CN115082975A - Biometric Identification Methods - Google Patents
Biometric Identification Methods Download PDFInfo
- Publication number
- CN115082975A CN115082975A CN202210825538.0A CN202210825538A CN115082975A CN 115082975 A CN115082975 A CN 115082975A CN 202210825538 A CN202210825538 A CN 202210825538A CN 115082975 A CN115082975 A CN 115082975A
- Authority
- CN
- China
- Prior art keywords
- voltage difference
- biometric
- difference value
- image
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000012545 processing Methods 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 7
- 239000000284 extract Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000003205 diastolic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1318—Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Input (AREA)
Abstract
Description
技术领域technical field
本公开涉及一种生物特征辨识方法。The present disclosure relates to a biometric identification method.
背景技术Background technique
目前的电子装置大多具有身份认证机制,其中利用生物特征进行身份辨识的方式是近年来的趋势。常见的认证方式为指纹辨识,因为指纹辨识易于整合在电子装置中。Most of the current electronic devices have an identity authentication mechanism, and the way of using biometrics for identity recognition is a trend in recent years. A common authentication method is fingerprint recognition because fingerprint recognition is easy to integrate into electronic devices.
利用灰阶图像辨识指纹的电子装置需要提取多幅灰阶图像并通过图像处理以进行指纹辨识。然而,此方法需耗费大量时间提取图像并通过算法计算,使得生物特征辨识效率难以提升。An electronic device that uses gray-scale images to identify fingerprints needs to extract multiple gray-scale images and perform image processing for fingerprint identification. However, this method takes a lot of time to extract images and calculate through algorithms, which makes it difficult to improve the efficiency of biometric identification.
有鉴于此,如何提供一种可解决上述问题的生物特征辨识方法仍是本领域努力研发的目标。In view of this, how to provide a biometric identification method that can solve the above problems is still the goal of research and development in the art.
发明内容SUMMARY OF THE INVENTION
本公开的一技术态样为一种生物特征辨识方法,应用于生物特征辨识装置。生物特征辨识装置包含光源、感光元件以及集成电路。A technical aspect of the present disclosure is a biometric identification method applied to a biometric identification device. The biometric identification device includes a light source, a photosensitive element and an integrated circuit.
在一实施例中,生物特征辨识方法包含计算第一生物特征图像的灰阶差值、根据灰阶差值定义第一电压差值、执行生物特征感测以取得第二电压差值以及根据第一电压差值与第二电压差值辨识生物特征是否为真。In one embodiment, the biometric identification method includes calculating a gray level difference value of a first biometric image, defining a first voltage difference value according to the gray level difference value, performing biometric sensing to obtain a second voltage difference value, and A voltage difference value and a second voltage difference value identify whether the biometric feature is true.
在一实施例中,根据灰阶差值定义第一电压差值的步骤包含对灰阶差值执行模拟数字转换以定义第一电压差值。In one embodiment, the step of defining the first voltage difference according to the grayscale difference includes performing analog-to-digital conversion on the grayscale difference to define the first voltage difference.
在一实施例中,当第二电压差值大于第一电压差值时,生物特征的辨识结果为是。In one embodiment, when the second voltage difference is greater than the first voltage difference, the identification result of the biometric feature is yes.
在一实施例中,计算生物特征的灰阶差值的步骤还包含定义光源的亮度为第一亮度;执行生物特征感测以生成第一生物特征图像;以及对第一生物特征图像执行图像处理以计算第一生物特征图像的灰阶差值。In one embodiment, the step of calculating the grayscale difference value of the biometrics further includes defining the brightness of the light source as a first brightness; performing biometric sensing to generate a first biometric image; and performing image processing on the first biometric image to calculate the gray level difference of the first biometric image.
在一实施例中,执行生物特征感测以取得第二电压差值的步骤还包含感光元件接收生物特征反射的光线以产生光漏电以及集成电路根据光漏电得出第二电压差值。In one embodiment, the step of performing biometric sensing to obtain the second voltage difference further includes receiving the light reflected from the biometrics by the photosensitive element to generate optical leakage, and the integrated circuit deriving the second voltage difference according to the optical leakage.
在一实施例中,当第二电压差值小于第一电压差值时,生物特征的辨识结果为否,且生物特征辨识方法还包含执行生物特征感测以生成第二生物特征图像以及对第二生物特征图像执行图像处理以得出心率数值。In one embodiment, when the second voltage difference is smaller than the first voltage difference, the biometric identification result is no, and the biometric identification method further includes performing biometric sensing to generate a second biometric image and identifying the first biometric image. Two biometric images perform image processing to derive heart rate values.
在一实施例中,生物特征辨识方法还包含判断心率数值是否在心率区间中。In one embodiment, the biometric identification method further includes determining whether the heart rate value is in a heart rate interval.
在一实施例中,当第二电压差值小于第一电压差值时,生物特征的辨识结果为否,且生物特征辨识方法还包含定义光源的亮度为第二亮度,且第二亮度大于第一亮度;以及执行生物特征感测以取得第三电压差值。In one embodiment, when the second voltage difference is smaller than the first voltage difference, the biometric identification result is no, and the biometric identification method further includes defining the brightness of the light source as the second brightness, and the second brightness is greater than the first brightness. a brightness; and performing biometric sensing to obtain a third voltage difference.
在一实施例中,生物特征辨识方法还包含根据第一电压差值与第三电压差值辨识生物特征是否为真。In one embodiment, the biometric identification method further includes identifying whether the biometric is true according to the first voltage difference value and the third voltage difference value.
在一实施例中,当第三电压差值大于第一电压差值时,生物特征的辨识结果为是,当第三电压差值小于第一电压差值时,生物特征的辨识结果为否。In one embodiment, when the third voltage difference is greater than the first voltage difference, the biometric identification result is yes, and when the third voltage difference is smaller than the first voltage difference, the biometric identification result is no.
在上述实施例中,生物特征辨识方法可藉由将灰阶差值转换成可用于判断生物特征是否为真的第一电压差值,并根据感光元件照光后产生的光漏电差异定义出第二电压差值。在生物特征辨识方法的第一阶段先藉由第一电压差值与第二电压差值进行判定,因此可省略以图像处理模块提取图像并进行图像处理的步骤。如此一来,可缩减辨识生物特征的时间。此外,本公开中藉由灰阶差值定义第一电压差值的方式不受限于指纹图样。不同使用者要达到相同灰阶差值所对应的光漏电差异是相同的,因此本公开的生物特征辨识方法不限制于单一使用者。In the above-mentioned embodiment, the biometric identification method can convert the gray scale difference into a first voltage difference that can be used to determine whether the biometric is true, and define a second voltage difference according to the light leakage difference generated after the photosensitive element is illuminated. voltage difference. In the first stage of the biometric identification method, the first voltage difference value and the second voltage difference value are used for determination, so the steps of extracting an image and performing image processing by an image processing module can be omitted. In this way, the time for identifying the biometric feature can be shortened. In addition, the manner of defining the first voltage difference by the grayscale difference in the present disclosure is not limited to the fingerprint pattern. The difference in light leakage corresponding to the same gray level difference for different users is the same, so the biometric identification method of the present disclosure is not limited to a single user.
附图说明Description of drawings
图1为根据本公开一实施例的生物特征辨识装置的侧视图。FIG. 1 is a side view of a biometric identification device according to an embodiment of the present disclosure.
图2为图1的生物特征辨识装置的方块图。FIG. 2 is a block diagram of the biometric identification device of FIG. 1 .
图3A与图3B为图像处理流程示意图。3A and 3B are schematic diagrams of image processing flow.
图4为指纹感测模块的电路图。FIG. 4 is a circuit diagram of a fingerprint sensing module.
图5为感光元件的光漏电与偏压关系图。FIG. 5 is a graph showing the relationship between light leakage and bias voltage of the photosensitive element.
图6A至图6B为根据本公开一实施例的生物特征辨识方法的流程图。6A-6B are flowcharts of a biometric identification method according to an embodiment of the present disclosure.
图7A至图7B为根据本公开另一实施例的生物特征辨识方法的流程图。7A-7B are flowcharts of a biometric identification method according to another embodiment of the present disclosure.
【符号说明】【Symbol Description】
100:生物特征辨识装置100: Biometric Identification Device
110:光源110: Light source
120:指纹感测模块120: Fingerprint sensing module
122:像素电路122: Pixel circuit
1222:薄膜晶体管开关1222: Thin Film Transistor Switch
1224:感光元件1224: photosensitive element
124:集成电路124: Integrated Circuits
1242:积分器1242: Integrator
1244:暂存器1244: scratchpad
1244A:第一暂存器1244A: first scratchpad
1244B:第二暂存器1244B: Second scratchpad
1244C:第三暂存器1244C: The third scratchpad
1246:第一开关1246: The first switch
1248:第二开关1248: Second switch
130:保护层130: Protective layer
140:模拟数字转换器140: Analog to Digital Converter
150:图像处理模块150: Image processing module
160:电子装置160: Electronics
170A,170B:逻辑运算单元170A, 170B: Logic operation unit
180:区间180: Interval
190:灰阶差值190: Grayscale difference
200:手指200: finger
300,400:生物特征辨识方法300, 400: Biometric Identification Methods
I:回充电流I: Recycle current
A:感测区域A: Sensing area
Vbias:偏压V bias : bias voltage
Vref:参考电压V ref : reference voltage
Vout:输出电压V out : output voltage
Vdata:数据电压V data : data voltage
C1,C2:曲线C1, C2: Curves
S1~S20:步骤S1~S20: Steps
具体实施方式Detailed ways
以下将以附图公开本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些实务上的细节是非必要的。此外,为简化附图起见,一些已知惯用的结构与元件在附图中将以简单示意的方式绘示。且为了清楚起见,附图中的层和区域的厚度可能被夸大,并且在附图的描述中相同的元件符号表示相同的元件。Various embodiments of the present invention will be disclosed below with accompanying drawings, and for the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the invention, these practical details are unnecessary. In addition, for the purpose of simplifying the drawings, some well-known and conventional structures and elements are shown in a simplified and schematic manner in the drawings. Also, the thicknesses of layers and regions in the drawings may be exaggerated for clarity, and like reference numerals refer to like elements in the description of the drawings.
图1为根据本公开一实施例的生物特征辨识装置100的侧视图。生物特征辨识装置100包含光源110、指纹感测模块120以及保护层130。生物特征辨识装置100用于指纹辨识及计算心率。当手指200按压在感测区域A时,光源110发出的光线被手指200反射。脉搏周期性地跳动使得指纹感测模块120接收到的反射光所产生的图像具有灰阶变化。藉由提取指纹灰阶图像并对其执行图像处理以计算出图像的灰阶变化频率可得出心率数值。在本公开中,光源110具有单一波段,只要是指纹感测模块120可吸收的波段即可。FIG. 1 is a side view of a
图2为图1的生物特征辨识装置100的方块图。生物特征辨识装置100包含彼此电性连接的指纹感测模块120、模拟数字转换器140、图像处理模块150以及电子装置160。FIG. 2 is a block diagram of the
图3A与图3B为图像处理流程示意图。执行生物特征感测时,藉由指纹感测模块120在一时间区段内以固定时间间隔提取多幅指纹灰阶图像。举例来说,指纹感测模块120可每隔0.1秒即提取一张指纹灰阶图像。此处所指的生物特征图像为感测区域A(见图1)所接收到的指纹灰阶图像。3A and 3B are schematic diagrams of image processing flow. When performing biometric sensing, the
图像处理模块150可计算出每一幅指纹灰阶图像中特定区域的平均灰阶数值。举例来说,在手指200按压的感测区域A中框选出范围大约为0.1寸乘以0.1寸的区域作为图像处理的范围。由于成人指纹中一组波峰与波谷占据宽度约为0.45毫米至0.5毫米。因此框选出的范围至少需大于0.5毫米乘以0.5毫米,但本公开不以此为限。The
图3A绘示了150幅指纹灰阶图像的平均灰阶数值。图3B绘示了经算法处理后的150幅指纹灰阶图像的平均灰阶数值。图3B是将图3A所示由图像处理模块150计算出的平均灰阶数值减少高频噪声后,将平均灰阶数值分布的整体平均值重新定义为零并经过计算得出平均灰阶数值分布的振荡大小结果。图3B中的虚线标示出振荡大小为1的范围。在此实施例中,当振荡大小大于1时,代表此区间内的指纹灰阶图像是可用于检测心率的,亦即代表此指纹灰阶图像是来自活体指纹。FIG. 3A shows the average grayscale value of 150 fingerprint grayscale images. FIG. 3B shows the average grayscale value of the 150 fingerprint grayscale images processed by the algorithm. FIG. 3B shows that after the high-frequency noise is reduced from the average grayscale value calculated by the
图4为指纹感测模块120的电路图。指纹感测模块120包含彼此电性连接的像素电路122以及集成电路124。在本实施例中,像素电路122包含薄膜晶体管(TFT)开关1222与感光元件1224。薄膜晶体管开关1222连接感光元件1224,感光元件1224为光电二极管(photodiode)。集成电路124包含积分器1242与暂存器1244。积分器1242电性连接薄膜晶体管开关1222。FIG. 4 is a circuit diagram of the
参照图4。由于感光元件1224照光后产生光漏电,集成电路124产生回充电流I。回充电流I对应的回充电压可通过积分器1242暂存于暂存器1244中。Vbias为感光元件1224正极的偏压、Vref为参考电压、Vout为输出电压。第一开关1246导通时,可将数据电压Vdata重置为参考电压Vref。第二开关1248导通时,可将输出电压Vout记录于暂存器1244。应理解到,图4所示的电路图仅为示例,其并非用以限制本公开。Referring to Figure 4. Since the
图5为感光元件1224的光漏电与偏压关系图。如图5所示,亮暗变化的反射光使感光元件1224产生的光漏电具有差异。曲线C1与曲线C2分别代表脉搏舒张与脉搏收缩时感光元件1224产生的光漏电与偏压的关系。曲线C1与曲线C2之间的差异即为光漏电差异。FIG. 5 is a graph showing the relationship between light leakage and bias voltage of the
参照图2。生物特征辨识装置100还包含第一暂存器1244A、第二暂存器1244B、第三暂存器1244C、逻辑运算单元170A以及逻辑运算单元170B。逻辑运算单元170A配置以判定暂存于第二暂存器1244B与第三暂存器1244C中数值的差值,逻辑运算单元170B接着判定此差值与暂存于第一暂存器1244A中的数值之间的差值。Refer to Figure 2. The
在本实施例中,脉搏周期性地跳动使得感光元件1224的产生光漏电具有差异,因此可由集成电路124记录对应此光漏电变化的电压差值。模拟数字转换器140可将电压差值转换成对应的灰阶数值,也可将灰阶数值转换成电压差值。电子装置160为具有指纹感测模块120的装置,例如手机、平板等具有身份认证机制的电子装置。In this embodiment, the pulse beats periodically so that the light leakage generated by the
本公开的生物特征辨识方法利用电压差值作为辨识指纹是否为真(指纹是否为活体指纹)的标准,藉此达到快速辨识的效果。以下将说明生物特征辨识方法的详细步骤。The biometric identification method of the present disclosure uses the voltage difference as a criterion for identifying whether the fingerprint is real (whether the fingerprint is a living fingerprint), thereby achieving the effect of rapid identification. The detailed steps of the biometric identification method will be described below.
图6A至图6B为根据本公开一实施例的生物特征辨识方法300的流程图。同时参照图1与图6A。在生物特征辨识方法的步骤S1中,定义光源110的亮度为第一亮度。举例来说,在本实施例中,藉由反射率为79%的标准片反射光源110的光线,当指纹感测模块120接收的到的灰阶图像具有灰阶平均数值180时的光源亮度即定义为光源110的第一亮度。上述以灰阶数值180定义第一亮度仅为示例,只要是生物特征辨识装置100可清楚辨识指纹灰阶图像的灰阶数值即可。6A-6B are flowcharts of a
同时参照图6A、图3A与图3B。在生物特征辨识方法的步骤S2中,执行生物特征感测以生成生物特征图像,并对生物特征图像执行图像处理以计算生物特征图像的灰阶差值。经由前述的图像处理步骤后,即可从图3A所示的平均灰阶数值中计算灰阶差值。举例来说,如图3A中所示的区间180中计算得出灰阶差值190为1.4。换句话说,藉由本实施例中的算法对指纹灰阶图像进行计算后,得出灰阶差值190大于1.4可代表此指纹灰阶图像是来自活体指纹。Referring to FIGS. 6A , 3A and 3B simultaneously. In step S2 of the biometric identification method, biometric sensing is performed to generate a biometric image, and image processing is performed on the biometric image to calculate a grayscale difference value of the biometric image. After the aforementioned image processing steps, the gray level difference value can be calculated from the average gray level value shown in FIG. 3A . For example, in the
应理解到,上述图像处理的详细步骤仅为示例,其并非用以限制本发明。本领域技术人员应当可根据实际需求进行调整,只要可计算出用以辨识生物特征图像是否来自活体指纹的灰阶差值190即可。It should be understood that the above detailed steps of image processing are only examples, which are not intended to limit the present invention. Those skilled in the art should be able to make adjustments according to actual needs, as long as the
同时参照图2及图6A。在生物特征辨识方法的步骤S3中,通过模拟数字转换器140对灰阶差值190执行模拟数字转换以取得第一电压差值。在本实施例中,第一电压差值可通过模拟数字转换器140转换为灰阶信号。同样地,在已知灰阶差值190为1.4的状况下,可通过模拟数字转换器140将灰阶差值190转换为可用于辨识生物特征是否为真所需的第一电压差值。2 and 6A at the same time. In step S3 of the biometric identification method, the analog-to-
同时参照图2及图6A。在生物特征辨识方法的步骤S4中,定义第一电压差值为脉搏跳动需产生的电压差。在此步骤中,反推得知的第一电压差值暂存于第一暂存器1244A中,以定义为用于辨识指纹是否为真的第一电压差值。2 and 6A at the same time. In step S4 of the biometric identification method, the first voltage difference is defined as the voltage difference to be generated by the pulse beat. In this step, the first voltage difference obtained by inversion is temporarily stored in the
同时参照图4及图6A。在生物特征辨识方法的步骤S5中,执行生物特征感测。指纹反射的光线照射到感光元件1224后,使感光元件1224产生光漏电。在此步骤中,手指200按压于感测区域A上(见图1)。脉搏跳动使得指纹感测模块120接收到的反射光呈现亮暗变化,并因此使感光元件1224产生随脉搏跳动产生的光漏电变化。4 and 6A at the same time. In step S5 of the biometric identification method, biometric sensing is performed. After the light reflected by the fingerprint irradiates the
同时参照图2及图6A。在生物特征辨识方法的步骤S6中,集成电路124暂存回充电压以取得第二电压差值。在此步骤中,集成电路124产生对应光漏电差异的回充电压。举例来说,脉搏舒张期间的回充电压可通过积分器1242暂存于第二暂存器1244B中。脉搏收缩期间的回充电压可通过积分器1242暂存于第三暂存器1244C中。逻辑运算单元170A判断暂存于第二暂存器1244B与第三暂存器1244C中的回充电压之间的差值。如此一来,即可得出对应光漏电差异的回充电压差值,并将此回充电压差值定义为第二电压差值。2 and 6A at the same time. In step S6 of the biometric identification method, the
同时参照图2及图6A。在生物特征辨识方法的步骤S7中,判定第二电压差值是否大于第一电压差值。逻辑运算单元170B可进行第一电压差值与第二电压差值的差值判定。2 and 6A at the same time. In step S7 of the biometric identification method, it is determined whether the second voltage difference is greater than the first voltage difference. The
同时参照图2及图6A。在生物特征辨识方法的步骤S8中,当第二电压差值大于第一电压差值时,辨识结果为是。生物特征判定为活体指纹。电子装置160即可显示辨识结果。在一些实施例中,图像处理模块150可选择性地在完成步骤S1至步骤S8后执行图像处理以计算心率,并通过电子装置160显示心率数值。2 and 6A at the same time. In step S8 of the biometric identification method, when the second voltage difference is greater than the first voltage difference, the identification result is yes. Biometrics are determined as living fingerprints. The
第二电压差值大于第一电压差值相当于脉搏跳动产生的指纹灰阶图像的灰阶差值大于前述计算出的灰阶差值190。然而,由于本公开通过先将灰阶差值190转换成第一电压差值,因此判定步骤可省略提取图像以及进行图像处理所需的时间。If the second voltage difference is greater than the first voltage difference, it means that the grayscale difference of the fingerprint grayscale image generated by the pulse beat is greater than the
同时参照图6A及图6B。当第二电压差值小于第一电压差值时,辨识结果为否。生物特征办定为非活体指纹,将接续图6B的步骤以进一步辨识生物特征是否为真。换句话说,图6A的步骤S1至步骤S7为第一阶段辨识流程,图6B的步骤S9至步骤S14则为第二阶段辨识流程。当第一阶段辨识流程辨识结果为否时,接续进行第二阶段辨识流程可避免误判并增进生物特征辨识的准确度。6A and 6B are also referred to. When the second voltage difference is smaller than the first voltage difference, the identification result is no. The biometric feature is determined to be a non-living fingerprint, and the steps in FIG. 6B will be continued to further identify whether the biometric feature is true. In other words, steps S1 to S7 of FIG. 6A are the first-stage identification process, and steps S9 to S14 of FIG. 6B are the second-stage identification process. When the identification result of the first-stage identification process is negative, continuing the second-stage identification process can avoid misjudgments and improve the accuracy of biometric identification.
参照图6B。在生物特征辨识方法的步骤S9中,再次执行生物特征感测。在此步骤中,手指200再次按压于感测区域A上(见图1),指纹感测模块120提取指纹灰阶图像。Referring to Figure 6B. In step S9 of the biometric identification method, biometric sensing is performed again. In this step, the
同时参照图2及图6B。在生物特征辨识方法的步骤S10中,图像处理模块150对生物特征图像执行图像处理。举例来说,图像处理模块150提取150幅指纹灰阶图像以计算出平均灰阶数值。2 and 6B at the same time. In step S10 of the biometric identification method, the
参照图6B。在生物特征辨识方法的步骤S11中,藉由算法计算出灰阶变化频率以得出心率数值。Referring to Figure 6B. In step S11 of the biometric identification method, an algorithm is used to calculate the gray scale change frequency to obtain a heart rate value.
参照图6B,在生物特征辨识方法的步骤S12中,判定心率数值是否在合理的心率区间中。举例来说,本实施例中以每分钟50次至120次心跳为合理心率区间,但其并非用以限制本公开。Referring to FIG. 6B , in step S12 of the biometric identification method, it is determined whether the heart rate value is within a reasonable heart rate interval. For example, in this embodiment, 50 to 120 heart beats per minute is used as a reasonable heart rate range, but this is not intended to limit the present disclosure.
同时参照图2及图6B。如步骤S13所示,当心率数值在合理的心率区间中时,辨识结果为是且第二阶段辨识流程结束。生物特征判定为活体指纹。电子装置160即可显示辨识结果。在一些实施例中,电子装置160可选择性地在完成辨识步骤后显示心率数值。2 and 6B at the same time. As shown in step S13, when the heart rate value is within a reasonable heart rate range, the identification result is yes and the second-stage identification process ends. Biometrics are determined as living fingerprints. The
同时参照图2及图6B。如步骤S14所示,当心率数值在合理的心率区间外时,辨识结果为否且第二阶段辨识流程结束。生物特征判定为非活体指纹。电子装置160显示辨识结果。2 and 6B at the same time. As shown in step S14, when the heart rate value is outside the reasonable heart rate range, the identification result is no and the second-stage identification process ends. Biometrics are judged as non-living fingerprints. The
根据上述可知,本公开的生物特征辨识方法,可藉由将灰阶差值转换成可用于判断生物特征是否为真的第一电压差值,并根据感光元件照光后产生的光漏电差异定义出第二电压差值。在生物特征辨识方法的第一阶段先藉由第一电压差值与第二电压差值进行判定,因此可省略以图像处理模块150提取图像并进行图像处理的步骤。如此一来,可缩减辨识生物特征的时间。此外,若第一阶段辨识结果为否,可再进行第二阶段辨识流程以避免误判并增进生物特征辨识的准确度。本公开中藉由灰阶差值定义第一电压差值的方式不受限于指纹图样。不同使用者要达到相同灰阶差值所所对应的光漏电差异是相同的,因此本公开的生物特征辨识方法不限制于单一使用者。As can be seen from the above, the biometric identification method of the present disclosure can convert the gray scale difference into a first voltage difference that can be used to determine whether the biometric is true, and define the difference according to the light leakage and electric leakage generated after the photosensitive element is illuminated. The second voltage difference. In the first stage of the biometric identification method, the first voltage difference value and the second voltage difference value are used for determination, so the steps of extracting an image and performing image processing by the
图7A至图7B为根据本公开另一实施例的生物特征辨识方法400的流程图。生物特征辨识方法400的步骤S1至步骤S8与图6A所示的生物特征辨识方法300相同(亦即第一阶段辨识流程相同),在此不赘述。生物特征辨识方法400与生物特征辨识方法300相异处在于,当第二电压差值小于第一电压差值时,接续步骤S15至步骤19,此处称为第三阶段辨识。7A-7B are flowcharts of a
同时参照图1与参照图7B。在生物特征辨识方法400的步骤S15中将光源110的亮度定义为第二亮度。第二亮度大于步骤S1中的第一亮度。举例来说,藉由反射率为79%的标准片反射光线,当指纹感测模块120接收的到的灰阶图像具有灰阶数值200时的光源亮度定义为第二亮度。如此一来,可避免采用第一亮度时指纹反射不佳造成误判的机率。上述以灰阶数值200定义第二亮度仅为示例,只要第二亮度大于第一亮度,且生物特征辨识装置100可清楚辨识指纹灰阶图像的灰阶数值即可。Referring to FIG. 1 and referring to FIG. 7B at the same time. In step S15 of the
参照图7B。在生物特征辨识方法400的步骤S16中,再次执行生物特征感测。在此步骤中,手指200再次按压于感测区域A上(见图1),指纹感测模块120提取指纹灰阶图像。Referring to Figure 7B. In step S16 of the
同时参照图2及参照图7B。在生物特征辨识方法400的步骤S17中,集成电路124暂存回充电压以取得第三电压差值。在此步骤中,集成电路124产生对应光漏电的回充电压。脉搏舒张期间的回充电压可通过积分器1242暂存于第二暂存器1244B中。脉搏收缩期间的回充电压可通过积分器1242暂存于第三暂存器1244C中。逻辑运算单元170A判断暂存于第二暂存器1244B与第三暂存器1244C中的回充电压之间的差值。如此一来,即可得出光漏电差异产生的回充电压差值,并将此回充电压差值定义为第三电压差值。Referring to FIG. 2 and referring to FIG. 7B at the same time. In step S17 of the
同时参照图2及图7B。在生物特征辨识方法400的步骤S18中,判定第三电压差值是否大于第一电压差值。逻辑运算单元170B可进行第一电压差值与第三电压差值的差值判定。2 and 7B at the same time. In step S18 of the
同时参照图2及图7B。在生物特征辨识方法的步骤S19中,当第三电压差值大于第一电压差值时,辨识结果为是。生物特征判定为活体指纹。电子装置160即可显示辨识结果。在一些实施例中,图像处理模块150可选择性地在完成辨识步骤S15至步骤S19后执行图像处理以计算心率,并通过电子装置160显示心率数值。2 and 7B at the same time. In step S19 of the biometric identification method, when the third voltage difference is greater than the first voltage difference, the identification result is yes. Biometrics are determined as living fingerprints. The
同时参照图2及图7B。在生物特征辨识方法的步骤S20中,当第三电压差值小于第一电压差值时,辨识结果为否且第三阶段辨识流程结束。电子装置160显示辨识结果。2 and 7B at the same time. In step S20 of the biometric identification method, when the third voltage difference is smaller than the first voltage difference, the identification result is no and the third-stage identification process ends. The
综上所述,本公开的生物特征辨识方法,可藉由灰阶差值转换成可用于判断生物特征是否为真的第一电压差值,并根据感光元件照光后产生的光漏电差异定义出第二电压差值。在生物特征辨识方法的第一阶段辨识流程中先藉由第一电压差值与第二电压差值进行判定,因此可省略以图像处理模块提取图像并进行图像处理的步骤。如此一来,可缩减辨识生物特征的时间。此外,若第一阶段辨识流程的结果为否,可再进行第二阶段辨识流程或第三阶段辨识流程以避免误判并增进生物特征辨识的准确度。第二阶段辨识流程中可采用计算心率方式进行生物特征辨识,第三阶段辨识流程中可采用较大的光源亮度进行生物特征辨识。本公开中藉由灰阶差值定义第一电压差值的方式不受限于指纹图样。不同使用者要达到相同灰阶差值所对应的光漏电差异是相同的,因此本公开的生物特征辨识方法不限制于单一使用者。To sum up, the biometric identification method of the present disclosure can convert the gray scale difference into a first voltage difference that can be used to determine whether the biometric is true, and define the difference according to the light leakage difference generated by the photosensitive element after lighting The second voltage difference. In the first-stage identification process of the biometric identification method, the first voltage difference value and the second voltage difference value are used for determination, so the steps of extracting an image and performing image processing by an image processing module can be omitted. In this way, the time for identifying the biometric feature can be shortened. In addition, if the result of the first-stage identification process is negative, the second-stage identification process or the third-stage identification process can be performed to avoid misjudgment and improve the accuracy of biometric identification. In the second-stage identification process, the method of calculating the heart rate can be used for biometric identification, and in the third-stage identification process, a larger light source brightness can be used for biometric identification. In the present disclosure, the manner of defining the first voltage difference by the grayscale difference is not limited to the fingerprint pattern. The difference in light leakage corresponding to the same gray level difference for different users is the same, so the biometric identification method of the present disclosure is not limited to a single user.
虽然本公开已以实施方式公开如上,然其并非用以限定本公开,任何本领域技术人员,在不脱离本公开的精神和范围内,当可作各种的更动与润饰,因此本公开的保护范围当视所附权利要求书界定范围为准。Although the present disclosure has been disclosed above in terms of embodiments, it is not intended to limit the present disclosure. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the present disclosure The scope of protection shall be subject to the scope defined by the appended claims.
Claims (10)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163224977P | 2021-07-23 | 2021-07-23 | |
US63/224,977 | 2021-07-23 | ||
TW111111360 | 2022-03-25 | ||
TW111111360A TWI796183B (en) | 2021-07-23 | 2022-03-25 | Fingerprint identification method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115082975A true CN115082975A (en) | 2022-09-20 |
CN115082975B CN115082975B (en) | 2024-11-12 |
Family
ID=83260104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210825538.0A Active CN115082975B (en) | 2021-07-23 | 2022-07-13 | Biometric Identification Methods |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115082975B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201211909A (en) * | 2010-09-06 | 2012-03-16 | Egis Technology Inc | Fingerprint anti-spoof apparatus and method thereof |
CN103810479A (en) * | 2014-02-28 | 2014-05-21 | 成都费恩格尔微电子技术有限公司 | Fingerprint collection system and fingerprint information collection method |
CN104252621A (en) * | 2014-09-29 | 2014-12-31 | 深圳市汇顶科技股份有限公司 | Fingerprint identification device and fingerprint identification method |
KR20170119245A (en) * | 2016-04-18 | 2017-10-26 | 주식회사 유니온커뮤니티 | Apparatus and Method for Recognizing Fake Fingerprint Using Brightness Change of Fingerprint Image According to Heart Beat |
CN110444151A (en) * | 2018-05-02 | 2019-11-12 | 京东方科技集团股份有限公司 | Gray level compensation method and device, display device, computer storage medium |
CN112416186A (en) * | 2020-06-23 | 2021-02-26 | 友达光电股份有限公司 | Pixel circuit for touch sensing and light sensing |
-
2022
- 2022-07-13 CN CN202210825538.0A patent/CN115082975B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201211909A (en) * | 2010-09-06 | 2012-03-16 | Egis Technology Inc | Fingerprint anti-spoof apparatus and method thereof |
CN103810479A (en) * | 2014-02-28 | 2014-05-21 | 成都费恩格尔微电子技术有限公司 | Fingerprint collection system and fingerprint information collection method |
CN104252621A (en) * | 2014-09-29 | 2014-12-31 | 深圳市汇顶科技股份有限公司 | Fingerprint identification device and fingerprint identification method |
KR20170119245A (en) * | 2016-04-18 | 2017-10-26 | 주식회사 유니온커뮤니티 | Apparatus and Method for Recognizing Fake Fingerprint Using Brightness Change of Fingerprint Image According to Heart Beat |
CN110444151A (en) * | 2018-05-02 | 2019-11-12 | 京东方科技集团股份有限公司 | Gray level compensation method and device, display device, computer storage medium |
CN112416186A (en) * | 2020-06-23 | 2021-02-26 | 友达光电股份有限公司 | Pixel circuit for touch sensing and light sensing |
Also Published As
Publication number | Publication date |
---|---|
CN115082975B (en) | 2024-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11232546B2 (en) | Texture detection method, texture image compensation method and device, and electronic device | |
JP2759309B2 (en) | Fingerprint matching method | |
CN104077748B (en) | Image correction apparatus, image correction method, and biometric authentication apparatus | |
KR100666902B1 (en) | How to Focus Fingerprint Images and Fingerprint Sensing Devices | |
WO2020108225A1 (en) | Fingerprint acquisition method and related apparatus | |
US9298965B2 (en) | Biometric authentication device and biometric authentication method | |
US11580775B2 (en) | Differentiating between live and spoof fingers in fingerprint analysis by machine learning | |
US20030044051A1 (en) | Fingerprint image input device and living body identification method using fingerprint image | |
US20100215223A1 (en) | Vein Pattern Management System, Vein Pattern Registration Apparatus, Vein Pattern Authentication Apparatus, Vein Pattern Registration Method, Vein Pattern Authentication Method, Program, and Vein Data Configuration | |
CN110245548B (en) | Electronic device including non-contact palm biometric sensor and related methods | |
JP2009187520A (en) | Authentication device, authentication method, registration device and registration method | |
CN104063709B (en) | Sight line detector and method, image capture apparatus and its control method | |
US20160125308A1 (en) | Data comparison method | |
CN108734076A (en) | Fingerprint recognition device and fingerprint recognition method | |
TW201814571A (en) | Fingerprint sensor and fingerprint recognition method thereof | |
CN114241528A (en) | Fingerprint sensing device and operation method thereof | |
Ravi et al. | A novel method for touch-less finger print authentication | |
US20100208948A1 (en) | Vein Pattern Management System, Vein Pattern Registration Apparatus, Vein Pattern Authentication Apparatus, Vein Pattern Registration Method, Vein Pattern Authentication Method, Program, and Vein Data Configuration | |
KR20170136692A (en) | Authentication method for portable secure authentication apparatus with improved security for fake fingerprints | |
US11423689B1 (en) | Identification method for an identification system | |
CN115082975A (en) | Biometric Identification Methods | |
TWI796183B (en) | Fingerprint identification method | |
KR100488182B1 (en) | Image processing apparatus and method | |
JP2019219833A (en) | Information processing apparatus, wearable device, information processing method, and program | |
KR20170136370A (en) | Portable secure authentication apparatus with improved security for fake fingerprints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |