CN115082555A - High-precision displacement real-time measurement system and method of RGBD monocular camera - Google Patents

High-precision displacement real-time measurement system and method of RGBD monocular camera Download PDF

Info

Publication number
CN115082555A
CN115082555A CN202210563873.8A CN202210563873A CN115082555A CN 115082555 A CN115082555 A CN 115082555A CN 202210563873 A CN202210563873 A CN 202210563873A CN 115082555 A CN115082555 A CN 115082555A
Authority
CN
China
Prior art keywords
camera
time
displacement
real
rgbd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210563873.8A
Other languages
Chinese (zh)
Other versions
CN115082555B (en
Inventor
高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aerospace Propulsion Testing Technique Institute
Original Assignee
Xian Aerospace Propulsion Testing Technique Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aerospace Propulsion Testing Technique Institute filed Critical Xian Aerospace Propulsion Testing Technique Institute
Priority to CN202210563873.8A priority Critical patent/CN115082555B/en
Publication of CN115082555A publication Critical patent/CN115082555A/en
Application granted granted Critical
Publication of CN115082555B publication Critical patent/CN115082555B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/207Analysis of motion for motion estimation over a hierarchy of resolutions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention provides a high-precision real-time displacement measurement system and method of an RGBD monocular camera, and solves the problem that self-calibration in the displacement measurement process cannot be directly realized through monocular vision in the prior art. The measuring system disclosed by the invention comprises a target identification module, an RGBD camera measuring module and a displacement real-time calculating module; the specific method comprises the following steps: obtaining pixel coordinates of the central points of the left and right side identification objects by a target identification module by adopting an angular point detection algorithm; measuring by adopting an RGBD camera measuring module to obtain a world coordinate value of the central point of the left recognition object; and calculating a camera matrix according to the pixel coordinate and the world coordinate value of the central point of the left identification object by adopting a displacement real-time calculation module, further completing self-calibration of the camera, and calculating the world coordinate value of the central point of the right identification object by combining the pixel coordinate of the central point of the right identification object and the calculated camera matrix, thereby realizing high-precision real-time measurement of displacement.

Description

一种RGBD单目相机的高精度位移实时测量系统及方法A high-precision displacement real-time measurement system and method for RGBD monocular camera

技术领域technical field

本发明属于三维空间物体位移非接触测量领域,具体涉及一种RGBD单目相机的高精度位移实时测量系统及方法。The invention belongs to the field of non-contact measurement of object displacement in three-dimensional space, and in particular relates to a high-precision displacement real-time measurement system and method of an RGBD monocular camera.

背景技术Background technique

随着深度学习理论的不断完善和计算机视觉技术的快速发展,出现了很多新的非接触测量物体位移的方法,如基于单目视觉测量方法、基于双目立体视觉测方法、基于RGBD相机视觉测量方法等。近几年来,尤其以基于RGBD相机进行位移与其他物理量的非接触测量进展最为迅速,这得益于深度学习算法和视觉芯片的快速发展。With the continuous improvement of deep learning theory and the rapid development of computer vision technology, many new methods of non-contact measurement of object displacement have emerged, such as measurement methods based on monocular vision, measurement methods based on binocular stereo vision, and visual measurement based on RGBD cameras. method etc. In recent years, the non-contact measurement of displacement and other physical quantities based on RGBD cameras has made the most rapid progress, thanks to the rapid development of deep learning algorithms and vision chips.

航空和航天领域对三维位移场的非接触测量与分析一直备受关注,如何利用已有的硬件和视觉芯片实现三维位移场高精度测量是一个具有挑战的研究课题。当前,与RGBD单目相机结合测量物体位移的算法还较少,不同的测量算法得到的测量结果精度差异较大。The non-contact measurement and analysis of the 3D displacement field in the aviation and aerospace fields has always attracted much attention. How to use the existing hardware and vision chips to achieve high-precision measurement of the 3D displacement field is a challenging research topic. At present, there are few algorithms for measuring object displacement combined with RGBD monocular cameras, and the accuracy of measurement results obtained by different measurement algorithms is quite different.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种RGBD单目相机的高精度位移实时测量系统及方法,主要解决现有技术无法对三维位移场高精度和快速自标定测量的难题。The purpose of the present invention is to provide a high-precision displacement real-time measurement system and method for an RGBD monocular camera, which mainly solves the problem that the prior art cannot measure the three-dimensional displacement field with high precision and rapid self-calibration.

为实现上述目的,本发明提供如下解决方案:To achieve the above object, the present invention provides the following solutions:

一种RGBD单目相机的高精度位移实时测量系统,其特殊之处在于:包括目标识别模块,RGBD相机测量模块及位移实时计算模块;A high-precision displacement real-time measurement system of an RGBD monocular camera, which is special in that it includes a target recognition module, an RGBD camera measurement module and a displacement real-time calculation module;

所述目标识别模块用于识别得到识别物中心点的像素坐标;所述RGBD相机测量模块用于测量识别物中心点的像素坐标得到识别物中心点的世界坐标值;所述位移实时计算模块用于通过识别物中心点的像素坐标、世界坐标值以及相机的已知内参矩阵,得到实时的相机矩阵M,进而实现识别物的高精度位移实时测量。The target recognition module is used to identify and obtain the pixel coordinates of the center point of the recognized object; the RGBD camera measurement module is used to measure the pixel coordinates of the center point of the recognized object to obtain the world coordinate value of the center point of the recognized object; the displacement real-time calculation module uses The real-time camera matrix M is obtained by the pixel coordinates of the center point of the recognized object, the world coordinate value and the known internal parameter matrix of the camera, so as to realize the high-precision real-time displacement measurement of the recognized object.

此外,本发明还提供了一种RGBD单目相机的高精度位移实时测量方法,具体包括以下步骤:In addition, the present invention also provides a high-precision displacement real-time measurement method of an RGBD monocular camera, which specifically includes the following steps:

S1,标记左侧识别物和右侧识别物;S1, mark the left identifier and the right identifier;

S2,采用目标识别模块识别到左侧识别物的中心点的像素坐标(u1,v1);S2, using the target recognition module to recognize the pixel coordinates (u 1 , v 1 ) of the center point of the left recognition object;

定义世界坐标系为Ow-XwYwZw,其中OwZw为主光轴方向;Define the world coordinate system as O w -X w Y w Z w , where O w Z w is the main optical axis direction;

定义图像坐标系为o'-uv,其中,u表示X方向,v表示Y方向;Define the image coordinate system as o'-uv, where u represents the X direction and v represents the Y direction;

S3,采用RGBD相机测量模块对S2识别的像素坐标(u1,v1)进行测量,得到左侧识别物中心点的世界坐标值Pw1,所述Pw1=(Xw1,Yw1,Zw1);S3, using the RGBD camera measurement module to measure the pixel coordinates (u 1 , v 1 ) identified by S2, to obtain the world coordinate value P w1 of the center point of the identification object on the left, the P w1 =(X w1 , Y w1 , Z w1 );

S4,基于S2识别的像素坐标(u1,v1)和S3测量得到的世界坐标值Pw1,通过位移实时计算模块计算得到RGBD相机的相机矩阵M,进而完成相机的自标定;S4, based on the pixel coordinates (u 1 , v 1 ) identified by S2 and the world coordinate value P w1 measured by S3, the camera matrix M of the RGBD camera is calculated by the displacement real-time calculation module, and then the self-calibration of the camera is completed;

S5,采用S2的方法识别右侧识别物中心点的像素坐标(u2,v2),并利用S4得到的相机矩阵M的值,得到右侧识别物中心点的世界坐标值Pw2,所述Pw2=(Xw2,Yw2,Zw2);S5, adopt the method of S2 to identify the pixel coordinates (u 2 , v 2 ) of the center point of the right identifier, and use the value of the camera matrix M obtained in S4 to obtain the world coordinate value P w2 of the center point of the right identifier, so Said P w2 = (X w2 , Y w2 , Z w2 );

S6,定义0时刻左侧识别物和右侧识别物的世界坐标值分别为Pw1和Pw2S6, define the world coordinate values of the left identifier and the right identifier at time 0 as P w1 and P w2 respectively;

定义t时刻左侧识别物和右侧识别物的世界坐标值分别为Pw1'和Pw2',其中,Pw1'=(Xw1',Yw1',Zw1'),Pw2'=(Xw2',Yw2',Zw2');Define the world coordinate values of the left identifier and the right identifier at time t as P w1 ' and P w2 ' respectively, where P w1 '=(X w1 ', Y w1 ', Z w1 '), P w2 '= (X w2 ', Y w2 ', Z w2 ');

则0时刻到t时刻内左侧识别物和右侧识别物在X轴上的实时位移量为:WYx=|Xw1'-Xw1|+|Xw2'-Xw2|,0时刻到t时刻内左侧识别物和右侧识别物在Y轴上的实时位移量为:WYy=|Yw1'-Yw1|+|Yw2'-Yw2|,至此,完成左侧识别物和右侧识别物的高精度位移实时测量。Then the real-time displacement of the left and right identifiers on the X-axis from time 0 to time t is: WYx=|X w1 ' - X w1 |+|X w2 ' - X w2 |, from time 0 to t The real-time displacement of the left identifier and the right identifier on the Y-axis at the moment is: WYy=|Y w1 ' - Y w1 |+|Y w2 ' - Y w2 | High-precision displacement real-time measurement of side identifiers.

进一步地,S4中,所述相机矩阵M根据相机位置的移动进行实时计算,计算公式为:Further, in S4, the camera matrix M is calculated in real time according to the movement of the camera position, and the calculation formula is:

Figure BDA0003657035670000021
Figure BDA0003657035670000021

其中,K为相机的内参矩阵,λ为系数常量,R为相机外参旋转矩阵,t为相机外参平移矩阵。Among them, K is the camera's internal parameter matrix, λ is the coefficient constant, R is the camera's external parameter rotation matrix, and t is the camera's external parameter translation matrix.

进一步地,S2中,所述目标识别模块采用角点检测算法进行识别。Further, in S2, the target identification module uses a corner detection algorithm to identify.

与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

1、本发明提供的一种RGBD单目相机的高精度位移实时测量系统,包括目标识别模块,RGBD相机测量模块及位移实时计算模块,在无标定模块的前提下,可以实现RGBD相机的快速自标定测量,解决了位移测量中标定过程繁琐的问题,节省了测量时间和人工成本。1. A high-precision displacement real-time measurement system for an RGBD monocular camera provided by the present invention includes a target recognition module, an RGBD camera measurement module and a displacement real-time calculation module. On the premise of no calibration module, it can realize the rapid automatic self-measurement of the RGBD camera. The calibration measurement solves the tedious problem of the calibration process in the displacement measurement, and saves the measurement time and labor cost.

2、本发明提供的一种RGBD单目相机的高精度位移实时测量方法,通过采用RGBD单目相机的高精度测距功能,实现了三维位移场的高精度测量,为实际的位移测量提供了强有力的数据支撑。2. The high-precision displacement real-time measurement method of an RGBD monocular camera provided by the present invention realizes the high-precision measurement of the three-dimensional displacement field by using the high-precision ranging function of the RGBD monocular camera, and provides a practical solution for the actual displacement measurement. Strong data support.

3、本发明提供的一种RGBD单目相机的高精度位移实时测量方法,通过识别待测点的中心像素坐标,可以实现三维空间任意标记物中心点位移的实时测量,比单目相机仅能实现面内二维位移测量具有更优的性能。3. The high-precision displacement real-time measurement method of an RGBD monocular camera provided by the present invention can realize real-time measurement of the displacement of the center point of any marker in three-dimensional space by identifying the central pixel coordinates of the point to be measured. The realization of in-plane two-dimensional displacement measurement has better performance.

附图说明Description of drawings

图1为本发明一种RGBD单目相机的高精度位移实时测量系统框架示意图。FIG. 1 is a schematic diagram of the framework of a high-precision displacement real-time measurement system of an RGBD monocular camera of the present invention.

图2为本发明一种RGBD单目相机的高精度位移实时测量方法流程图。FIG. 2 is a flowchart of a high-precision displacement real-time measurement method of an RGBD monocular camera of the present invention.

图3为本发明一种RGBD单目相机的高精度位移实时测量方法的RGBD测量模块的相机成像模型图;3 is a camera imaging model diagram of an RGBD measurement module of a high-precision displacement real-time measurement method of an RGBD monocular camera of the present invention;

图4为本发明实施例中的左侧识别物和右侧识别物的标记原始图;4 is an original diagram of the marking of the left identifier and the right identifier in the embodiment of the present invention;

图5为图4的灰度图;Fig. 5 is the grayscale image of Fig. 4;

图6为本发明实施例中的左侧识别物和右侧识别物的提取图;6 is an extraction diagram of a left identifier and a right identifier in an embodiment of the present invention;

图7为本发明实施例中的左侧识别物和右侧识别物的测量结果检测图;Fig. 7 is the measurement result detection diagram of the left identification object and the right identification object in the embodiment of the present invention;

图8为本发明实施例中的一种RGBD单目相机的高精度位移实时测量方法的实时位移变化图;8 is a real-time displacement change diagram of a high-precision displacement real-time measurement method of an RGBD monocular camera in an embodiment of the present invention;

图9为采用PXI数采系统采集的拉杆式位移传感器测量的位移变化图。Fig. 9 is a displacement change diagram measured by a rod-type displacement sensor collected by a PXI data acquisition system.

附图中:In the attached picture:

1-RGBD单目相机的高精度位移实时测量系统,2-目标识别模块,3-RGBD相机测量模块,4-位移实时计算模块。1-High-precision displacement real-time measurement system of RGBD monocular camera, 2-target recognition module, 3-RGBD camera measurement module, 4-displacement real-time calculation module.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. The embodiments of the present invention, and all other embodiments obtained by those of ordinary skill in the art without creative work, fall within the protection scope of the present invention.

如图1所示,一种RGBD单目相机的高精度位移实时测量系统1,包括目标识别模块2,RGBD相机测量模块3及位移实时计算模块4;目标识别模块2用于识别得到识别物中心点的像素坐标;RGBD相机测量模块3用于通过识别物中心点的像素坐标测量得到识别物中心点的世界坐标值;位移实时计算模块4用于根据左侧识别物中心点的像素坐标和左侧识别物中心点的世界坐标值以及已知的相机的内参矩阵K计算出相机矩阵M,再通过测量右侧识别物中心点的像素坐标和计算出的相机矩阵M计算出右侧识别物中心点的世界坐标值,进而得到左侧识别物和右侧识别物的实时测量位移的变化值,实现RGBD单目相机的高精度位移实时测量。As shown in Figure 1, a high-precision displacement real-time measurement system 1 of an RGBD monocular camera includes a target recognition module 2, an RGBD camera measurement module 3 and a displacement real-time calculation module 4; the target recognition module 2 is used to identify the center of the recognized object The pixel coordinates of the point; the RGBD camera measurement module 3 is used to obtain the world coordinate value of the center point of the recognized object by measuring the pixel coordinates of the center point of the recognized object; The camera matrix M is calculated from the world coordinate value of the center point of the side identification object and the known internal parameter matrix K of the camera, and then the center of the right identification object is calculated by measuring the pixel coordinates of the center point of the right identification object and the calculated camera matrix M. The world coordinate value of the point is obtained, and then the change value of the real-time measurement displacement of the left and right identification objects is obtained, and the high-precision real-time displacement measurement of the RGBD monocular camera is realized.

另外,如图2所示,本发明还提供了一种RGBD单目相机的高精度位移实时测量方法,包括以下步骤:In addition, as shown in FIG. 2 , the present invention also provides a high-precision real-time displacement measurement method of an RGBD monocular camera, comprising the following steps:

S1,标记左侧识别物和右侧识别物,左侧识别物和右侧识别物指面内的任意两个位置。S1, mark the left identifier and the right identifier, and the left identifier and the right identifier refer to any two positions in the plane.

S2,采用目标识别模块2识别到左侧识别物的中心点的像素坐标(u1,v1),本实施例中,目标识别模块2采用的是角点检测算法进行识别,角点检测算法可快速、准确地识别所需信息,为后续测量及计算提供精确的基础数据。S2, using the target recognition module 2 to identify the pixel coordinates (u 1 , v 1 ) of the center point of the identification object on the left, in this embodiment, the target recognition module 2 uses a corner detection algorithm to identify, and the corner detection algorithm It can quickly and accurately identify the required information and provide accurate basic data for subsequent measurements and calculations.

定义目标识别模块中相机的坐标系为Oc-XcYcZc,其中Oc为光心,OcZc为主光轴方向;Define the coordinate system of the camera in the target recognition module as O c -X c Y c Z c , where O c is the optical center, and O c Z c is the main optical axis direction;

定义世界坐标系为Ow-XwYwZw,其中OwZw为主光轴方向;Define the world coordinate system as O w -X w Y w Z w , where O w Z w is the main optical axis direction;

定义图像坐标系为o'-uv,其中,u表示X方向,v表示Y方向。Define the image coordinate system as o'-uv, where u represents the X direction and v represents the Y direction.

S3,采用RGBD相机测量模块3对S2的像素坐标(u1,v1)进行测量,得到左侧识别物中心点的世界坐标值Pw1,其中Pw1=(Xw1,Yw1,Zw1),本步骤中RGBD相机测量模块3使用的是RGBD相机进行测量。S3, the RGBD camera measurement module 3 is used to measure the pixel coordinates (u 1 , v 1 ) of S2 to obtain the world coordinate value P w1 of the center point of the identification object on the left, where P w1 =(X w1 , Y w1 , Z w1 ), in this step, the RGBD camera measurement module 3 uses an RGBD camera to measure.

如图3所示,为RGBD相机测量模块的相机成像模型图。As shown in Figure 3, it is the camera imaging model diagram of the RGBD camera measurement module.

S4,基于S2的像素坐标(u1,v1)和S3得到的世界坐标值Pw1,通过位移实时计算模块4计算得到RGBD相机的相机矩阵M,进而完成相机的自标定。S4, based on the pixel coordinates (u 1 , v 1 ) of S2 and the world coordinate value P w1 obtained by S3, the camera matrix M of the RGBD camera is calculated by the displacement real-time calculation module 4, and then the self-calibration of the camera is completed.

本步骤中,相机矩阵M根据相机位置的移动进行实时计算,具体计算公式为:In this step, the camera matrix M is calculated in real time according to the movement of the camera position, and the specific calculation formula is:

Figure BDA0003657035670000051
Figure BDA0003657035670000051

即:

Figure BDA0003657035670000052
which is:
Figure BDA0003657035670000052

其中,由于目标识别模块2选用定焦摄像头,则K为已知值,λ为系数常量,R为相机外参旋转矩阵,t为相机外参平移矩阵。Among them, since the target recognition module 2 selects a fixed-focus camera, K is a known value, λ is a coefficient constant, R is a rotation matrix of camera extrinsic parameters, and t is a translation matrix of camera extrinsic parameters.

S5,采用S2的方法识别右侧识别物的中心点的像素坐标(u2,v2),并利用S4得到的相机矩阵M的值,采用S4的计算公式得到精确的右侧识别物中心点的世界坐标值Pw2,其中Pw2=(Xw2,Yw2,Zw2)。S5, adopt the method of S2 to identify the pixel coordinates (u 2 , v 2 ) of the center point of the identification object on the right, and use the value of the camera matrix M obtained in S4 to obtain the accurate center point of the identification object on the right using the calculation formula of S4 The world coordinate value P w2 of , where P w2 =(X w2 , Y w2 , Z w2 ).

S6,定义0时刻左侧识别物的世界坐标值为Pw1,则Pw1=(Xw1,Yw1,Zw1);S6, define the world coordinate value of the left identifier at time 0 as P w1 , then P w1 =(X w1 , Y w1 , Z w1 );

定义0时刻右侧识别物的世界坐标值为Pw2,则Pw2=(Xw2,Yw2,Zw2);Define the world coordinate value of the right identifier at time 0 as P w2 , then P w2 =(X w2 , Y w2 , Z w2 );

定义t时刻左侧识别物的世界坐标值为Pw1',则Pw1'=(Xw1',Yw1',Zw1');Define the world coordinate value of the left identifier at time t as P w1 ', then P w1 '=(X w1 ', Y w1 ', Z w1 ');

定义t时刻右侧识别物的世界坐标值为Pw2',则Pw2'=(Xw2',Yw2',Zw2')。Define the world coordinate value of the right identifier at time t as P w2 ', then P w2 '=(X w2 ', Y w2 ', Z w2 ').

则0时刻到t时刻内左侧识别物和右侧识别物在X轴上的实时位移量为:WYx=|Xw1'-Xw1|+|Xw2'-Xw2|,0时刻到t时刻内左侧识别物和右侧识别物在Y轴上的实时位移量为:WYy=|Yw1'-Yw1|+|Yw2'-Yw2|,进而完成了左侧识别物和右侧识别物的高精度位移实施测量。Then the real-time displacement of the left and right identifiers on the X-axis from time 0 to time t is: WYx=|X w1 ' - X w1 |+|X w2 ' - X w2 |, from time 0 to t The real-time displacement of the left identifier and the right identifier on the Y-axis at the moment is: WYy=|Y w1 ' - Y w1 |+|Y w2 '-Y w2 |, and then the left identifier and the right identifier are completed. The high-precision displacement of the side marker is measured.

本实施例采用在试车台滑动密封段两侧粘贴黑色方形识别物进行加热器位移的实时测量。算法验证采用离线验证的方式,算法验证的计算机配置环境为i5-6200U处理器、8G内存,采用RGBD相机拍摄30帧/s的1080P分辨率的视频,后台使用软件截取大小为1430×878,约60s时间的加热器位移视频数据。In this embodiment, black square identification objects are pasted on both sides of the sliding seal section of the test bed to measure the displacement of the heater in real time. Algorithm verification adopts offline verification. The computer configuration environment for algorithm verification is i5-6200U processor, 8G memory, and RGBD camera is used to shoot 1080P resolution video at 30 frames/s. Heater displacement video data for 60s.

具体方法为:将RGBD相机固定在三脚架上,调节水平调节器,使RGBD相机接近水平状态;将三脚架对准方形标记物的中心位置,调整RGBD相机和识别物之间的距离,使得两个识别物位于RGBD相机取景框的中心位置;对加热器热试验的标记点图像视频采用算法处理得到如图4所示的原始图、图5所示的灰度图、图6所示的识别物提取图及图7所示的识别物检测结果图。The specific method is: fix the RGBD camera on the tripod, adjust the level adjuster to make the RGBD camera close to the horizontal state; align the tripod with the center of the square marker, adjust the distance between the RGBD camera and the recognition object, so that the two recognition The object is located in the center of the viewing frame of the RGBD camera; the marked point image video of the heater thermal test is processed by algorithm to obtain the original image shown in Figure 4, the grayscale image shown in Figure 5, and the extraction of the recognized object shown in Figure 6. Fig. and Fig. 7 is a graph showing the detection result of the recognized object.

从图4至图7可知,在试车台滑动密封段两侧粘贴黑色方形识别物进行加热器位移测量是可行的。It can be seen from Figure 4 to Figure 7 that it is feasible to stick black square identifiers on both sides of the sliding seal section of the test bench to measure the displacement of the heater.

如图7所示,在加热器热试验全程时间段内,视频中的识别物随着滑动密封段的位移进行稳定地移动,识别物从背景图像中提取清晰,可以验证目标识别模块2中的识别算法的有效性。处理输出水平轴位移的数据到文本文件中,处理完60s视频数据需约0.17s,可以验证算法满足加热器位移测量的实时性要求,图8是基于机器视觉采集处理得到的位移数据。数据中有不连续的地方是由于相机未识别到,图中显示,从0帧-400帧图像位移不太明显,位移量(WY)约在0mm左右波动,从400帧-1400帧图像得到的位移量(WY)呈抛物线增加,整体增长较快。As shown in Figure 7, during the whole time period of the heater thermal test, the recognized objects in the video move stably with the displacement of the sliding seal section, and the recognized objects are clearly extracted from the background image, which can verify the target recognition module 2. Identify the effectiveness of the algorithm. It takes about 0.17s to process the output horizontal axis displacement data into a text file. It takes about 0.17s to process the 60s video data. It can be verified that the algorithm meets the real-time requirements of the heater displacement measurement. Figure 8 is the displacement data obtained based on machine vision acquisition and processing. There are discontinuities in the data because the camera is not recognized. The figure shows that the displacement from 0 frames to 400 frames is not obvious, and the displacement (WY) fluctuates around 0mm, obtained from 400 frames to 1400 frames of images. The displacement (WY) increases parabolically, and the overall growth is relatively fast.

如图8所示,本发明基于RGBD单目相机的实时位移测量方法测得的最大位移为15.7324mm,位移量的测量精确到0.0001mm,而传统的基于单目视觉的位移测量方法可测得15.711mm,测量精度精确到0.001mm,二者相比较,本发明的测量方法相较于传统的单目视觉测量方法测量精度明显提高。另外,单目相机仅能实现面内二维位移测量,而本发明采用RGBD单目相机的高精度测距功能,通过识别待测点的中心像素坐标,可以实现三维位移场的高精度测量,为实际的位移测量提供了强有力的数据支撑。As shown in Figure 8, the maximum displacement measured by the real-time displacement measurement method based on the RGBD monocular camera of the present invention is 15.7324mm, and the displacement measurement is accurate to 0.0001mm, while the traditional displacement measurement method based on monocular vision can measure Compared with the traditional monocular vision measurement method, the measurement accuracy of the present invention is obviously improved. In addition, the monocular camera can only realize the two-dimensional displacement measurement in the plane, and the present invention adopts the high-precision ranging function of the RGBD monocular camera, and can realize the high-precision measurement of the three-dimensional displacement field by identifying the center pixel coordinates of the point to be measured, It provides a strong data support for the actual displacement measurement.

如图9所示,对比PXI数采系统采集的拉杆式位移传感器测得的位移数据,选择相同的时间区间进行对比,具体取第6833行-第12833行的WY数据,由采样速率100点/s,换算得到60s时间数据。As shown in Figure 9, compare the displacement data measured by the rod-type displacement sensor collected by the PXI data acquisition system, and select the same time interval for comparison. s, converted to 60s time data.

对比图8和图9,即本发明的测量方法和拉杆式位移传感器测量方法的测量结果进行对比:本发明的测量方法测得的最大位移为15.7324mm,拉杆式位移传感器测得的最大位移为15.7330mm,两者仅相差0.0006mm,但位移测量精度均达到0.001mm,从而验证本发明的测量结果的精度已无线接近拉杆式位移传感器的测量精度,但拉杆式位移传感器仅能实现接触式的高精度位移测量,而本发明的基于RGBD单目相机的位移测量系统完全满足非接触式的高精度位移测量的要求,且最终的测量结果也为航空和航天领域对三维位移场的非接触测量提供了强有力的数据支撑。Contrast Fig. 8 and Fig. 9, namely the measurement results of the measuring method of the present invention and the measuring method of the pull rod type displacement sensor are compared: the maximum displacement measured by the measuring method of the present invention is 15.7324mm, and the maximum displacement measured by the pull rod type displacement sensor is 15.7330mm, the difference between the two is only 0.0006mm, but the displacement measurement accuracy reaches 0.001mm, so it is verified that the accuracy of the measurement result of the present invention is wirelessly close to the measurement accuracy of the pull rod type displacement sensor, but the pull rod type displacement sensor can only realize the contact type. High-precision displacement measurement, and the displacement measurement system based on the RGBD monocular camera of the present invention fully meets the requirements of non-contact high-precision displacement measurement, and the final measurement result is also the non-contact measurement of the three-dimensional displacement field in the aviation and aerospace fields. Provides strong data support.

相机标定是尺寸测量、位姿跟踪、缺陷检测等系统中最基本和最重要的环节,本发明的一种RGBD单目相机的高精度位移实时测量系统及方法同样适用于相机标定过程的研究中,这些均在本发明的保护范围之内。Camera calibration is the most basic and important link in systems such as size measurement, pose tracking, defect detection, etc. The high-precision displacement real-time measurement system and method for an RGBD monocular camera of the present invention is also applicable to the research of the camera calibration process. , which are all within the protection scope of the present invention.

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。本发明的目的在于提供一种超分辨实时位移测量系统及方法,以解决上述背景中提出的问题。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents. The purpose of the present invention is to provide a super-resolution real-time displacement measurement system and method to solve the problems raised in the above background.

Claims (4)

1.一种RGBD单目相机的高精度位移实时测量系统,其特征在于:包括目标识别模块(2),RGBD相机测量模块(3)及位移实时计算模块(4);1. a high-precision displacement real-time measurement system of RGBD monocular camera, is characterized in that: comprise target recognition module (2), RGBD camera measurement module (3) and displacement real-time calculation module (4); 所述目标识别模块(2)用于识别得到识别物中心点的像素坐标;The target recognition module (2) is used for identifying the pixel coordinates of the center point of the recognized object; 所述RGBD相机测量模块(3)用于测量识别物中心点的像素坐标得到识别物中心点的世界坐标值;The RGBD camera measurement module (3) is used to measure the pixel coordinates of the center point of the identifier to obtain the world coordinate value of the center point of the identifier; 所述位移实时计算模块(4)用于通过识别物中心点的像素坐标、世界坐标值以及相机的已知内参矩阵,得到实时的相机矩阵M,进而实现识别物的高精度位移实时测量。The displacement real-time calculation module (4) is used to obtain a real-time camera matrix M by identifying the pixel coordinates of the center point of the object, the world coordinate value and the known internal parameter matrix of the camera, thereby realizing high-precision real-time displacement measurement of the identified object. 2.一种RGBD单目相机的高精度位移实时测量方法,其特征在于,包括以下步骤:2. a high-precision displacement real-time measurement method of RGBD monocular camera, is characterized in that, comprises the following steps: S1,标记左侧识别物和右侧识别物;S1, mark the left identifier and the right identifier; S2,采用目标识别模块(2)识别到左侧识别物的中心点的像素坐标(u1,v1);S2, using the target recognition module (2) to recognize the pixel coordinates (u 1 , v 1 ) of the center point of the left recognition object; 定义世界坐标系为Ow-XwYwZw,其中OwZw为主光轴方向;Define the world coordinate system as O w -X w Y w Z w , where O w Z w is the main optical axis direction; 定义图像坐标系为o'-uv,其中,u表示X方向,v表示Y方向;Define the image coordinate system as o'-uv, where u represents the X direction and v represents the Y direction; S3,采用RGBD相机测量模块(3)对S2识别的像素坐标(u1,v1)进行测量,得到左侧识别物中心点的世界坐标值Pw1,所述Pw1=(Xw1,Yw1,Zw1);S3, the RGBD camera measurement module (3) is used to measure the pixel coordinates (u 1 , v 1 ) identified by S2 to obtain the world coordinate value P w1 of the center point of the identification object on the left, where the P w1 =(X w1 , Y w1 , Z w1 ); S4,基于S2识别的像素坐标(u1,v1)和S3测量得到的世界坐标值Pw1,通过位移实时计算模块(4)计算得到RGBD相机的相机矩阵M,进而完成相机的自标定;S4, based on the pixel coordinates (u 1 , v 1 ) identified by S2 and the world coordinate value P w1 measured by S3, the camera matrix M of the RGBD camera is calculated by the displacement real-time calculation module (4), and then the self-calibration of the camera is completed; S5,采用S2的方法识别右侧识别物中心点的像素坐标(u2,v2),并利用S4得到的相机矩阵M的值,得到右侧识别物中心点的世界坐标值Pw2,所述Pw2=(Xw2,Yw2,Zw2);S5, adopt the method of S2 to identify the pixel coordinates (u 2 , v 2 ) of the center point of the right identifier, and use the value of the camera matrix M obtained in S4 to obtain the world coordinate value P w2 of the center point of the right identifier, so Said P w2 = (X w2 , Y w2 , Z w2 ); S6,定义0时刻左侧识别物和右侧识别物的世界坐标值分别为Pw1和Pw2S6, define the world coordinate values of the left identifier and the right identifier at time 0 as P w1 and P w2 respectively; 定义t时刻左侧识别物和右侧识别物的世界坐标值分别为Pw1'和Pw2',其中,Pw1'=(Xw1',Yw1',Zw1'),Pw2'=(Xw2',Yw2',Zw2');Define the world coordinate values of the left identifier and the right identifier at time t as P w1 ' and P w2 ' respectively, where P w1 '=(X w1 ', Y w1 ', Z w1 '), P w2 '= (X w2 ', Y w2 ', Z w2 '); 则0时刻到t时刻内左侧识别物和右侧识别物在X轴上的实时位移量为:WYx=|Xw1'-Xw1|+|Xw2'-Xw2|,0时刻到t时刻内左侧识别物和右侧识别物在Y轴上的实时位移量为:WYy=|Yw1'-Yw1|+|Yw2'-Yw2|,至此,完成左侧识别物和右侧识别物的高精度位移实时测量。Then the real-time displacement of the left and right identifiers on the X-axis from time 0 to time t is: WYx=|X w1 '-X w1 |+|X w2 '-X w2 |, from time 0 to t The real-time displacement of the left identifier and the right identifier on the Y-axis at the moment is: WYy=|Y w1 '-Y w1 |+|Y w2 '-Y w2 |, so far, the left identifier and right identifier are completed. High-precision displacement real-time measurement of side identifiers. 3.根据权利要求2所述的一种RGBD单目相机的高精度位移实时测量方法,其特征在于:3. the high-precision displacement real-time measuring method of a kind of RGBD monocular camera according to claim 2, is characterized in that: S4中,所述相机矩阵M根据相机位置的移动进行实时计算,计算公式为:In S4, the camera matrix M is calculated in real time according to the movement of the camera position, and the calculation formula is:
Figure FDA0003657035660000021
Figure FDA0003657035660000021
其中,K为相机的内参矩阵,λ为系数常量,R为相机外参旋转矩阵,t为相机外参平移矩阵。Among them, K is the camera's internal parameter matrix, λ is the coefficient constant, R is the camera's external parameter rotation matrix, and t is the camera's external parameter translation matrix.
4.根据权利要求3所述的一种RGBD单目相机的高精度位移实时测量方法,其特征在于:S2中,所述目标识别模块(2)采用角点检测算法进行识别。4. The high-precision displacement real-time measurement method of an RGBD monocular camera according to claim 3, characterized in that: in S2, the target identification module (2) uses a corner detection algorithm to identify.
CN202210563873.8A 2022-05-23 2022-05-23 A high-precision real-time displacement measurement system and method for RGBD monocular camera Active CN115082555B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210563873.8A CN115082555B (en) 2022-05-23 2022-05-23 A high-precision real-time displacement measurement system and method for RGBD monocular camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210563873.8A CN115082555B (en) 2022-05-23 2022-05-23 A high-precision real-time displacement measurement system and method for RGBD monocular camera

Publications (2)

Publication Number Publication Date
CN115082555A true CN115082555A (en) 2022-09-20
CN115082555B CN115082555B (en) 2025-05-09

Family

ID=83249632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210563873.8A Active CN115082555B (en) 2022-05-23 2022-05-23 A high-precision real-time displacement measurement system and method for RGBD monocular camera

Country Status (1)

Country Link
CN (1) CN115082555B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116681778A (en) * 2023-06-06 2023-09-01 固安信通信号技术股份有限公司 Distance measurement method based on monocular camera

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106447766A (en) * 2016-09-28 2017-02-22 成都通甲优博科技有限责任公司 Scene reconstruction method and apparatus based on mobile device monocular camera
CN113096183A (en) * 2021-03-18 2021-07-09 武汉科技大学 Obstacle detection and measurement method based on laser radar and monocular camera
CN114413958A (en) * 2021-12-28 2022-04-29 浙江大学 Monocular visual ranging and speed measurement method for unmanned logistics vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106447766A (en) * 2016-09-28 2017-02-22 成都通甲优博科技有限责任公司 Scene reconstruction method and apparatus based on mobile device monocular camera
CN113096183A (en) * 2021-03-18 2021-07-09 武汉科技大学 Obstacle detection and measurement method based on laser radar and monocular camera
CN114413958A (en) * 2021-12-28 2022-04-29 浙江大学 Monocular visual ranging and speed measurement method for unmanned logistics vehicles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
程庆;魏利胜;甘泉: "基于单目视觉的目标定位算法研究", 安徽工程大学学报, no. 02, 20 June 2017 (2017-06-20) *
郑帅超;房立金;徐志刚;: "单目视觉-激光测距定位系统的标定与姿态校正", 机械科学与技术, no. 12, 31 October 2017 (2017-10-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116681778A (en) * 2023-06-06 2023-09-01 固安信通信号技术股份有限公司 Distance measurement method based on monocular camera
CN116681778B (en) * 2023-06-06 2024-01-09 固安信通信号技术股份有限公司 Distance measurement method based on monocular camera

Also Published As

Publication number Publication date
CN115082555B (en) 2025-05-09

Similar Documents

Publication Publication Date Title
CN107144241B (en) A kind of binocular vision high-precision measuring method based on depth of field compensation
CN108921901B (en) A large field of view camera calibration method based on precision two-axis turntable and laser tracker
CN108648232B (en) Binocular stereoscopic vision sensor integrated calibration method based on precise two-axis turntable
CN110889829B (en) A monocular distance measurement method based on fisheye lens
CN109163657B (en) Round target pose detection method based on binocular vision three-dimensional reconstruction
CN105424006B (en) Unmanned plane hovering accuracy measurement method based on binocular vision
CN108986070B (en) Rock crack propagation experiment monitoring method based on high-speed video measurement
CN109559355B (en) Multi-camera global calibration device and method without public view field based on camera set
CN111667536A (en) Parameter calibration method based on zoom camera depth estimation
CN107255443A (en) Binocular vision sensor field calibration method and device under a kind of complex environment
CN102221331B (en) Measuring method based on asymmetric binocular stereovision technology
CN108413917B (en) Non-contact three-dimensional measurement system, non-contact three-dimensional measurement method and measurement device
CN109269525B (en) Optical measurement system and method for take-off or landing process of space probe
CN110207951A (en) A kind of aircraft cable support assembled state detection method of view-based access control model
CN107589069B (en) Non-contact type measuring method for object collision recovery coefficient
CN110514114A (en) A method for calibrating the spatial position of tiny targets based on binocular vision
CN109493378B (en) Verticality detection method based on combination of monocular vision and binocular vision
CN114963981B (en) A non-contact measurement method for cylindrical parts docking based on monocular vision
CN115690623A (en) Remote target damage assessment method based on three-dimensional reconstruction
CN209459599U (en) An aero-engine case deformation measurement device based on the principle of binocular vision
CN111998834B (en) Crack monitoring method and system
CN115082555A (en) High-precision displacement real-time measurement system and method of RGBD monocular camera
CN113884017A (en) A method and system for non-contact deformation detection of insulators based on trinocular vision
CN115307865B (en) A model deformation measurement method for high temperature hypersonic flow fields
CN117635496A (en) Chip 3D angle correction method and system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant