CN115082318B - A super-resolution reconstruction method for infrared images of electrical equipment - Google Patents
A super-resolution reconstruction method for infrared images of electrical equipment Download PDFInfo
- Publication number
- CN115082318B CN115082318B CN202210817691.9A CN202210817691A CN115082318B CN 115082318 B CN115082318 B CN 115082318B CN 202210817691 A CN202210817691 A CN 202210817691A CN 115082318 B CN115082318 B CN 115082318B
- Authority
- CN
- China
- Prior art keywords
- module
- network
- electrical equipment
- resolution
- infrared image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Computational Linguistics (AREA)
- Image Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
技术领域Technical Field
本发明属于红外图像增强技术领域,涉及一种电气设备红外图像超分辨率重建方法。The invention belongs to the technical field of infrared image enhancement and relates to a super-resolution reconstruction method for infrared images of electrical equipment.
背景技术Background technique
电气设备的故障往往多以设备故障部位温度变化体现出来,因此利用红外热成像仪采集电气设备红外图像,并对红外图像进行分析,可以实现无接触的电力设备故障检测。虽然,热成像仪已经被广泛应用于电力设备状态监测中,但是由于高分辨率红外热成像仪成本较高,电力公司大都采用普通红外热成像仪,采集到的电气设备红外图像分辨率较低,直接影响基于电力设备红外图像的设备状态检测以及故障诊断准确性等。提高电气设备红外图像分辨率有两种方法:一种是提高红外热成像仪硬件水平,进而提高红外图像分辨率,该方法难度较大、成本较高;另一种是在现有红外热成像仪的基础上,基于红外图像超分辨率重建方法,将低分辨率图像重建为高分辨率图像,该方法成本较低。The failure of electrical equipment is often manifested by the temperature change of the fault part of the equipment. Therefore, the infrared imager is used to collect infrared images of electrical equipment and analyze the infrared images, which can realize contactless fault detection of power equipment. Although thermal imagers have been widely used in power equipment status monitoring, due to the high cost of high-resolution infrared thermal imagers, most power companies use ordinary infrared thermal imagers, and the resolution of the infrared images of electrical equipment collected is low, which directly affects the accuracy of equipment status detection and fault diagnosis based on infrared images of power equipment. There are two ways to improve the resolution of infrared images of electrical equipment: one is to improve the hardware level of infrared thermal imagers, thereby improving the resolution of infrared images. This method is difficult and costly; the other is to reconstruct low-resolution images into high-resolution images based on the existing infrared thermal imagers and the infrared image super-resolution reconstruction method. This method is low-cost.
现有单幅电气设备红外图像超分辨率重建可以分为三大类:基于差值的电气设备红外图像超分辨率重建方法、基于重建模型的电气设备红外图像超分辨率重建方法和基于学习的电气设备红外图像超分辨率重建方法。基于插值的电气设备红外图像超分辨率重建方法简单易行,能够得到平滑的重建图像,但是部分细节信息丢失严重,重建图像视觉质量较差,纹理信息不明显。基于重建模型的电气设备红外图像超分辨率重建方法利用先验信息重建红外图像,不同环境下的先验信息不同,影响了重建图像的质量。基于学习的电气设备红外图像超分辨率重建方法,利用大量的训练数据,使得模型能够学习高分辨率电气设备红外图像和对应的低分辨率电气设备红外图像之间的某种对应关系,然后利用训练后的模型根据从低分辨率电气设备红外图像中重建高分辨率红外图像,进而实现电力设备红外图像的超分辨率重建。The existing super-resolution reconstruction of single infrared images of electrical equipment can be divided into three categories: super-resolution reconstruction methods of electrical equipment infrared images based on difference, super-resolution reconstruction methods of electrical equipment infrared images based on reconstruction models, and super-resolution reconstruction methods of electrical equipment infrared images based on learning. The super-resolution reconstruction method of electrical equipment infrared images based on interpolation is simple and easy to implement, and can obtain a smooth reconstructed image, but some detail information is seriously lost, the visual quality of the reconstructed image is poor, and the texture information is not obvious. The super-resolution reconstruction method of electrical equipment infrared images based on reconstruction models uses prior information to reconstruct infrared images. The prior information in different environments is different, which affects the quality of the reconstructed image. The super-resolution reconstruction method of electrical equipment infrared images based on learning uses a large amount of training data to enable the model to learn a certain correspondence between high-resolution electrical equipment infrared images and corresponding low-resolution electrical equipment infrared images, and then uses the trained model to reconstruct high-resolution infrared images from low-resolution electrical equipment infrared images, thereby realizing super-resolution reconstruction of power equipment infrared images.
现有技术的基于生成对抗网络的电气设备红外图像超分辨率重建方法属于基于学习的超分辨率图像重建方法,虽然相对其他方法能够更好的重建电气设备红外图像,但是重建后的图像轮廓边缘不够清晰,影响基于电气设备红外图像的电气设备状态监测和故障诊断。因此,需要提高基于生成对抗网络的电气设备红外图像超分辨率重建方法性能,进而提高重建后的电气设备红外图像质量。The prior art super-resolution reconstruction method of infrared images of electrical equipment based on generative adversarial networks belongs to a super-resolution image reconstruction method based on learning. Although it can better reconstruct infrared images of electrical equipment than other methods, the contour edges of the reconstructed image are not clear enough, which affects the electrical equipment status monitoring and fault diagnosis based on infrared images of electrical equipment. Therefore, it is necessary to improve the performance of the super-resolution reconstruction method of infrared images of electrical equipment based on generative adversarial networks, and thus improve the quality of the reconstructed infrared images of electrical equipment.
发明内容Summary of the invention
本发明所要解决的技术问题是:克服现有技术的缺点,提供一种电气设备红外图像超分辨率重建方法,用来提高重建后的电力设备红外图像质量。The technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a method for super-resolution reconstruction of infrared images of electrical equipment to improve the quality of reconstructed infrared images of electrical equipment.
本发明解决技术问题的方案是:一种电气设备红外图像超分辨率重建方法,其特征在于,它由对抗网络和生成网络两部分组成,所述生成网络用于生成电气设备红外图像超分辨率重建图像,对抗网络用于判断高分辨率的电气设备红外图像是生成的图像还是原始高分辨率的图像,通过生成网络和对抗网络的博弈,提高生成网络的图像生成能力,具体步骤如下:The solution to the technical problem of the present invention is: a method for super-resolution reconstruction of infrared images of electrical equipment, characterized in that it consists of two parts: an adversarial network and a generative network. The generative network is used to generate a super-resolution reconstructed image of the infrared image of the electrical equipment, and the adversarial network is used to determine whether the high-resolution infrared image of the electrical equipment is a generated image or an original high-resolution image. Through the game between the generative network and the adversarial network, the image generation ability of the generative network is improved. The specific steps are as follows:
步骤1,构建数据集:Step 1, build the dataset:
①利用高分辨率红外成像仪采集具有高分辨率的电气设备红外图像;① Use high-resolution infrared imagers to collect high-resolution infrared images of electrical equipment;
②利用包含各向同性高斯模糊、各向异性高斯模糊、降采样、3D高斯噪声、成像仪噪声和JPEG噪声的退化函数,拟合真实电气设备红外图像的退化过程;② Using the degradation function including isotropic Gaussian blur, anisotropic Gaussian blur, downsampling, 3D Gaussian noise, imager noise and JPEG noise, the degradation process of the infrared image of real electrical equipment is fitted;
③对采集到的高分辨率红外成像图像进行退化处理,得到对应的低分辨率电气设备红外图像;得到的退化后的低分辨率电气设备红外图像和与之对应的高分辨率的电气设备红外图像组成图像对,若干个图像对构成数据集,数据集分为两部分,一部分作为训练数据集,另一部分作为测试数据集;③ Perform degradation processing on the collected high-resolution infrared imaging images to obtain the corresponding low-resolution electrical equipment infrared images; the obtained degraded low-resolution electrical equipment infrared images and the corresponding high-resolution electrical equipment infrared images form an image pair, and several image pairs constitute a data set. The data set is divided into two parts, one as a training data set and the other as a test data set;
步骤2,构建改进的批标准化模块:Step 2: Build an improved batch normalization module:
在常规批标准化模块的基础上,设计特征像素标准方差调节模块,以降低常规标准化模块对特征像素标准方差的影响,提高重建图像的质量;Based on the conventional batch normalization module, a feature pixel standard variance adjustment module is designed to reduce the impact of the conventional normalization module on the feature pixel standard variance and improve the quality of the reconstructed image.
步骤3,构建最终特征提取子模块:Step 3: Build the final feature extraction submodule:
构建最终特征提取子模块,用于提取电气设备红外图像特征;Construct the final feature extraction submodule to extract the features of infrared images of electrical equipment;
步骤4,构建电气设备红外图像超分辨率重建网络中的生成网络:Step 4: Construct the generation network in the electrical equipment infrared image super-resolution reconstruction network:
利用步骤2已构建的改进的批标准化模块和步骤3已构建的最终特征提取子模块,结合稠密连接网络和残差网络思想,在ESRGAN网络的基础上,构建改进的ESRGAN网络的生成网络;Using the improved batch normalization module constructed in step 2 and the final feature extraction submodule constructed in step 3, combined with the ideas of dense connection network and residual network, on the basis of ESRGAN network, the improved ESRGAN network generation network is constructed;
步骤5,构建电气设备红外图像超分辨率重建网络中的对抗网络:Step 5: Construct an adversarial network in the electrical equipment infrared image super-resolution reconstruction network:
将步骤2已构建的模块引入到ESRGAN网络的对抗网络中,构建改进的ESRGAN网络的对抗网络;Introduce the module constructed in step 2 into the adversarial network of the ESRGAN network to construct an improved adversarial network of the ESRGAN network;
步骤6:训练电气设备红外图像超分辨率重建网络:Step 6: Train the electrical equipment infrared image super-resolution reconstruction network:
采用步骤1构建的训练数据集对步骤4构建的电气设备红外图像超分辨率重建网络中的生成网络和步骤5构建的电气设备红外图像超分辨率重建网络中的对抗网络进行训练;Using the training data set constructed in step 1 to train the generative network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 4 and the adversarial network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 5;
步骤7:网络模型测试和评估:Step 7: Network model testing and evaluation:
将步骤1中构建的测试数据集中的低分辨率电气设备红外图像输入到步骤6中已训练好的生成网络中,输出相应的重建后的电气设备红外超分辨率图像;计算重建的电气设备红外超分辨率图像的峰值信噪比,评估自然图像质量,如果峰值信噪比和自然图像质量评估满足实际应用需求,则执行步骤9,否则执行步骤8;Input the low-resolution electrical equipment infrared image in the test data set constructed in step 1 into the trained generation network in step 6, and output the corresponding reconstructed electrical equipment infrared super-resolution image; calculate the peak signal-to-noise ratio of the reconstructed electrical equipment infrared super-resolution image, and evaluate the natural image quality. If the peak signal-to-noise ratio and the natural image quality evaluation meet the actual application requirements, execute step 9, otherwise execute step 8;
步骤8:模型参数调整:Step 8: Model parameter adjustment:
对由步骤4和步骤5构建的电气设备红外图像超分辨率重建网络的模型参数进行调整,并返回步骤6,重新进行训练;Adjust the model parameters of the electrical equipment infrared image super-resolution reconstruction network constructed by steps 4 and 5, and return to step 6 to retrain;
步骤9:模型应用:Step 9: Model Application:
将步骤7得到的满足实际应用要求的生成网络,应用于电气设备红外图像超分辨率重建,从采集到的低分辨率电气设备红外图像中重建高分辨率电气设备红外图像。The generation network that meets the practical application requirements obtained in step 7 is applied to the super-resolution reconstruction of infrared images of electrical equipment, and a high-resolution infrared image of electrical equipment is reconstructed from the collected low-resolution infrared image of electrical equipment.
进一步,所述步骤1的数据集的80%作为训练数据集,数据集的20%作为测试数据集。Furthermore, 80% of the data set in step 1 is used as a training data set, and 20% of the data set is used as a test data set.
进一步,所述步骤2中构建改进的批标准化模块表示为:Furthermore, the improved batch normalization module constructed in step 2 is expressed as:
所述改进的批标准化模块由两个分支组成,第一个分支为常规批标准模块,第二个分支依次由标准方差函数(std()),对数函数(log),线性函数(f)和指数函数(exp())组成;第一个分支需要将模块的输入进行批标准化预处理,然后作为常规批标准化模块的输出,第二个分支需要将模块的输入依次进行标准方差函数,对数函数,线性函数和指数函数的处理之后输出,第一个分支的输出与第二个分支的输出进行相乘,得到改进的批标准化模块的最终输出。The improved batch normalization module consists of two branches, the first branch is a conventional batch normalization module, and the second branch is composed of a standard deviation function (std()), a logarithmic function (log), a linear function (f) and an exponential function (exp()) in sequence; the first branch needs to perform batch normalization preprocessing on the input of the module and then use it as the output of the conventional batch normalization module, and the second branch needs to perform standard deviation function, logarithmic function, linear function and exponential function processing on the input of the module in sequence and then output it, and the output of the first branch is multiplied by the output of the second branch to obtain the final output of the improved batch normalization module.
进一步,所述步骤3中构建最终特征提取子模块表示为:Furthermore, the final feature extraction submodule constructed in step 3 is expressed as:
最终特征提取子模块由前期特征提取子模块和步骤2的改进的批标准化模块组成;The final feature extraction submodule consists of the previous feature extraction submodule and the improved batch normalization module in step 2;
所述前期特征提取子模块由两个分支组成,第一个分支依次由1×1的卷积,一个ReLU6函数,一个3×3的卷积,一个ReLU6函数和一个1×1的卷积组成;第二个分支依次由1×1的卷积,一个ReLU6函数和一个残差网络组成;The early feature extraction submodule consists of two branches, the first branch is composed of a 1×1 convolution, a ReLU6 function, a 3×3 convolution, a ReLU6 function and a 1×1 convolution in sequence; the second branch is composed of a 1×1 convolution, a ReLU6 function and a residual network in sequence;
所述残差网络由一个3×3的卷积和跳跃连接组成,3×3的卷积的输出和跳跃连接的输出在通道维度上进行拼接,使得第二个分支的输入特征图和输出特征图的通道数保持不变;将第一个分支的输出和第二分支的输出进行特征图叠加得到前期特征提取子模块的输出特征;The residual network is composed of a 3×3 convolution and a jump connection. The output of the 3×3 convolution and the output of the jump connection are spliced in the channel dimension so that the number of channels of the input feature map and the output feature map of the second branch remain unchanged; the output of the first branch and the output of the second branch are superimposed on the feature map to obtain the output features of the previous feature extraction submodule;
将前期特征提取子模块作为网络模块纳入步骤2的改进的批标准化模块中形成最终特征提取子模块。The early feature extraction submodule is incorporated into the improved batch normalization module in step 2 as a network module to form the final feature extraction submodule.
进一步,所述步骤4中构建电气设备红外图像超分辨率重建网络中的生成网络表示为:Furthermore, the generative network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 4 is expressed as:
对若干个模块定义如下:Several modules are defined as follows:
IBN模块:步骤2构建的改进的批标准化模块;IBN module: the improved batch normalization module constructed in step 2;
GM模块:步骤3构建的最终特征提取子模块;GM module: the final feature extraction submodule constructed in step 3;
IRDB模块:残差密集模块;IRDB module: residual dense module;
IRRDB模块:具有残差结构的特征提取模块;IRRDB module: a feature extraction module with residual structure;
GM_DB模块:基于最终特征提取子模块的残差密集模块;GM_DB module: residual dense module based on the final feature extraction submodule;
GM_RDB模块:基于最终特征提取子模块的残差密集模块的特征提取模块;GM_RDB module: a feature extraction module based on the residual dense module of the final feature extraction submodule;
所述生成网络依次由一个3×3卷积模块、一个多级残差结构的特征提取网络、一个上采样模块和两个串联的3×3卷积模块组成;The generation network is composed of a 3×3 convolution module, a feature extraction network with a multi-level residual structure, an upsampling module and two serially connected 3×3 convolution modules.
所述多级残差结构的特征提取网络由第一特征提取子网络、第二特征提取子网络、1个GM模块和两个不同的跳跃连接组成,第一特征提取子网络和第二特征提取子网络串联;The feature extraction network of the multi-level residual structure is composed of a first feature extraction subnetwork, a second feature extraction subnetwork, a GM module and two different jump connections, and the first feature extraction subnetwork and the second feature extraction subnetwork are connected in series;
所述第一特征提取子网络由8个IRRDB模块组成;The first feature extraction subnetwork consists of 8 IRRDB modules;
每个IRRDB模块由3个结构相同的第一残差模块、1个IBN模块和一个特征系数组成;Each IRRDB module consists of three first residual modules with the same structure, one IBN module and one characteristic coefficient;
组成IRRDB模块的每个第一残差模块由一个IRDB模块、1个特征系数和1个跳跃连接组成;Each first residual module constituting the IRRDB module consists of an IRDB module, 1 feature coefficient, and 1 skip connection;
每个IRDB模块由5个3×3卷积模块、4个LReLU函数、1个特征系数、1个跳跃连接和IBN模块组成;Each IRDB module consists of 5 3×3 convolution modules, 4 LReLU functions, 1 feature coefficient, 1 skip connection and IBN module;
所述第二特征提取子网络由8个GM_DB模块和8个GM_RDB模块组成;The second feature extraction subnetwork consists of 8 GM_DB modules and 8 GM_RDB modules;
每个GM_DB模块由4个GM模块、4个LReLU函数、一个3×3卷积模块、1个特征系数、1个跳跃连接和IBN模块组成;Each GM_DB module consists of 4 GM modules, 4 LReLU functions, a 3×3 convolution module, 1 feature coefficient, 1 skip connection and an IBN module;
每个GM_RDB模块由3个结构相同的第二残差模块、1个IBN模块、1个特征系数和1个跳跃连接组成;Each GM_RDB module consists of three second residual modules with the same structure, one IBN module, one feature coefficient and one skip connection;
组成GM_RDB的每个第二残差模块由1个GM_DB模块、1个特征系数和1个跳跃连接组成;第二特征提取子网络的输出与第一特征提取子网络的输入通过跳跃连接进行融合,融合后的特征输入到GM模块中,GM模块的输出与第一特征提取子网络的输入通过跳跃连接进行融合,融合后的输入特征依次经过一个上采样和2个3×3卷积层得到电气设备红外图像重建图像。Each second residual module that makes up GM_RDB consists of a GM_DB module, a feature coefficient and a skip connection; the output of the second feature extraction subnetwork is fused with the input of the first feature extraction subnetwork through a skip connection, and the fused features are input into the GM module. The output of the GM module is fused with the input of the first feature extraction subnetwork through a skip connection, and the fused input features are sequentially subjected to an upsampling and two 3×3 convolutional layers to obtain the reconstructed image of the infrared image of the electrical equipment.
进一步,所述步骤5中构建电气设备红外图像超分辨率重建网络中的对抗网络表示为:Furthermore, the adversarial network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 5 is expressed as:
在ESRGN中对抗网络的基础上,将对抗网络中的常规批标准化模块替换成步骤3构建的IBN模块,形成改进后的电气设备红外图像超分辨率重建网络中的对抗网络;改进后的电气设备红外图像超分辨率重建网络中的对抗网络依次由1个3×3卷积模块、1个LReLU函数、4个子模块,1个4×4卷积模块、1个IBN模块、1个LReLU函数、1个展宽层、1个全连接层、1个LReLU函数和1个全连接层组成;On the basis of the adversarial network in ESRGN, the conventional batch normalization module in the adversarial network is replaced with the IBN module constructed in step 3 to form an adversarial network in the improved electrical equipment infrared image super-resolution reconstruction network; the adversarial network in the improved electrical equipment infrared image super-resolution reconstruction network is composed of 1 3×3 convolution module, 1 LReLU function, 4 submodules, 1 4×4 convolution module, 1 IBN module, 1 LReLU function, 1 widening layer, 1 fully connected layer, 1 LReLU function and 1 fully connected layer in sequence;
所述四个子模块的通道数分别是128,256,512和512;The number of channels of the four submodules are 128, 256, 512 and 512 respectively;
所述四个子模块的结构相同,都是依次由1个4×4卷积、一个IBN模块、一个LReLU函数、一个3×3卷积层、一个IBN模块和一个LReLU函数组成。The four submodules have the same structure, which is composed of a 4×4 convolution, an IBN module, an LReLU function, a 3×3 convolution layer, an IBN module and an LReLU function in sequence.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明构建了改进的批标准化模块(IBN模块),降低常规批标准化对图像特征像素的方差的影响,同时将改进的批标准化模块引入到生成网络和对抗网络中,避免梯度消失,提高网络训练速度和泛化能力,进而提高基于生成对抗网络的电气设备红外图像重建质量;(1) The present invention constructs an improved batch normalization module (IBN module) to reduce the impact of conventional batch normalization on the variance of image feature pixels. At the same time, the improved batch normalization module is introduced into the generative network and the adversarial network to avoid gradient vanishing, improve the network training speed and generalization ability, and thus improve the quality of infrared image reconstruction of electrical equipment based on the generative adversarial network.
(2)本发明构建了最终特征提取子模块,并利用最终特征提取子模块和改进的标准化模块,构建了残差密集模块(GM_DB模块),而且还利用已构建的GM_DB模块和改进的批标准化模块构建了GM_RDB模块,将8个GM_DB模块和8个GM_RDB模块作为生成网络中的特征提取网络的一部分;(2) The present invention constructs a final feature extraction submodule, and uses the final feature extraction submodule and the improved normalization module to construct a residual dense module (GM_DB module), and also uses the constructed GM_DB module and the improved batch normalization module to construct a GM_RDB module, and uses 8 GM_DB modules and 8 GM_RDB modules as part of the feature extraction network in the generation network;
(3)本发明将改进的批标准化模块(IBN)引入到ESRGAN中的RDB模块中,得到改进后的RDB模块(IRDB模块),利用IRDB模块和IBN模块构建了IRRDB模块,将8个IRRDB模块作为生成网络中的特征提取网络的一部分;(3) The present invention introduces an improved batch normalization module (IBN) into the RDB module in ESRGAN to obtain an improved RDB module (IRDB module). The IRRDB module is constructed using the IRDB module and the IBN module. The eight IRRDB modules are used as part of the feature extraction network in the generation network.
(4)本发明还利用GM网络对由8个GM_DB模块,8个GM_RDB模块和8个IRRDB模块组成的网络的输出特征进行进一步的特征提取和特征融合,并利用跳跃连接将提取的特征和网络的输入特征进行融合,进而提取更多的电力设备红外图像特征,提高生成网络对电力设备红外图像重建能力;(4) The present invention also uses the GM network to further extract and fuse the output features of the network composed of 8 GM_DB modules, 8 GM_RDB modules and 8 IRRDB modules, and uses jump connections to fuse the extracted features with the input features of the network, thereby extracting more infrared image features of power equipment and improving the ability of the generation network to reconstruct infrared images of power equipment;
(5)本发明还利用本发明已构建了改进的批标准化模块(IBN模块)对对抗网络进行了改进,提高了对抗网络判别能力,进而提高生成网络对电力设备红外图像重建能力,提高重建的电力设备红外图像质量。(5) The present invention also improves the adversarial network by using the improved batch normalization module (IBN module) constructed by the present invention, thereby improving the discrimination ability of the adversarial network, thereby improving the ability of the generation network to reconstruct infrared images of power equipment, and improving the quality of the reconstructed infrared images of power equipment.
以上所述ESRGAN为Wang X.T等人2019年发表的论文ESRGAN:Enhanced Super-Resolution Generative Adversarial Networks[C].European Conference on Computervision,2019:63–79The ESRGAN mentioned above is the paper ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks[C] published by Wang X.T et al. in 2019. European Conference on Computervision, 2019: 63–79
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的流程框图;Fig. 1 is a flow chart of the present invention;
图2为本发明提出改进的批标准化模块网络结构图,图中的网络模块是需要被进行批标准化处理的模块;FIG2 is a network structure diagram of an improved batch normalization module proposed by the present invention, in which the network module is a module that needs to be subjected to batch normalization processing;
图3为本发明构建的特征提取子模块网络结构图;FIG3 is a network structure diagram of a feature extraction submodule constructed in the present invention;
图4为本发明构建的IRDB模块网络结构图和由IRDB模块组成的IRRDB模块网络结构图,IRRDB模块用来构建生成网络中的特征提取网络;FIG4 is a network structure diagram of an IRDB module constructed by the present invention and a network structure diagram of an IRRDB module composed of IRDB modules, wherein the IRRDB module is used to construct a feature extraction network in a generation network;
图5为本发明构建的GM_DB模块网络结构图和GM_RDB模块网络结构图,两个模块均为用来构建生成网络中的特征提取网络;FIG5 is a network structure diagram of the GM_DB module and the GM_RDB module constructed by the present invention, both modules are used to construct a feature extraction network in a generation network;
图6为本发明基于IBN模块,GM模块,IRRDB模块,GM_DB模块和GM_RDB模块构建的生成网络结构图;6 is a diagram showing a generated network structure constructed based on an IBN module, a GM module, an IRRDB module, a GM_DB module and a GM_RDB module according to the present invention;
图7为本发明构建的对抗网络结构图。FIG. 7 is a diagram showing the structure of an adversarial network constructed by the present invention.
具体实施方式Detailed ways
下面利用附图和具体实施方式对本发明作进一步说明。The present invention will be further described below using the accompanying drawings and specific implementation methods.
参见图1-图7,本实施例一种电气设备红外图像超分辨率重建方法,用来提高重建后的电力设备红外图像质量,它由生成网络和对抗网络两部分组成,生成网络用于生成电气设备红外图像超分辨率重建图像,对抗网络用于判断高分辨率的电气设备红外图像是生成的图像还是原始高分辨率的图像,通过生成网络和对抗网络的博弈,提高生成网络的图像生成能力;具体步骤如下:Referring to FIG. 1 to FIG. 7 , a method for super-resolution reconstruction of infrared images of electrical equipment in this embodiment is used to improve the quality of reconstructed infrared images of power equipment. The method comprises a generation network and an adversarial network. The generation network is used to generate super-resolution reconstructed images of infrared images of electrical equipment. The adversarial network is used to determine whether a high-resolution infrared image of electrical equipment is a generated image or an original high-resolution image. The image generation capability of the generation network is improved through the game between the generation network and the adversarial network. The specific steps are as follows:
步骤1,构建数据集:Step 1, build the dataset:
①利用高分辨率红外成像仪采集具有高分辨率的电气设备红外图像;① Use high-resolution infrared imagers to collect high-resolution infrared images of electrical equipment;
②利用包含各向同性高斯模糊、各向异性高斯模糊、降采样、3D高斯噪声、成像仪噪声和JPEG噪声的退化函数,拟合真实电气设备红外图像的退化过程;② Using the degradation function including isotropic Gaussian blur, anisotropic Gaussian blur, downsampling, 3D Gaussian noise, imager noise and JPEG noise, the degradation process of the infrared image of real electrical equipment is fitted;
③对采集到的高分辨率红外成像图像进行退化处理,得到对应的低分辨率电气设备红外图像;得到的退化后的低分辨率电气设备红外图像和与之对应的高分辨率的电气设备红外图像组成图像对,若干个图像对构成数据集,数据集分为两部分,将数据集的80%作为训练样本集,数据集的20%作为测试集;③ Perform degradation processing on the collected high-resolution infrared imaging images to obtain the corresponding low-resolution electrical equipment infrared images; the obtained degraded low-resolution electrical equipment infrared images and the corresponding high-resolution electrical equipment infrared images form an image pair, and several image pairs constitute a data set. The data set is divided into two parts, 80% of the data set is used as a training sample set, and 20% of the data set is used as a test set;
步骤2,构建改进的批标准化模块:Step 2: Build an improved batch normalization module:
在常规批标准化模块的基础上,设计特征像素标准方差调节模块,降低常规批标准化模块对特征像素标准方差的影响,提高重建图像的质量;Based on the conventional batch normalization module, a feature pixel standard variance adjustment module is designed to reduce the impact of the conventional batch normalization module on the feature pixel standard variance and improve the quality of the reconstructed image.
步骤3,构建最终特征提取子模块:Step 3: Build the final feature extraction submodule:
构建用于提取电气设备红外图像特征提的最终特征提取子模块,用于提取更有效的电气设备红外图像特征;Constructing a final feature extraction submodule for extracting features of infrared images of electrical equipment to extract more effective features of infrared images of electrical equipment;
步骤4,构建电气设备红外图像超分辨率重建网络中的生成网络:Step 4: Construct the generation network in the electrical equipment infrared image super-resolution reconstruction network:
利用步骤2已构建的改进的批标准化模块和步骤3已构建的最终特征提取子模块,结合稠密连接网络和残差网络思想,在ESRGAN网络的基础上,构建改进的ESRGAN网络的生成网络;Using the improved batch normalization module constructed in step 2 and the final feature extraction submodule constructed in step 3, combined with the ideas of dense connection network and residual network, on the basis of ESRGAN network, the improved ESRGAN network generation network is constructed;
步骤5,构建电气设备红外图像超分辨率重建网络中的对抗网络:Step 5: Construct an adversarial network in the electrical equipment infrared image super-resolution reconstruction network:
将步骤2已构建的模块引入到ESRGAN网络的对抗网络中,构建改进的ESRGAN网络的对抗网络;Introduce the module constructed in step 2 into the adversarial network of the ESRGAN network to construct an improved adversarial network of the ESRGAN network;
步骤6:训练电气设备红外图像超分辨率重建网络:Step 6: Train the electrical equipment infrared image super-resolution reconstruction network:
采用步骤1构建的训练数据集对步骤4构建的电气设备红外图像超分辨率重建网络中的生成网络和步骤5构建的电气设备红外图像超分辨率重建网络中的对抗网络进行训练;Using the training data set constructed in step 1 to train the generative network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 4 and the adversarial network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 5;
步骤7:网络模型测试和评估:Step 7: Network model testing and evaluation:
将步骤1中构建的测试数据集中的低分辨率电气设备红外图像输入到步骤6中已训练好的生成网络中,输出相应的重建后的电气设备红外超分辨率图像;计算重建的电气设备红外超分辨率图像的峰值信噪比,评估自然图像质量,如果峰值信噪比和自然图像质量评估满足实际应用需求,则执行步骤9,否则执行步骤8;Input the low-resolution electrical equipment infrared image in the test data set constructed in step 1 into the generative network trained in step 6, and output the corresponding reconstructed electrical equipment infrared super-resolution image; calculate the peak signal-to-noise ratio of the reconstructed electrical equipment infrared super-resolution image, and evaluate the natural image quality. If the peak signal-to-noise ratio and the natural image quality evaluation meet the actual application requirements, execute step 9, otherwise execute step 8;
步骤8:模型参数调整:Step 8: Model parameter adjustment:
对由步骤4和步骤5构建的电气设备红外图像超分辨率重建网络的模型参数进行调整,并返回步骤6,重新进行训练;Adjust the model parameters of the electrical equipment infrared image super-resolution reconstruction network constructed by steps 4 and 5, and return to step 6 to retrain;
步骤9:模型应用:Step 9: Model Application:
将步骤7得到的满足实际应用要求的生成网络,应用于电气设备红外图像超分辨率重建,从采集到的低分辨率电气设备红外图像中重建高分辨率电气设备红外图像。The generation network that meets the practical application requirements obtained in step 7 is applied to the super-resolution reconstruction of infrared images of electrical equipment, and a high-resolution infrared image of electrical equipment is reconstructed from the collected low-resolution infrared image of electrical equipment.
所述步骤中构建改进的批标准化模块表示为:The improved batch normalization module constructed in the steps is expressed as:
改进的批标准化模块如图2所示,所述改进的批标准化模块由两个分支组成,第一个分支为常规批标准模块,第二个分支依次由标准方差函数(std()),对数函数(log),线性函数(f)和指数函数(exp())组成;第一个分支需要将模块的输入进行批标准化预处理,然后作为常规批标准化模块的输出,第二个分支需要将模块的输入依次进行标准方差函数,对数函数,线性函数和指数函数的处理之后输出,第一个分支的输出与第二个分支的输出进行相乘,得到改进的批标准化模块的最终输出。The improved batch normalization module is shown in Figure 2. The improved batch normalization module consists of two branches. The first branch is a conventional batch normalization module, and the second branch is composed of a standard deviation function (std()), a logarithmic function (log), a linear function (f) and an exponential function (exp()) in sequence. The first branch needs to perform batch normalization preprocessing on the input of the module and then use it as the output of the conventional batch normalization module. The second branch needs to perform standard deviation function, logarithmic function, linear function and exponential function processing on the input of the module in sequence and then output it. The output of the first branch is multiplied by the output of the second branch to obtain the final output of the improved batch normalization module.
所述步骤3中构建最终特征提取子模块表示为:The final feature extraction submodule constructed in step 3 is expressed as:
构建最终特征提取子模块如图3所示,最终特征提取子模块由前期特征提取子模块和步骤2的改进的批标准化模块组成;The construction of the final feature extraction submodule is shown in Figure 3. The final feature extraction submodule consists of the previous feature extraction submodule and the improved batch normalization module of step 2;
所述前期特征提取子模块由两个分支组成,第一个分支依次由1×1的卷积,一个ReLU6函数,一个3×3的卷积,一个ReLU6函数和一个1×1的卷积组成;第二个分支依次由1×1的卷积,一个ReLU6函数和一个残差网络组成;The early feature extraction submodule consists of two branches, the first branch is composed of a 1×1 convolution, a ReLU6 function, a 3×3 convolution, a ReLU6 function and a 1×1 convolution in sequence; the second branch is composed of a 1×1 convolution, a ReLU6 function and a residual network in sequence;
所述残差网络由一个3×3的卷积和跳跃连接组成,3×3的卷积的输出和跳跃连接的输出在通道维度上进行拼接,使得第二个分支的输入特征图和输出特征图的通道数保持不变;将第一个分支的输出和第二分支的输出进行特征图叠加得到前期特征提取子模块的输出特征;The residual network is composed of a 3×3 convolution and a jump connection. The output of the 3×3 convolution and the output of the jump connection are spliced in the channel dimension so that the number of channels of the input feature map and the output feature map of the second branch remain unchanged; the output of the first branch and the output of the second branch are superimposed on the feature map to obtain the output features of the previous feature extraction submodule;
将前期特征提取子模块作为网络模块纳入步骤2的改进的批标准化模块中形成最终特征提取子模块。The early feature extraction submodule is incorporated into the improved batch normalization module in step 2 as a network module to form the final feature extraction submodule.
所述步骤4中构建电气设备红外图像超分辨率重建网络中的生成网络表示为:The generation network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 4 is expressed as:
组成生成网络的子模块如图4和图5所示,生成网络如图6所示,对若干个模块定义如下:The submodules that make up the generation network are shown in Figures 4 and 5, and the generation network is shown in Figure 6. Several modules are defined as follows:
IBN模块:步骤2构建的改进的批标准化模块;IBN module: the improved batch normalization module constructed in step 2;
GM模块:步骤3构建的最终特征提取子模块;GM module: the final feature extraction submodule constructed in step 3;
IRDB模块:残差密集模块;IRDB module: residual dense module;
IRRDB模块:具有残差结构的特征提取模块;IRRDB module: a feature extraction module with residual structure;
GM_DB模块:基于最终特征提取子模块的残差密集模块;GM_DB module: residual dense module based on the final feature extraction submodule;
GM_RDB模块:基于最终特征提取子模块的残差密集模块的特征提取模块;GM_RDB module: a feature extraction module based on the residual dense module of the final feature extraction submodule;
所述生成网络依次由一个3×3卷积模块、一个多级残差结构的特征提取网络、一个上采样模块和两个串联的3×3卷积模块组成;The generation network is composed of a 3×3 convolution module, a feature extraction network with a multi-level residual structure, an upsampling module and two serially connected 3×3 convolution modules.
所述多级残差结构的特征提取网络由第一特征提取子网络、第二特征提取子网络、1个GM模块和两个不同的跳跃连接组成,第一特征提取子网络和第二特征提取子网络串联;The feature extraction network of the multi-level residual structure is composed of a first feature extraction subnetwork, a second feature extraction subnetwork, a GM module and two different jump connections, and the first feature extraction subnetwork and the second feature extraction subnetwork are connected in series;
所述第一特征提取子网络由8个IRRDB模块组成;The first feature extraction subnetwork consists of 8 IRRDB modules;
每个IRRDB模块由3个结构相同的第一残差模块、1个IBN模块和一个特征系数组成;Each IRRDB module consists of three first residual modules with the same structure, one IBN module and one characteristic coefficient;
组成IRRDB模块的每个第一残差模块由一个IRDB模块、1个特征系数和1个跳跃连接组成;Each first residual module constituting the IRRDB module consists of an IRDB module, 1 feature coefficient, and 1 skip connection;
每个IRDB模块由5个3×3卷积模块、4个LReLU函数、1个特征系数、1个跳跃连接和IBN模块组成;Each IRDB module consists of 5 3×3 convolution modules, 4 LReLU functions, 1 feature coefficient, 1 skip connection and IBN module;
所述第二特征提取子网络由8个GM_DB模块和8个GM_RDB模块组成;The second feature extraction subnetwork consists of 8 GM_DB modules and 8 GM_RDB modules;
每个GM_DB模块由4个GM模块、4个LReLU函数、一个3×3卷积模块、1个特征系数、1个跳跃连接和IBN模块组成;Each GM_DB module consists of 4 GM modules, 4 LReLU functions, a 3×3 convolution module, 1 feature coefficient, 1 skip connection and an IBN module;
每个GM_RDB模块由3个结构相同的第二残差模块、1个IBN模块、1个特征系数和1个跳跃连接组成;Each GM_RDB module consists of three second residual modules with the same structure, one IBN module, one feature coefficient and one skip connection;
组成GM_RDB的每个第二残差模块由1个GM_DB模块、1个特征系数和1个跳跃连接组成;第二特征提取子网络的输出与第一特征提取子网络的输入通过跳跃连接进行融合,融合后的特征输入到GM模块中,GM模块的输出与第一特征提取子网络的输入通过跳跃连接进行融合,融合后的输入特征依次经过一个上采样和2个3×3卷积层得到电气设备红外图像重建图像。Each second residual module that makes up GM_RDB consists of a GM_DB module, a feature coefficient and a skip connection; the output of the second feature extraction subnetwork is fused with the input of the first feature extraction subnetwork through a skip connection, and the fused features are input into the GM module. The output of the GM module is fused with the input of the first feature extraction subnetwork through a skip connection, and the fused input features are sequentially subjected to an upsampling and two 3×3 convolutional layers to obtain the reconstructed image of the infrared image of the electrical equipment.
所述步骤5中构建电气设备红外图像超分辨率重建网络中的对抗网络表示为:The adversarial network in the electrical equipment infrared image super-resolution reconstruction network constructed in step 5 is expressed as:
改进的对抗网络如图7所示,在ESRGN中对抗网络的基础上,将对抗网络中的常规批标准化模块替换成步骤3构建的IBN模块,形成改进后的电气设备红外图像超分辨率重建网络中的对抗网络;改进后的电气设备红外图像超分辨率重建网络中的对抗网络依次由1个3×3卷积模块、1个LReLU函数、4个子模块,1个4×4卷积模块、1个IBN模块、1个LReLU函数、1个展宽层、1个全连接层、1个LReLU函数和1个全连接层组成;The improved adversarial network is shown in FIG7 . On the basis of the adversarial network in ESRGN, the conventional batch normalization module in the adversarial network is replaced with the IBN module constructed in step 3 to form an improved adversarial network in the infrared image super-resolution reconstruction network of electrical equipment. The adversarial network in the improved infrared image super-resolution reconstruction network of electrical equipment is composed of 1 3×3 convolution module, 1 LReLU function, 4 submodules, 1 4×4 convolution module, 1 IBN module, 1 LReLU function, 1 widening layer, 1 fully connected layer, 1 LReLU function and 1 fully connected layer in sequence.
所述四个子模块的通道数分别是128,256,512和512;The number of channels of the four submodules are 128, 256, 512 and 512 respectively;
所述四个子模块的结构相同,都是依次由1个4×4卷积、一个IBN模块、一个LReLU函数、一个3×3卷积层、一个IBN模块和一个LReLU函数组成。The four submodules have the same structure, which is composed of a 4×4 convolution, an IBN module, an LReLU function, a 3×3 convolution layer, an IBN module and an LReLU function in sequence.
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。The above description is only a preferred embodiment of the present invention and does not constitute any other form of limitation to the present invention. Any modification or equivalent change made based on the technical essence of the present invention still falls within the scope of protection required by the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210817691.9A CN115082318B (en) | 2022-07-13 | 2022-07-13 | A super-resolution reconstruction method for infrared images of electrical equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210817691.9A CN115082318B (en) | 2022-07-13 | 2022-07-13 | A super-resolution reconstruction method for infrared images of electrical equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115082318A CN115082318A (en) | 2022-09-20 |
CN115082318B true CN115082318B (en) | 2024-07-02 |
Family
ID=83259888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210817691.9A Active CN115082318B (en) | 2022-07-13 | 2022-07-13 | A super-resolution reconstruction method for infrared images of electrical equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115082318B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102160514A (en) * | 2011-02-21 | 2011-08-24 | 中国热带农业科学院农产品加工研究所 | Method for promoting rubber tapping output of rubber tree using ultrasonic wave |
CN108982460A (en) * | 2018-08-22 | 2018-12-11 | 深圳大学 | A kind of super-resolution imaging method, device and terminal device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021048863A1 (en) * | 2019-09-11 | 2021-03-18 | The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) | Methods and systems for super resolution for infra-red imagery |
CN114731455B (en) * | 2019-11-20 | 2024-07-09 | 三星电子株式会社 | Apparatus and method using AI metadata related to image quality |
CN111062872B (en) * | 2019-12-17 | 2021-02-05 | 暨南大学 | A method and system for image super-resolution reconstruction based on edge detection |
CN111583109B (en) * | 2020-04-23 | 2024-02-13 | 华南理工大学 | Image super-resolution method based on generation of countermeasure network |
CN112561799A (en) * | 2020-12-21 | 2021-03-26 | 江西师范大学 | Infrared image super-resolution reconstruction method |
CN112907614A (en) * | 2021-03-26 | 2021-06-04 | 东北电力大学 | Yoov 5-segnet insulator string contour extraction method based on depth feature fusion |
CN113591645B (en) * | 2021-07-21 | 2024-09-13 | 东北电力大学 | Regional convolutional neural network-based infrared image recognition method for power equipment |
CN114092330B (en) * | 2021-11-19 | 2024-04-30 | 长春理工大学 | Light-weight multi-scale infrared image super-resolution reconstruction method |
CN114463176B (en) * | 2022-01-25 | 2024-03-01 | 河南大学 | Image super-resolution reconstruction method based on improved ESRGAN |
-
2022
- 2022-07-13 CN CN202210817691.9A patent/CN115082318B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102160514A (en) * | 2011-02-21 | 2011-08-24 | 中国热带农业科学院农产品加工研究所 | Method for promoting rubber tapping output of rubber tree using ultrasonic wave |
CN108982460A (en) * | 2018-08-22 | 2018-12-11 | 深圳大学 | A kind of super-resolution imaging method, device and terminal device |
Also Published As
Publication number | Publication date |
---|---|
CN115082318A (en) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113865859B (en) | Gear box state fault diagnosis method for multi-scale multi-source heterogeneous information fusion | |
Luo et al. | Lattice network for lightweight image restoration | |
CN111476717A (en) | Face image super-resolution reconstruction method based on self-attention generative adversarial network | |
Hu et al. | Pan-sharpening via multiscale dynamic convolutional neural network | |
CN113379601B (en) | Real-world image super-resolution method and system based on degraded variational autoencoder | |
CN111870245A (en) | A Cross-Contrast-Guided Ultrafast Deep Learning Approach for Magnetic Resonance Imaging | |
CN115936985A (en) | Image super-resolution reconstruction method based on high-order degradation cycle generation countermeasure network | |
Yang et al. | License plate image super-resolution based on convolutional neural network | |
CN117114984A (en) | Remote sensing image super-resolution reconstruction method based on generative adversarial network | |
CN110288672A (en) | A kind of compressed sensing MR image reconstruction method based on the dense network of ultra-deep | |
CN117422620A (en) | Infrared image super-resolution reconstruction method oriented to real scene based on deep learning | |
CN114119393A (en) | A Semi-Supervised Image Rain Removal Method Based on Feature Domain Cycle Consistency | |
CN118967449A (en) | A super-resolution method for pathological slice images based on diffusion model | |
CN114092329A (en) | A super-resolution fluorescence microscopy imaging method based on subpixel neural network | |
CN115082318B (en) | A super-resolution reconstruction method for infrared images of electrical equipment | |
Deng et al. | Exploring the low-pass filtering behavior in image super-resolution | |
CN114383845B (en) | Bearing composite fault diagnosis method based on embedded zero sample learning model | |
Lin et al. | Two-level consistency metric for infrared and visible image fusion | |
CN115311117A (en) | Image watermarking system and method for style migration depth editing | |
Han et al. | Time-frequency enhanced characterization method based on asymmetric image reconstruction autoencoder | |
CN118549870A (en) | Method and system for correcting flow artifacts in multi-scan magnetic resonance images | |
CN118225255A (en) | A direct method for extracting the wavefront phase of atmospheric degradation in space target optical images | |
CN117991145A (en) | Three-phase permanent magnet synchronous motor turn-to-turn short circuit fault diagnosis based on convolutional neural network | |
CN111986114B (en) | A method and system for blind denoising of dual-scale images based on self-supervision constraints | |
CN111127386A (en) | Image quality evaluation method based on deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |