,而且还可以低耗无碰撞的实现移动机器人路径规划求解。The mobile robot path planning method based on the improved PSO algorithm of the present invention constructs a path planning objective function including the path length and the collision penalty between the mobile robot and the obstacle. A method combining two-way learning strategy and attraction-repulsion strategy is proposed, so that the improved PSO algorithm can improve the local search ability as well as the global optimization ability. In addition, a dual adaptive optimization strategy is adopted to adaptively adjust the inertia weight and learning factor in the bidirectional learning strategy, so that the global and local optimization capabilities of the algorithm can achieve a better balance. Finally, the present invention uses the improved PSO algorithm to complete the framework of the path planning of the mobile robot. The invention can not only realize the balance between the global search ability and the local search ability, but also realize the path planning and solution of the mobile robot with low consumption and no collision.
附图说明Description of drawings
图1是基于改进PSO算法的移动机器人路径规划方法的原理示意图;Fig. 1 is the principle schematic diagram of the mobile robot path planning method based on the improved PSO algorithm;
图2是基于改进PSO算法的移动机器人路径规划系统结构框图;Fig. 2 is the structural block diagram of the mobile robot path planning system based on the improved PSO algorithm;
图3粒子适应度排序图;Figure 3 Particle fitness ranking diagram;
图4是传统PSO算法与改进PSO算法二维路径移动机器人运动轨迹对比图;Figure 4 is a comparison diagram of the traditional PSO algorithm and the improved PSO algorithm two-dimensional path mobile robot motion trajectory;
图5是传统PSO算法与改进PSO算法的最优适应度曲线图。Figure 5 is the optimal fitness curve of the traditional PSO algorithm and the improved PSO algorithm.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
下面结合附图及具体实施例对本发明的应用原理作进一步描述。The application principle of the present invention will be further described below with reference to the accompanying drawings and specific embodiments.
实施例1:Example 1:
为了解决由于惯性权重w和学习因子c等可调参数的存在,如果设置不当会导致算法在寻优过程中存在过早收敛和收敛速度慢的问题,造成规划路径不是最优,进而影响移动机器人在二维环境中的作业效率与质量,如图1所示,本实施例提供一种基于改进PSO算法的移动机器人路径规划方法的流程示意图,包括以下步骤:In order to solve the problem of premature convergence and slow convergence in the optimization process due to the existence of adjustable parameters such as inertia weight w and learning factor c, if they are not set properly, the planned path will not be optimal, which will affect the mobile robot. Operation efficiency and quality in a two-dimensional environment, as shown in FIG. 1 , this embodiment provides a schematic flowchart of a path planning method for a mobile robot based on an improved PSO algorithm, including the following steps:
步骤1:根据路径长度代价L、机器人躲避障碍物代价Ls构建路径规划优化模型f;Step 1: Construct a path planning optimization model f according to the path length cost L and the robot avoiding obstacle cost Ls;
步骤2:初始化粒子群算法相关参数;Step 2: Initialize the relevant parameters of the particle swarm algorithm;
步骤3:评估路径规划优化模型f;Step 3: Evaluate the path planning optimization model f;
步骤4:将f由优到差排序,每个个体从群体中随机选取一个较优个体作为学习对象xk,更新全局最优个体gbesti和全局最差个体gworsti;Step 4: Sort f from good to bad, each individual randomly selects a better individual from the group as the learning object xk, and updates the global optimal individual gbesti and the global worst individual gworsti;
步骤5:通过所述相关参数自适应更新学习因子c、惯性权重w和抉择因子F;Step 5: adaptively update the learning factor c, the inertia weight w and the decision factor F through the relevant parameters;
步骤6:若R<F采用双向学习策略,更新粒子的位置xi、速度vi;反之采用吸引排斥策略,更新粒子位置xi;Step 6: If R<F adopts the bidirectional learning strategy, update the position xi and velocity vi of the particle; otherwise, adopt the attraction and repulsion strategy to update the particle position xi;
步骤7:更新适应度函数值f;Step 7: Update the fitness function value f;
步骤8:判断迭代次数,如果迭代次数t达到最大次数T,则输出最优结果,停止运算;否则,t=t+1,返回步骤4。Step 8: Judging the number of iterations, if the number of iterations t reaches the maximum number T, output the optimal result and stop the operation; otherwise, t=t+1, and return to step 4.
进一步,所述路径长度L的具体计算公式为:Further, the specific calculation formula of the path length L is:
其中,(xi,yi)是路径节点,总共有n个路径节点,L是时间t时相邻路径节点的长度之和,表示时间t时路径的长度;Among them, (xi,yi) is the path node, there are a total of n path nodes, L is the sum of the lengths of adjacent path nodes at time t, indicating the length of the path at time t;
第m条路径的障碍威胁代价Ls定义为:The obstacle threat cost Ls of the mth path is defined as:
其中,假设其为圆形障碍,rk为圆形障碍物的半径,k为第k(k=1,2,…, g)个障碍物;lk为圆心到各段路径的距离,则为路径到障碍物的最短距离;Among them, assuming that it is a circular obstacle, rk is the radius of the circular obstacle, k is the kth (k=1, 2,..., g) obstacle; lk is the distance from the center of the circle to each path, then is the shortest distance from the path to the obstacle;
根据公式(1)、公式(2)计算移动机器人路径规划优化模型f:Calculate the mobile robot path planning optimization model f according to formula (1) and formula (2):
f=u1L+u2Ls (3)f=u 1 L+u 2 L s (3)
其中u1、u2为[0,1]内的惯重因子。where u 1 and u 2 are inertia factors in [0,1].
所述步骤2中,初始化的相关参数包括:种群规模M,粒子维数D,最大迭代次数T,自适应学习因子c,学习因子最大值cmax、最小值cmin;惯性权重w,惯性权重最大值wmax、最小值wmin;粒子初始位置xi和速度参数vi;自适应抉择因子F。In the
通过所述相关参数更新自适应学习因子c的具体公式为:The specific formula for updating the adaptive learning factor c through the relevant parameters is:
其中,fit为当前粒子个体的适应度值,fitmax为当代粒子中最大的适应度值。Among them, fit is the fitness value of the current particle individual, and fit max is the largest fitness value in the contemporary particle.
通过所述相关参数更新自适应惯性权重w的具体公式为:The specific formula for updating the adaptive inertia weight w through the relevant parameters is:
其中,A为控制曲线曲率的参数,t为当前迭代次数;T为最大迭代次数。Among them, A is the parameter that controls the curvature of the curve, t is the current iteration number, and T is the maximum iteration number.
通过所述相关参数更新自适抉择因子F的具体公式为:The specific formula for updating the adaptive decision factor F through the relevant parameters is:
其中,d1、d2为抉择因子上下限,a为控制曲线曲率的参数,t为当前迭代次数;T为最大迭代次数。Among them, d 1 and d 2 are the upper and lower limits of the decision factor, a is the parameter controlling the curvature of the curve, t is the current iteration number, and T is the maximum iteration number.
计算粒子速度vi与粒子位置xi的具体公式为:The specific formula for calculating particle velocity vi and particle position xi is:
1)如果R<F采用双向学习策略,则粒子速度vi与粒子位置xi计算公式为:1) If R<F adopts the bidirectional learning strategy, the calculation formula of particle velocity vi and particle position xi is:
xi(t+1)=xi(t)+vi(t+1) (8)xi(t+1)=xi(t)+vi(t+1) (8)
其中,i为第i个粒子,i=1,2,…N;xk为学习对象,r1为均匀随机数。Among them, i is the ith particle, i=1,2,...N; xk is the learning object, and r1 is a uniform random number.
2)如果R≥F采用吸引排斥策略,则粒子速度vi与粒子位置xi计算公式为:2) If R≥F adopts the attraction and repulsion strategy, the calculation formula of particle velocity vi and particle position xi is:
xi(t+1)=r2xi(t)+r3(gbesti(t)-xi(t))-r3(gworsti(t)-xi(t)) (9)x i (t+1)=r 2 x i (t)+r 3 (gbest i (t)-x i (t))-r 3 (gworst i (t)-x i (t)) (9)
其中,r2为均匀随机数,r3=1/2(1-r2),gbesti全局最优个体、gworsti全局最差个体。Among them, r 2 is a uniform random number, r 3 =1/2(1-r 2 ), gbest i global best individual, gworst i global worst individual.
如图2所示,本发明实施例提供应用所述的基于改进PSO算法的移动机器人路径规划方法的基于改进PSO算法的移动机器人路径规划系统,包括:环境建模单元、初始化参数单元、路径寻找单元和最优路径输出单元;As shown in FIG. 2 , an embodiment of the present invention provides a mobile robot path planning system based on the improved PSO algorithm using the mobile robot path planning method based on the improved PSO algorithm, including: an environment modeling unit, an initialization parameter unit, and a path finding unit. unit and optimal path output unit;
所述环境建模单元利用机器人自带传感器组采集工作环境信息,并根据路径长度代价L、机器人躲避障碍物代价Ls构建路径规划优化模型f;The environment modeling unit uses the robot's own sensor group to collect working environment information, and constructs a path planning optimization model f according to the path length cost L and the robot avoiding obstacle cost Ls;
所述初始化参数单元用于初始化粒子群算法相关参数;The initialization parameter unit is used to initialize the relevant parameters of the particle swarm algorithm;
所述路径寻找单元通过所述相关参数自适应更新学习因子c、惯性权重w 和抉择因子F;The path finding unit adaptively updates the learning factor c, the inertia weight w and the decision factor F through the relevant parameters;
若R<F采用双向学习策略,更新粒子的位置xi、速度vi;反之采用吸引排斥策略,更新粒子位置xi;更新适应度函数值f;If R<F adopts the bidirectional learning strategy, update the position xi and velocity vi of the particle; otherwise, adopt the attraction and repulsion strategy, update the particle position xi; update the fitness function value f;
所述最优路径输出单元用于评估路径规划优化模型f,将f由优到差排序,每个个体从群体中随机选取一个较优个体作为学习对象xk,更新全局最优个体 gbesti和全局最差个体gworsti。The optimal path output unit is used to evaluate the path planning optimization model f, sort f from good to bad, each individual randomly selects a better individual from the group as the learning object xk, and updates the global optimal individual gbesti and the global optimal individual. Poor individual gworsti.
本发明实施例提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:An embodiment of the present invention provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, causes the processor to perform the following steps:
利用机器人自带传感器组采集工作环境信息,并根据路径长度代价L、机器人躲避障碍物代价Ls构建路径规划优化模型f;Use the robot's own sensor group to collect the working environment information, and construct the path planning optimization model f according to the path length cost L and the robot avoiding obstacle cost Ls;
初始化粒子群算法相关参数;Initialize the parameters related to particle swarm optimization;
所述路径寻找单元通过所述相关参数自适应更新学习因子c、惯性权重w 和抉择因子F;The path finding unit adaptively updates the learning factor c, the inertia weight w and the decision factor F through the relevant parameters;
若R<F采用双向学习策略,更新粒子的位置xi、速度vi;反之采用吸引排斥策略,更新粒子位置xi;更新适应度函数值f;If R<F adopts the bidirectional learning strategy, update the position xi and velocity vi of the particle; otherwise, adopt the attraction and repulsion strategy, update the particle position xi; update the fitness function value f;
评估路径规划优化模型f,将f由优到差排序,每个个体从群体中随机选取一个较优个体作为学习对象xk,更新全局最优个体gbesti和全局最差个体 gworsti。Evaluate the path planning optimization model f, sort f from the best to the worst, each individual randomly selects a better individual from the group as the learning object xk, and updates the global optimal individual gbesti and the global worst individual gworsti.
本发明实施例提供一种信息数据处理终端,所述信息数据处理终端用于实现所述的基于改进PSO算法的移动机器人路径规划系统。An embodiment of the present invention provides an information data processing terminal, and the information data processing terminal is used to implement the mobile robot path planning system based on the improved PSO algorithm.
实施例2:Example 2:
为了验证实施例1提出的基于改进PSO算法的移动机器人路径规划方法的可行性和有效性,本实施例通过与传统PSO算法以一个具体的数值仿真对比实验予以验证:In order to verify the feasibility and effectiveness of the mobile robot path planning method based on the improved PSO algorithm proposed in
具体的,假设建立路径规划模型如下:设机器人规避5个静态障碍物,且机器人从起点(0,0)移动到目标点(6,8),用不同半径的圆周表示,静态障碍物位置信息如表1所示:Specifically, it is assumed that the path planning model is established as follows: Suppose the robot avoids 5 static obstacles, and the robot moves from the starting point (0, 0) to the target point (6, 8), represented by circles with different radii, and the static obstacle position information As shown in Table 1:
表1障碍物位置信息与半径大小Table 1 Obstacle location information and radius size
根据移动机器人路径规划模型f及其上述的相关数据,应用改进PSO算法优化并选取最优的路径运动轨迹,其中具体参数设置如下:According to the mobile robot path planning model f and the above-mentioned related data, the improved PSO algorithm is used to optimize and select the optimal path motion trajectory, and the specific parameters are set as follows:
种群大小M为100,最大迭代次数T为400,cmax=2、cmin=0.5;wmax=0.8、 wmin=0.1A=0.4;d1=0.4、d2=0.6,a=10。The population size M is 100, the maximum number of iterations T is 400, cmax =2, cmin =0.5; wmax =0.8, wmin =0.1A=0.4; d1 = 0.4, d2 =0.6, a=10.
从图4可以看出,传统PSO算法本发明设计的改进PSO算法均能够实现移动机器人路径规划任务。通过与传统PSO算法对比不难看出,本发明设计的改进PSO算法在检测到障碍物时1、2、5时规划的路径使机器人能够沿着障碍物边缘运动,且机器人运动轨迹是更加光滑的,减少了真实情况下机器人轮子的轴磨损和能量消耗;此外,从图5可以看出该方法的路径更短,可以达到降低能耗的目的。It can be seen from FIG. 4 that the traditional PSO algorithm and the improved PSO algorithm designed by the present invention can all realize the path planning task of the mobile robot. Comparing with the traditional PSO algorithm, it is not difficult to see that the path planned by the improved PSO algorithm designed by the present invention enables the robot to move along the edge of the obstacle when an obstacle is detected, and the trajectory of the robot is smoother. , reducing the shaft wear and energy consumption of the robot wheel in the real situation; in addition, it can be seen from Figure 5 that the path of this method is shorter, which can achieve the purpose of reducing energy consumption.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111596904.1A CN115097814B (en) | 2021-12-24 | 2021-12-24 | Mobile robot path planning method, system and application based on improved PSO algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111596904.1A CN115097814B (en) | 2021-12-24 | 2021-12-24 | Mobile robot path planning method, system and application based on improved PSO algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115097814A true CN115097814A (en) | 2022-09-23 |
CN115097814B CN115097814B (en) | 2024-11-01 |
Family
ID=83287355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111596904.1A Active CN115097814B (en) | 2021-12-24 | 2021-12-24 | Mobile robot path planning method, system and application based on improved PSO algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115097814B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115576332A (en) * | 2022-12-07 | 2023-01-06 | 广东省科学院智能制造研究所 | Task-level multi-robot collaborative motion planning system and method |
CN118377306A (en) * | 2024-06-21 | 2024-07-23 | 华电煤业集团数智技术有限公司 | Mining robot path planning method based on artificial intelligence |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016045615A1 (en) * | 2014-09-25 | 2016-03-31 | 科沃斯机器人有限公司 | Robot static path planning method |
CN110986982A (en) * | 2019-12-02 | 2020-04-10 | 浙江工业大学 | Multi-robot path planning method based on improved longicorn whisker algorithm |
CN111310885A (en) * | 2020-02-27 | 2020-06-19 | 辽宁工程技术大学 | A chaotic beetle herd search algorithm with mutation strategy |
CN111381600A (en) * | 2018-12-28 | 2020-07-07 | 陕西师范大学 | A UUV Path Planning Method Based on Particle Swarm Optimization |
CN112817312A (en) * | 2020-12-31 | 2021-05-18 | 浙江工业大学 | Path planning method based on double search optimization algorithm |
-
2021
- 2021-12-24 CN CN202111596904.1A patent/CN115097814B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016045615A1 (en) * | 2014-09-25 | 2016-03-31 | 科沃斯机器人有限公司 | Robot static path planning method |
CN111381600A (en) * | 2018-12-28 | 2020-07-07 | 陕西师范大学 | A UUV Path Planning Method Based on Particle Swarm Optimization |
CN110986982A (en) * | 2019-12-02 | 2020-04-10 | 浙江工业大学 | Multi-robot path planning method based on improved longicorn whisker algorithm |
CN111310885A (en) * | 2020-02-27 | 2020-06-19 | 辽宁工程技术大学 | A chaotic beetle herd search algorithm with mutation strategy |
CN112817312A (en) * | 2020-12-31 | 2021-05-18 | 浙江工业大学 | Path planning method based on double search optimization algorithm |
Non-Patent Citations (4)
Title |
---|
ZHANG XINMING等: "Differential mutation and novel social learning particle swarm optimization algorithm", 《INFORMATION SCIENCES》, vol. 480, 30 April 2019 (2019-04-30), pages 109 - 129 * |
吴歇尔: "面向多无人机的协同任务预分配及重分配研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》, no. 11, 30 November 2018 (2018-11-30) * |
孙波, 陈卫东, 席裕庚: "基于粒子群优化算法的移动机器人全局路径规划", 控制与决策, no. 09, 30 September 2005 (2005-09-30) * |
王娇娇;毛剑琳;: "基于蚁群改进与尖峰平滑的移动机器人路径规划", 软件导刊, no. 09, 29 May 2018 (2018-05-29) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115576332A (en) * | 2022-12-07 | 2023-01-06 | 广东省科学院智能制造研究所 | Task-level multi-robot collaborative motion planning system and method |
CN115576332B (en) * | 2022-12-07 | 2023-03-24 | 广东省科学院智能制造研究所 | Task-level multi-robot collaborative motion planning system and method |
CN118377306A (en) * | 2024-06-21 | 2024-07-23 | 华电煤业集团数智技术有限公司 | Mining robot path planning method based on artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
CN115097814B (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102402712B (en) | A Neural Network-Based Initialization Method for Robot Reinforcement Learning | |
CN102819264B (en) | Path planning Q-learning initial method of mobile robot | |
CN108896052A (en) | A kind of mobile robot smooth paths planing method under the environment based on DYNAMIC COMPLEX | |
CN107917711A (en) | A kind of Robot Path Planning Algorithm based on optimization hybrid ant colony | |
CN110220525A (en) | A kind of paths planning method based on potential field ant group algorithm | |
CN109974737A (en) | Route planning method and system based on combination of safety evacuation signs and reinforcement learning | |
CN115097814A (en) | Path planning method, system and application of mobile robot based on improved PSO algorithm | |
Li et al. | A hybrid assembly sequence planning approach based on discrete particle swarm optimization and evolutionary direction operation | |
CN115560774B (en) | Dynamic environment-oriented mobile robot path planning method | |
CN110823229B (en) | Mobile robot path planning method system based on optimized firefly algorithm | |
CN110530373B (en) | A robot path planning method, controller and system | |
CN110045738A (en) | Robot path planning method based on ant group algorithm and Maklink figure | |
CN111240796B (en) | Load balancing scheduling method based on improved MMAS | |
CN118386252B (en) | Mechanical arm obstacle avoidance path planning method and system based on reinforcement learning | |
CN112330043B (en) | An evacuation path planning method and system combining Q-learning and multi-bee colony algorithm | |
CN116360457A (en) | Path planning method based on self-adaptive grid and improved A-DWA fusion algorithm | |
CN115826586B (en) | A path planning method and system integrating global algorithm and local algorithm | |
Wang et al. | Hybrid bidirectional rapidly exploring random tree path planning algorithm with reinforcement learning | |
CN113219991B (en) | Mobile robot path planning method based on improved ACS algorithm | |
CN108227718A (en) | A kind of automatic transporting trolley path planning method adaptively switched | |
CN113189992B (en) | Group intelligent obstacle avoidance method based on local orientation | |
Xue et al. | Path planning algorithm in complex environment based on DDPG and MPC | |
Xue et al. | Multi-agent path planning based on MPC and DDPG | |
Yarmohamadi et al. | Improvement of robot path planning using particle swarm optimization in dynamic environments with mobile obstacles and target | |
Wang et al. | An improved NSGA-II algorithm for UAV path planning problems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |