CN115090902B - 一种增材制造中结构缺陷检测方法及系统 - Google Patents

一种增材制造中结构缺陷检测方法及系统 Download PDF

Info

Publication number
CN115090902B
CN115090902B CN202210727484.4A CN202210727484A CN115090902B CN 115090902 B CN115090902 B CN 115090902B CN 202210727484 A CN202210727484 A CN 202210727484A CN 115090902 B CN115090902 B CN 115090902B
Authority
CN
China
Prior art keywords
additive manufacturing
ultrasonic
processing
incident wave
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210727484.4A
Other languages
English (en)
Other versions
CN115090902A (zh
Inventor
张超
王兆敏
季宏丽
裘进浩
陶翀骢
汪俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210727484.4A priority Critical patent/CN115090902B/zh
Publication of CN115090902A publication Critical patent/CN115090902A/zh
Priority to US18/050,656 priority patent/US20230417707A1/en
Application granted granted Critical
Publication of CN115090902B publication Critical patent/CN115090902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明涉及一种增材制造中结构缺陷检测方法及系统。该方法包括:对增材制造试件的三维模型进行分层处理,获取各层界面的二维轮廓,生成加工路径;在增材制造试件的固定测量点处设置非接触式传感器,当脉冲激光沿着加工路径逐点加工时,获取每个加工点处的超声信号;根据所有超声信号形成可视化超声波场,确定超声波场数据;根据超声波场数据确定入射波峰值随加工路径变化的曲线;根据入射波峰值随加工路径变化的曲线判定加工点是否存在加工缺陷;若是,剔除所述增材制造试件;若否,判定所述增材制造试件结构完好,并继续下一层的增材制造。本发明能够在线实时检测出结构缺陷,实现次品的剔除。

Description

一种增材制造中结构缺陷检测方法及系统
技术领域
本发明涉及增材制造结构的无损检测技术领域,特别是涉及一种增材制造中结构缺陷检测方法及系统。
背景技术
增材制造技术是一种基于三维模型数据,将金属粉材或丝材逐层熔化叠加来制造零件的技术,集材料、光学、机械等技术于一体,具有自动化、灵活、材料利用率高等优点。目前针对增材制造的检测大多是在加工完成后进行,如果能够实现增材制造过程中的结构检测,就可以有效的减少浪费、提升产品质量。在众多无损检测手段中,激光超声技术作为一种非接触式超声检测对增材制造中结构缺陷的识别具有应用潜力,而如何实时在线检测成为了该技术的研究热点。
发明内容
本发明的目的是提供一种增材制造中结构缺陷检测方法及系统,以解决现有的无损检测手段无法实现实时在线检测的问题。
为实现上述目的,本发明提供了如下方案:
步骤一:对增材制造试件的三维模型进行分层处理,以获得各层截面的二维轮廓,由此生成加工路径。在制造腔室中采用高能量密度的脉冲激光加工成型,同时利用固定点处的非接触式传感,实时测量增材制造过程中产生的超声波。当脉冲激光沿着预设路径逐点加工时,非接触测量的第i个加工点对应的超声信号为si(t)。
步骤二:在增材制造的过程中,固定点处获得的一系列超声信号组成一个超声波场。该波场等效于在固定测量点处激励超声波,并在加工路径上各点处传感超声信号。将该超声信号顺序放入二维数组,即得到超声波场数据w(x,t)。例如,第i个加工点对应的空间位置为x,即令w(x,t)=si(t),t为时间,由此实现增材制造超声波场的可视化。
步骤三:采用加窗过滤的方式对增材制造波场数据进行入/反射波分离,去除由结构边界产生的反射波场,并获得入射波峰值随加工路径变化的曲线A(x)。
步骤四:设定损伤阈值thres,并提取A(x)沿空间的斜率变化作为损伤因子,若变化高于阈值,即判定该处存在加工缺陷。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供了一种增材制造中结构缺陷检测方法及系统,对增材制造过程中的超声信号进行重构,形成可视化超声波场,实现增材制造过程的超声波场可视化,在线实时检测加工路径中的加工点,在减少浪费、提升产品质量的同时,能够在线实时检测出结构缺陷,实现次品的剔除。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的增材制造中结构缺陷检测方法流程图;
图2为本发明所提供的增材过程超声激发及测量原理图;
图3为本发明所提供的增材过程超声信号与加工路径对应关系图;
图4为本发明所提供的增材过程超声波场可视化示意图;
图5为本发明所提供的含缺陷增材过程超声波场示意图;
图6为本发明所提供的增材制造缺陷检测结果示意图;
图7为本发明所提供的增材制造中结构缺陷检测系统结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种增材制造中结构缺陷检测方法及系统,能够在线实时检测出结构缺陷,实现次品的剔除。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明所提供的增材制造中结构缺陷检测方法流程图,如图1所示,一种增材制造中结构缺陷检测方法,包括:
步骤101:对增材制造试件的三维模型进行分层处理,获取各层界面的二维轮廓,生成加工路径。
步骤102:在所述增材制造试件的固定测量点处设置非接触式传感器,当脉冲激光沿着所述加工路径逐点加工时,获取每个加工点处的超声信号。
步骤103:根据所有所述超声信号形成可视化超声波场,确定超声波场数据。
所述步骤103具体包括:所述可视化超声波场等效于在所述固定测量点处激励超声波,并在所述加工路径的各个加工点处传感超声信号;将沿所述加工路径测量的所述超声信号按时间顺序放入二维数组,确定超声波场数据。
步骤104:根据所述超声波场数据确定入射波峰值随加工路径变化的曲线。
所述步骤104具体包括:采用加窗过滤方式对所述超声波场数据进行入射波与反射波分离,再利用二维逆傅里叶变换得到入射波,去除由所述增材制造试件的结构边界产生的反射波场;将所述入射波进行连续小波变换,确定入射波信号幅值;根据所述入射波信号幅值,提取所述入射波信号峰值,确定入射波峰值随加工路径变化的曲线。
步骤105:根据所述入射波峰值随加工路径变化的曲线判定所述加工点是否存在加工缺陷;若所述加工点存在加工缺陷,执行步骤106,若否,执行步骤107。
步骤106:剔除所述增材制造试件。
步骤107:判定所述增材制造试件结构完好,并继续下一层的增材制造。
所述步骤105-步骤107具体包括:设定损伤阈值;提取所述入射波峰值随加工路径变化的曲线沿空间的斜率变化,并将所述斜率变化作为损伤因子;若所述损伤因子高于所述损伤阈值,确定所述加工点存在加工缺陷,剔除所述增材制造试件;若所述损伤因子低于所述损伤阈值,确定所述加工点未存在加工缺陷,判定所述增材制造试件结构完好,并继续下一层的增材制造。
在实际应用中,在增材制造试件左侧布置激光多普勒测振仪(Laser DopplerVibrometer,LDV),使测振激光束垂直于试件表面。增材激光器向右侧沿着加工路径开始制造,如图2所示。
检测操作流程主要包括以下步骤:
步骤1:对增材制造试件三维模型进行分层处理,以获得各层截面的二维轮廓信息,在此基础上生成加工路径。在制造腔室中采用高能量密度的脉冲激光加工成型,同时利用固定点处的非接触式传感,实时测量增材制造过程中产生的超声波,如图3所示。当脉冲激光沿着预设路径逐点加工时,非接触测量的第i个加工点对应的超声信号为si(t)。
步骤2:在增材制造的过程中,固定点处获得的一系列超声信号组成一个超声波场。该波场等效于在固定测量点处激励超声波,并在加工路径的各点处传感超声信号。将沿增材制造路径测量的超声信号顺序放入二维数组,即得到超声波场数据w(x,t)。例如,第i个加工点对应的空间位置为x,即令w(x,t)=si(t),如图4所示。提取波场信号中任意时刻t数据,则可获得该时刻下增材制造区内超声波场的传播状态。
步骤3:当在沿着加工路径上增材制造出损伤时,如图5所示。损伤和结构边界都会产生复杂的反射现象。这时需要对增材制造波场进行入/反射波分离。采用二维傅里叶变换将w(x,t)转换为W(kx,ω),具体如下:
Figure BDA0003711433010000041
其中,j表示虚数单位。为了从波场中提取入射波信号,对所得到的W(kx,ω)进行加窗过滤,W(kx,ω)为波数-频率域上的信号表达方式,kx为超声波的波数,ω为超声波的频率。选取的窗函数类型为矩形窗函数Φ(kx,ω):
Figure BDA0003711433010000042
再利用二维逆傅里叶变换得到入射波wi(x,t):
Figure BDA0003711433010000051
步骤4:将wi(x,t)进行连续小波变换,获得入射波信号幅值,具体如下:
Figure BDA0003711433010000052
其中,a、b分别是小波变换中的尺度因子和平移因子,ψ*是母小波函数,ψ的复共轭函数。选取的小波函数如下所示:
Figure BDA0003711433010000053
提取小波变换后入射波信号的峰值,获得入射波峰值随加工路径变化的关系曲线A(x),具体如下:
A(x)=max[CWT(x,:)]
如图6所示。设定损伤阈值thres,并提取A(x)沿空间的斜率变化作为损伤因子,即:DI(x)=|dA(x)/dx|,若斜率变化高于阈值,即DI(x)≥thres,则判定该点为增材制造结构存在加工缺陷;若斜率变化低于阈值,即DI(x)<thres,则判定增材制造结构完好,并继续下一层的增材制造。
图7为本发明所提供的增材制造中结构缺陷检测系统结构图,如图7所示,一种增材制造中结构缺陷检测系统,包括:
加工路径生成模块701,用于对增材制造试件的三维模型进行分层处理,获取各层界面的二维轮廓,生成加工路径;
超声信号获取模块702,用于在所述增材制造试件的固定测量点处设置非接触式传感器,当脉冲激光沿着所述加工路径逐点加工时,获取每个加工点处的超声信号;
超声波场数据确定模块703,用于根据所有所述超声信号形成可视化超声波场,确定超声波场数据;
所述超声波场数据确定模块703,具体包括:超声信号传感单元,用于所述可视化超声波场等效于在所述固定测量点处激励超声波,并在所述加工路径的各个加工点处传感超声信号;超声波场数据确定单元,用于将沿所述加工路径测量的所述超声信号按时间顺序放入二维数组,确定超声波场数据。
入射波峰值随加工路径变化的曲线确定模块704,用于根据所述超声波场数据确定入射波峰值随加工路径变化的曲线;
所述入射波峰值随加工路径变化的曲线确定模块704,具体包括:反射波场去除单元,用于采用加窗过滤方式对所述超声波场数据进行入射波与反射波分离,再利用二维逆傅里叶变换得到入射波,去除由所述增材制造试件的结构边界产生的反射波场;入射波信号峰值确定单元,用于将所述入射波进行连续小波变换,确定入射波信号幅值;入射波峰值随加工路径变化的曲线确定单元,用于根据所述入射波信号幅值,提取所述入射波信号峰值,确定入射波峰值随加工路径变化的曲线。
加工缺陷判定模块705,用于根据所述入射波峰值随加工路径变化的曲线判定所述加工点是否存在加工缺陷;若所述加工点存在加工缺陷,剔除所述增材制造试件;若所述加工点未存在加工缺陷,判定所述增材制造试件结构完好,并继续下一层的增材制造。
所述加工缺陷判定模块705,具体包括:损伤阈值设定单元,用于设定损伤阈值;损伤因子确定单元,用于提取所述入射波峰值随加工路径变化的曲线沿空间的斜率变化,并将所述斜率变化作为损伤因子;加工缺陷确定单元,用于若所述损伤因子高于所述损伤阈值,确定所述加工点存在加工缺陷,剔除所述增材制造试件;增材制造单元,用于若所述损伤因子低于所述损伤阈值,确定所述加工点未存在加工缺陷,判定所述增材制造试件结构完好,并继续下一层的增材制造。
本发明所提供的增材制造中结构缺陷检测方法及系统能够克服传统超声检测无法在制造过程中进行检测的不足,在增材制造过程中通过形成可视化超声波场,确定超声波场数据,实现增材制造过程中的在线实时缺陷识别。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

1.一种增材制造中结构缺陷检测方法,其特征在于,包括:
对增材制造试件的三维模型进行分层处理,获取各层界面的二维轮廓,生成加工路径;
在所述增材制造试件的固定测量点处设置非接触式传感器,当脉冲激光沿着所述加工路径逐点加工时,获取每个加工点处的超声信号;
根据所有所述超声信号形成可视化超声波场,确定超声波场数据;
根据所述超声波场数据确定入射波峰值随加工路径变化的曲线;
根据所述入射波峰值随加工路径变化的曲线判定所述加工点是否存在加工缺陷,若所述加工点存在加工缺陷,剔除所述增材制造试件;若所述加工点未存在加工缺陷,判定所述增材制造试件结构完好,并继续下一层的增材制造,具体包括:
设定损伤阈值;
提取所述入射波峰值随加工路径变化的曲线沿空间的斜率变化,并将所述斜率变化作为损伤因子;
若所述损伤因子高于所述损伤阈值,确定所述加工点存在加工缺陷,剔除所述增材制造试件;
若所述损伤因子低于所述损伤阈值,确定所述加工点未存在加工缺陷,判定所述增材制造试件结构完好,并继续下一层的增材制造。
2.根据权利要求1所述的增材制造中结构缺陷检测方法,其特征在于,所述根据所有所述超声信号形成可视化超声波场,确定超声波场数据,具体包括:
所述可视化超声波场等效于在所述固定测量点处激励超声波,并在所述加工路径的各个加工点处传感超声信号;
将沿所述加工路径测量的所述超声信号按时间顺序放入二维数组,确定超声波场数据。
3.根据权利要求1所述的增材制造中结构缺陷检测方法,其特征在于,所述根据所述超声波场数据确定入射波峰值随加工路径变化的曲线,具体包括:
采用加窗过滤方式对所述超声波场数据进行入射波与反射波分离,再利用二维逆傅里叶变换得到入射波,去除由所述增材制造试件的结构边界产生的反射波场;
将所述入射波进行连续小波变换,确定入射波信号幅值;
根据所述入射波信号幅值,提取所述入射波信号峰值,确定入射波峰值随加工路径变化的曲线。
4.一种增材制造中结构缺陷检测系统,其特征在于,包括:
加工路径生成模块,用于对增材制造试件的三维模型进行分层处理,获取各层界面的二维轮廓,生成加工路径;
超声信号获取模块,用于在所述增材制造试件的固定测量点处设置非接触式传感器,当脉冲激光沿着所述加工路径逐点加工时,获取每个加工点处的超声信号;
超声波场数据确定模块,用于根据所有所述超声信号形成可视化超声波场,确定超声波场数据;
入射波峰值随加工路径变化的曲线确定模块,用于根据所述超声波场数据确定入射波峰值随加工路径变化的曲线;
加工缺陷判定模块,用于根据所述入射波峰值随加工路径变化的曲线判定所述加工点是否存在加工缺陷;若所述加工点存在加工缺陷,剔除所述增材制造试件;若所述加工点未存在加工缺陷,判定所述增材制造试件结构完好,并继续下一层的增材制造;所述加工缺陷判定模块,具体包括:
损伤阈值设定单元,用于设定损伤阈值;
损伤因子确定单元,用于提取所述入射波峰值随加工路径变化的曲线沿空间的斜率变化,并将所述斜率变化作为损伤因子;
加工缺陷确定单元,用于若所述损伤因子高于所述损伤阈值,确定所述加工点存在加工缺陷,剔除所述增材制造试件;
增材制造单元,用于若所述损伤因子低于所述损伤阈值,确定所述加工点未存在加工缺陷,判定所述增材制造试件结构完好,并继续下一层的增材制造。
5.根据权利要求4所述的增材制造中结构缺陷检测系统,其特征在于,所述超声波场数据确定模块,具体包括:
超声信号传感单元,用于所述可视化超声波场等效于在所述固定测量点处激励超声波,并在所述加工路径的各个加工点处传感超声信号;
超声波场数据确定单元,用于将沿所述加工路径测量的所述超声信号按时间顺序放入二维数组,确定超声波场数据。
6.根据权利要求4所述的增材制造中结构缺陷检测系统,其特征在于,所述入射波峰值随加工路径变化的曲线确定模块,具体包括:
反射波场去除单元,用于采用加窗过滤方式对所述超声波场数据进行入射波与反射波分离,再利用二维逆傅里叶变换得到入射波,去除由所述增材制造试件的结构边界产生的反射波场;
入射波信号峰值确定单元,用于将所述入射波进行连续小波变换,确定入射波信号幅值;
入射波峰值随加工路径变化的曲线确定单元,用于根据所述入射波信号幅值,提取所述入射波信号峰值,确定入射波峰值随加工路径变化的曲线。
CN202210727484.4A 2022-06-24 2022-06-24 一种增材制造中结构缺陷检测方法及系统 Active CN115090902B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210727484.4A CN115090902B (zh) 2022-06-24 2022-06-24 一种增材制造中结构缺陷检测方法及系统
US18/050,656 US20230417707A1 (en) 2022-06-24 2022-10-28 Method and system for detecting structural defect in additive manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210727484.4A CN115090902B (zh) 2022-06-24 2022-06-24 一种增材制造中结构缺陷检测方法及系统

Publications (2)

Publication Number Publication Date
CN115090902A CN115090902A (zh) 2022-09-23
CN115090902B true CN115090902B (zh) 2023-06-23

Family

ID=83292284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210727484.4A Active CN115090902B (zh) 2022-06-24 2022-06-24 一种增材制造中结构缺陷检测方法及系统

Country Status (2)

Country Link
US (1) US20230417707A1 (zh)
CN (1) CN115090902B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932044B (zh) * 2022-12-22 2024-02-20 江苏先进光源技术研究院有限公司 一种激光加工过程中工件缺陷实时检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109096A1 (en) * 2014-01-17 2015-07-23 United Technologies Corporation An additive manufacturing system with ultrasonic inspection and method of operation
US10556270B2 (en) * 2014-05-01 2020-02-11 United Technologies Corporation Additive manufacturing system for minimizing thermal stresses
GB201510220D0 (en) * 2015-06-11 2015-07-29 Renishaw Plc Additive manufacturing apparatus and method
EP3590630A1 (en) * 2018-07-02 2020-01-08 Renishaw PLC Acoustic emission sensing in powder bed additive manufacturing
CN109387567B (zh) * 2018-12-21 2021-02-02 西安增材制造国家研究院有限公司 一种基于波速修正的增材制造激光超声检测数据处理方法
CN112304870B (zh) * 2020-09-10 2023-01-31 东南大学 一种点对点式激光超声的pbf增材制造在线检测系统和方法

Also Published As

Publication number Publication date
US20230417707A1 (en) 2023-12-28
CN115090902A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN113888471B (zh) 一种基于卷积神经网络的高效高分辨力缺陷无损检测方法
CN109387567B (zh) 一种基于波速修正的增材制造激光超声检测数据处理方法
Lee et al. Laser ultrasonic anomalous wave propagation imaging method with adjacent wave subtraction: algorithm
US7503218B2 (en) Methods and system for ultrasound inspection
CN112098526B (zh) 基于激光超声技术的增材制件近表面缺陷特征提取方法
EP2223098A2 (fr) Controle non destructif, en particulier pour des tubes en cours de fabrication ou a l'etat fini
CN108918667B (zh) 一种楔体缺陷检测方法
CN115090902B (zh) 一种增材制造中结构缺陷检测方法及系统
Li et al. Acoustic microscopy signal processing method for detecting near-surface defects in metal materials
CN112666265A (zh) 用于激光增材连接区水浸超声无损检测工艺制定方法
He et al. Quantitative detection of surface defect using laser-generated Rayleigh wave with broadband local wavenumber estimation
Cerniglia et al. Laser ultrasonic technique for laser powder deposition inspection
CN116183512A (zh) 基于能量谱分析的激光超声裂纹尺寸定量表征方法及系统
CN114755300A (zh) 一种基于超声无损检测的缺陷定位定量检测方法
Kang et al. Model-based autonomous plate defects visualization method for quantitative wall-thinning estimation
Jiang et al. Finite element simulation of laser-synthetic aperture focusing technique (SAFT) detection of additive manufactured parts
CN111948211A (zh) 一种复合式承压设备探伤系统
Basiri et al. A Successive Wavenumber Filtering Approach for Defect Detection in CFRP using Wavefield Scanning
Medak et al. Detection of defective bolts from rotational ultrasonic scans using convolutional neural networks
Jiang et al. Visual Detection of AM Surface Defects Based on Laser Ultrasound Technology
CN114487115B (zh) 一种基于Canny算子与超声平面波成像相结合的高分辨缺陷无损检测方法
Zhang et al. Ultrasonic flaw recognition by multi-angle phased array data integration
CN115901940B (zh) 基于多模态频域合成孔径激光超声增材制件圆孔缺陷检测方法
Guarneri et al. A blind deconvolution approach to discontinuity location and characterization in ultrasonic nondestructive testing
Zalamans 3D Synthetic Aperture Imaging Using LaserUltrasonics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant