CN115068605B - 一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用 - Google Patents

一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用 Download PDF

Info

Publication number
CN115068605B
CN115068605B CN202210562512.1A CN202210562512A CN115068605B CN 115068605 B CN115068605 B CN 115068605B CN 202210562512 A CN202210562512 A CN 202210562512A CN 115068605 B CN115068605 B CN 115068605B
Authority
CN
China
Prior art keywords
tcpp
uio
methanol
antibacterial material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210562512.1A
Other languages
English (en)
Other versions
CN115068605A (zh
Inventor
张艳梅
胡欣
尚静
邵文惠
金黎明
权春善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Minzu University filed Critical Dalian Minzu University
Priority to CN202210562512.1A priority Critical patent/CN115068605B/zh
Publication of CN115068605A publication Critical patent/CN115068605A/zh
Application granted granted Critical
Publication of CN115068605B publication Critical patent/CN115068605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明属于光响应抗菌材料技术领域,具体涉及一种Ag2S@TCPP‑UiO‑66‑NH2光响应纳米抗菌材料及其制备方法和应用,所述光响应抗菌材料由具有光热性、稳定性和良好的生物相容性的Ag2S、具有比表面积大、结构可控、孔径均匀的Zr基MOFs‑UiO‑66‑NH2和光敏剂TCPP复合而成,本发明通过一步水热法将TCPP原位掺杂于UiO‑66‑NH2中制备得到TCPP‑UiO‑66‑NH2,再通过化学沉淀法将Ag2S纳米粒子分散到TCPP‑UiO‑66‑NH2上,制备得到70‑150nm不等的、表面粗糙的Ag2S@TCPP‑UiO‑66‑NH2圆球。所述Ag2S@TCPP‑UiO‑66‑NH2抑菌剂在近红外照射下可以达到45℃左右的温度,可以增强细胞膜的通透性和对ROS的敏感性,达到APTT和APDT的协同抗菌的效果,在MRSA和ESBLE.coli的灭活中具有较好的应用前景。

Description

一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方 法和应用
技术领域
本发明属于光响应抗菌材料技术领域,具体涉及一种Ag2S@TCPP-UiO-66-NH2抗菌材料及其制备方法和应用。
背景技术
病原菌引起的细菌感染是一个重要的公共卫生问题。随着抗生素和化学杀菌剂的滥用,耐药性细菌变得越来越普遍,这大大增加了医疗成本和死亡率。开发新型、高效的纳米抗菌材料是控制病原菌生长的关键。光响应纳米材料杀菌方式可以分为两种,分别是光动力抗菌(APDT)和光热抗菌(APTT),APDT主要是通过产生ROS来攻击细菌,而APTT则是通过产生热量使细菌遭到物理性破坏,二者的抗菌作用机理都与传统抗生素不同,具有不易产生耐药性、广谱性等优点。然而在APTT的过程中,产生的较高温度(55-65℃)会对正常组织造成影响。45℃的低温PTT是保护健康组织免受高温损伤的方式,同时可以增强细胞膜的通透性和对ROS的敏感性,因此构建APTT与APDT的协同抗菌体系可以实现低温APTT,在提高效率的同时减少副作用。但是,由于光热剂和光敏剂的光谱不匹配,通常需要使用两个不同波长的激光源来激活PTT/PDT,不仅治疗过程复杂化,而且随着辐照时间增加,还会对组织造成更大的潜在损伤。根据美国激光安全使用标准(ANSIZ136.1-2014),允许使用808nm激光在人体皮肤上长期辐照的最大功率密度为0.33W/cm2。因此,设计出低功率单波长激光可激活的高效安全PTT/PDT协同纳米抗菌材料是我们首要解决的问题。
发明内容
为弥补现有技术的不足,本发明的构思如下:
Ag作为光谱抗菌剂,很早已被人们用于控制感染,但其存在Ag+释放速度过快,毒副作用大的缺点,Ag2S是一种金属硫化物,Ag+释放缓慢且具有光热性、稳定性和良好的生物相容性,其带隙较窄,约0.9–1.05eV,是一种在可见光和近红外下都可以用于光催化的半导体材料。MOFs具有比表面积大、结构可控、孔径均匀等独特的物理化学性质,可以作为催化剂的载体,避免纳米催化剂的聚集。UiO-66作为典型的Zr基MOFs,在光催化的领域受到许多关注,对其进行-NH2官能团修饰后,可作为可见光驱动的催化剂,但其光催化活性仍然受到载流子快速重组和光利用能力不理想的限制,而光敏剂卟啉的加入可以在很大程度上解决这个问题,进一步提高光催化抑菌效率。因此本发明利用一步水热法和化学共沉淀法制备了新型光响应纳米抗菌剂Ag2S@TCPP-UiO-66-NH2,制备出的Ag2S@TCPP-UiO-66-NH2具有优异的光热性能和抗菌性能。
本发明提供了一种Ag2S@TCPP-UiO-66-NH2光催化抗菌材料及其制备方法和应用。
将具有独特性质的纳米材料作为载体,在上面负载了在可见光和近红外均有吸收的Ag2S纳米粒子,载体用来稳定Ag2S,提高复合材料光热性能,进一步提高整体抑菌效果,实现光热光动力协同抗菌。本发明采用的载体是TCPP-UiO-66-NH2纳米材料,具有高的比表面积、强光吸收和生物相容性。该纳米材料为70-150nm不等的、表面不光滑的圆球。
本发明还提供一种Ag2S@TCPP-UiO-66-NH2光响应抗菌材料在灭活耐甲氧西林金黄色葡萄球菌(MRSA)和产超广谱β-内酰胺酶大肠杆菌(ESBLE.coli)中的应用。其用于灭活MRSA和ESBL E.coli的条件为:将Ag2S@TCPP-UiO-66-NH2加入含有MRSA和ESBLE.coli的菌液中,将菌液置于808nm红外激光器下照射0-10min。
进一步地,在上述应用中,一种实施例中:Ag2S@TCPP-UiO-66-NH2光响应抗菌材料的用量为20μg,MRSA和ESBLE.coli的菌液体积为20μL,菌液的浓度为106CFU/mL。在其他应用实施例中,可按照上述用量比例进行同倍数放大或减小。
本发明同时提供一种Ag2S@TCPP-UiO-66-NH2光催化抗菌材料的制备方法,包括如下步骤:
S1.TCPP的合成
将4-羧基苯甲醛和吡咯,超声分散于丙酸中,在黑暗的条件下,热回流一段时间,得到黑色溶液。待溶液冷却,向反应液中加入甲醇,在冰水浴的条件下搅拌。反应结束后,通过抽滤的方法,用甲醇和去离子水分别交替清洗,所得产物在真空干燥箱中干燥,得到的紫色粉末即为TCPP。
S2.TCPP-UiO-66-NH2的合成
TCPP-UiO-66-NH2采用一步水热法合成。在锥形瓶中,分别加入四氯化锆、2-氨基对苯二甲酸和S1中合成的TCPP,并加入N,N二甲基甲酰胺溶剂DMF和冰乙酸,超声至完全溶解后转移至反应釜中,反应结束后,待反应釜自然冷却,离心收集样品,并分别用DMF和甲醇交替清洗,将收集到的固体在真空干燥箱中干燥,得到的淡紫色粉末即为TCPP-UiO-66-NH2。TCPP-UiO-66-NH2的活化:为了置换出在反应过程中未反应掉的TCPP,将TCPP-UiO-66-NH2分散在DMF中,热回流后离心收集固体;为了置换出在TCPP-UiO-66-NH2孔道内的N,N二甲基甲酰胺,将样品在甲醇中浸泡且按时更换甲醇。
S3.Ag2S@TCPP-UiO-66-NH2的合成
Ag2S@TCPP-UiO-66-NH2采用化学沉淀法合成。首先,将TCPP-UiO-66-NH2在超声的条件下分散于去离子水中,随后在分散液中加入AgNO3,在黑暗条件下搅拌,然后将溶解在去离子水中的Na2S·9H2O缓慢滴加到上述分散液中,在黑暗条件下继续搅拌,反应结束后,将溶液经去离子水和无水乙醇洗涤,干燥得到Ag2S@TCPP-UiO-66-NH2
进一步地,所述步骤S1.TCPP的合成的具体步骤为:称取3.04-6.08g的4-羧基苯甲醛和1.4-2.8g的吡咯,超声分散于75-150mL的丙酸中,在黑暗的条件下,100-135℃热回流2-4h,得到黑色溶液,待溶液冷却至室温,向反应液中加入100-200mL的甲醇,在冰水浴的条件下搅拌30-60min,反应结束后,通过抽滤的方法,用甲醇和去离子水分别交替清洗三遍,所得产物在真空干燥箱中,80℃干燥12-24h,得到的紫色粉末即为TCPP。
进一步地,所述步骤S2.TCPP-UiO-66-NH2的合成的具体步骤为:在锥形瓶中,分别称取46-92mg的四氯化锆、35.8-71.6mg的2-氨基对苯二甲酸和15.5-31mg的TCPP,并加入22.8-45.6mL的N,N二甲基甲酰胺溶剂DMF和2.8-5.6mL的冰乙酸,超声30-60min至完全溶解后转移至反应釜中,120℃加热12-24h,反应结束后,待反应釜自然冷却至室温,1000rpm离心10-20min收集样品,并分别用DMF和甲醇交替清洗三次,将收集到的固体在60℃的真空干燥箱中干燥12-24h,得到的淡紫色粉末即为TCPP-UiO-66-NH2
TCPP-UiO-66-NH2的活化:将TCPP-UiO-66-NH2分散在DMF中,120℃热回流2-4h,1000rpm离心10-20min收集固体;再将样品在甲醇中浸泡1-3天,每12-24h更换甲醇。
进一步地,所述步骤S3.Ag2S@TCPP-UiO-66-NH2的合成的具体步骤为:称取50-100mg的TCPP-UiO-66-NH2在超声的条件下分散于15-30mL去离子水中,10-20min后,在分散液中加入14.1-27.2mgAgNO3,在黑暗条件下搅拌30-60min,然后将溶解在15-30mL去离子水中的14.6-19.2mgNa2S·9H2O缓慢滴加到上述分散液中,在黑暗条件下继续搅拌1-2h,反应结束后,将溶液经去离子水和无水乙醇分别洗涤三遍,47℃干燥12-24h得到Ag2S@TCPP-UiO-66-NH2
本发明光响应抗菌材料由具有光热性、稳定性和良好的生物相容性的Ag2S、具有比表面积大、结构可控、孔径均匀的Zr基MOFs-UiO-66-NH2和光敏剂TCPP复合而成,通过一步水热法将TCPP原位掺杂于UiO-66-NH2中制备得到TCPP-UiO-66-NH2,再通过化学沉淀法将Ag2S纳米粒子分散到TCPP-UiO-66-NH2上,制备得到70-150nm不等的、表面粗糙的Ag2S@TCPP-UiO-66-NH2圆球。所述Ag2S@TCPP-UiO-66-NH2抑菌剂在近红外照射下可以达到45℃左右的温度,可以增强细胞膜的通透性和对ROS的敏感性,达到APTT和APDT的协同抗菌的效果,在MRSA和ESBLE.coli的灭活中具有较好的应用前景,可以在较短时间内灭活MRSA和ESBLE.coli。制备工艺简单,产品质量稳定,形貌可控,适合大规模生产。
与现有的技术相比,本发明具有以下优点:
1、本发明提供的Ag2S@TCPP-UiO-66-NH2纳米抑菌剂制备方法,合成条件温和,工艺方法简单,经济可行。
2、本发明提供的Ag2S@TCPP-UiO-66-NH2纳米抑菌剂中,可以实现光热和光动力协同抗菌,减小副作用的同时提高抗菌效率。
3、本发明提供的Ag2S@TCPP-UiO-66-NH2纳米抑菌剂表面粗糙,有利于增加其对细菌的附着力,有效破坏细胞壁和细胞膜,使细菌的内容物释放,高效杀菌。
附图说明:
图1为实施例1所制备的纳米抑菌剂Ag2S@TCPP-UiO-66-NH2的XRD图,(a)为XRD原图,(b)为局部放大图;
图2为实施例1所制备的纳米抑菌剂Ag2S@TCPP-UiO-66-NH2的TEM图,(a)为UiO-66,(b)为TCPP-UiO-66,(c)和(d)为Ag2S@TCPP-UiO-66-NH2
图3为实施例1所制备的纳米抑菌剂Ag2S@TCPP-UiO-66-NH2的紫外-可见光吸收光谱(a)和Ag2S@TCPP-UiO-66-NH2在808nm处的消光系数光热性能图(b);
图4为实施例1所制备的纳米抑菌剂Ag2S@TCPP-UiO-66-NH2的光热性能,(a)为样品浓度对光热效应的影响,(b)为激光功率密度对光热效应的影响,(c)为光热稳定性测试结果;
图5为实施例1所制备的纳米抑菌剂Ag2S@TCPP-UiO-66-NH2的单次加热和冷却过程中:温度变化(a);时间与-Lnθ的线性关系(b);
图6为应用例1采用实施例1所制备的纳米抑菌剂Ag2S@TCPP-UiO-66-NH2的抑菌效果图,其中MRSA(a,c);E.coli(b,d)。
具体实施方式
为了更好地理解本发明的内容,下面将结合具体实施案例来进一步阐述本发明。以下实施例以本发明的技术为基础实施,结合了详细的实施方式和操作步骤,但本发明的保护范围不限于下述实施例。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从商业途径获得。
实施例1
S1.TCPP的合成
称取6.08g的4-羧基苯甲醛和2.8g的吡咯,超声分散于150mL的丙酸中,在黑暗的条件下,135℃热回流2h,得到黑色溶液。待溶液冷却至室温,向反应液中加入200mL的甲醇,在冰水浴的条件下搅拌30min。反应结束后,通过抽滤的方法,用甲醇和去离子水分别交替清洗三遍,所得产物在真空干燥箱中,80℃干燥12h,得到的紫色粉末即为TCPP。
S2.TCPP-UiO-66-NH2的合成
在锥形瓶中,分别称取92mg的四氯化锆、71.6mg的2-氨基对苯二甲酸和31mg的TCPP,并加入45.6mL的N,N二甲基甲酰胺溶剂(DMF)和5.6mL的冰乙酸,超声30min至完全溶解后转移至反应釜中,120℃加热12-24h。反应结束后,待反应釜自然冷却至室温,1000rpm离心10-20min收集样品,并分别用DMF和甲醇交替清洗三次,将收集到的固体在60℃的真空干燥箱中干燥24h,得到的淡紫色粉末即为TCPP-UiO-66-NH2。UiO-66-NH2则在不添加TCPP的情况下合成。
TCPP-UiO-66-NH2的活化:为了置换出在反应过程中未反应掉的TCPP,将TCPP-UiO-66-NH2分散在DMF中,120℃热回流4h,1000rpm离心10-20min收集固体;为了置换出在TCPP-UiO-66-NH2孔道内的N,N二甲基甲酰胺,将样品在甲醇中浸泡3天,每24h更换甲醇。
S3.Ag2S@TCPP-UiO-66-NH2的合成
称取100mg的TCPP-UiO-66-NH2在超声的条件下分散于30mL去离子水中,10min后,在分散液中加入27.2mgAgNO3,在黑暗条件下搅拌30min,然后将溶解在30mL去离子水中的19.2mgNa2S·9H2O缓慢滴加到上述分散液中,在黑暗条件下继续搅拌1h,反应结束后,将溶液经去离子水和无水乙醇分别洗涤三遍,47℃干燥12-24h得到Ag2S@TCPP-UiO-66-NH2。Ag2S则是在不添加TCPP-UiO-66-NH2的条件下按照相同流程合成得到。
实施例2
实施例1中样品的晶体结构由XRD分析。通过LabX XRD-6000型X射线衍射仪(日本岛津国际贸易公司)采集所有样品的X射线衍射数据,实验以Cu靶辐射(λ=0.15405nm)为射线源,在20-60°的2θ范围内,速度为2°/min扫描材料的晶体结构。图1a出现UiO-66-NH2和Ag2S的特征峰,证明成功的制备了UiO-66-NH2的骨架结构和Ag2S纳米粒子;在TCPP-UiO-66-NH2中,TCPP的掺杂没有改变UiO-66-NH2衍射峰的位置与强度,说明UiO-66-NH2的骨架结构并没有被破坏,图1b中在2θ=29°、31°、34°和36°的位置观察到Ag2S微弱的峰,证明Ag2S成功复合在TCPP-UiO-66-NH2上。
实施例3
实施例1中样品的形貌和微观结构由TEM分析。TEM图片由JEM-2100型透射电子显微镜(日本电子株式会社)拍摄。图2中可以看到单独的UiO-66是一个约500nm、表面平滑、具有六棱块形貌的纳米粒子;利用TCPP进行掺杂后,形成的TCPP-UiO-66则变成了直径从70-150nm不等的、表面不光滑的圆球,部分表面还有隐约可见的棱条;将Ag2S与TCPP-UiO-66复合后形成的Ag2S@TCPP-UiO-66-NH2,大小形状没有变化,Ag2S的尺寸较小,约为10nm,均匀的分散在Ag2S@TCPP-UiO-66-NH2表面。
实施例4
通过测定施例1中不同浓度(20、40、60、80、100μg/mL)的样品在450-900nm范围的紫外-可见光吸收光谱,根据朗伯比尔定律(Lambert-Beer law)对其在808nm处的消光系数进行计算,公式如下:
A/L=εC
其中,A为吸光度,L为透光液层厚度(1cm),ε为消光系数,C为材料颗粒的浓度。
由图3a得出Ag2S@TCPP-UiO-66-NH2紫外吸收强度随着浓度的增加而逐渐增强,呈现出浓度依赖性。根据朗伯比尔定律(Lambert-Beer law)计算得出Ag2S@TCPP-UiO-66-NH2在808nm处的消光系数为3.13Lg-1cm-1,表明其具有较强的光吸收能力,是高效的纳米光热剂。
实施例5
将实施例1中的样品分散到去离子水中备用。首先,通过改变样品悬浮液的浓度(0、25、50、100、200μg/mL)和激光功率密度(0.8、1.0、1.2和1.4W/cm2),测试样品的光热效应。取200μL样品悬浮液于96孔板中,使用808nm激光器照射样品10min,用红外热像仪记录样品的温度变化。图4a可知悬浮液的温度随着材料浓度的增加而不断升高,呈现出浓度依赖性。图4b可知悬浮液温度随着激光器功率的增加而不断升高,且最大温度不超过50℃,在相同条件的下,纯水则没有显著的温度升高趋势。证明该样品有良好的光热性能。图4c可知经过四个循环照射后,Ag2S@TCPP-UiO-66-NH2的升温幅度没有减弱的迹象,均可到达43℃左右,这表明样品具有良好的光热稳定性,可以承受重复的激光照射。
实施例6
通过采用808激光器照射样品悬浮液10min,随后关闭激光器使其自然冷却至室温,每10s读取一个温度值,根据所读数据绘制随着光照时间增长的温度变化曲线,得到图5a,结果表明Ag2S@TCPP-UiO-66-NH2的温度最大变化值为17℃。通过热稳定性的数据计算样品的光热转换效率:
其中,ΔTmax,mix是Ag2S@TCPP-UiO-66-NH2温度变化的最大值,为17℃,ΔTmax,H2O是纯水温度变化的最大值,为3℃;I是使用808nm激光器的功率密度,为1.2W/cm2;Aλ是Ag2S@TCPP-UiO-66-NH2在808nm处的吸光度值,为0.311。为了确定hA的数值大小,将图5a中温度变化数值进行拟合,得到了图5b的曲线,其中,θ=ΔTtime/ΔTmax,mix。拟合曲线斜率与hA的线性关系为:
其中,Ag2S@TCPP-UiO-66-NH2相对于H2O来说质量可以忽略不计,mH2O=2×10-4Kg,水的比热容Cp,H2O=4.2×103J/Kg·℃。通过拟合曲线图可知斜率为172.46,进一步计算出hA数值为0.00487。故将结果带入公式可以计算出Ag2S@TCPP-UiO-66-NH2的光热转化效率η=11.1%。
应用例1
以下是实施例1制备的Ag2S@TCPP-UiO-66-NH2光催化抗菌材料在808nm红外激光照射下灭活MRSA和ESBLE.coli的应用。具体过程如下:
细菌用PBS缓冲液梯度稀释至107CFU/mL备用,材料浓度为100μg/mL备用。抗菌实验分为以下三组:(1)材料+细菌+温度;(2)材料+细菌+冰水浴+NIR;(3)材料+细菌+NIR。每一组均有五个实验小组:PBS+细菌作为空白对照;UiO-66-NH2+细菌;TCPP+UiO-66-NH2+细菌;Ag2S+细菌;Ag2S@TCPP-UiO-66-NH2+细菌。其中,(1)组的温度由水浴锅控制,空白组的温度与Ag2S@TCPP-UiO-66-NH2组的温度一致,均为43℃,其余对照组的温度由各自材料所对应,为43℃;NIR表示用808nm激光、1.2W/cm2辐照10min。在96孔板中依次加入180μL的材料和20μL细菌,不同条件处理后分别吸取10μL菌悬液,用PBS缓冲液稀释100倍后,取100μL菌悬液进行涂布,37℃培养12至24h,随时观察细菌形态,待菌落长到理想大小后,统计每个培养基上的菌落数。从图6可以看出空白组在三种条件下的菌落数均没有明显的减少,甚至出现负增长,说明单独的温度和光照并不会对细菌产生较大的影响;ESBLE.coli和MRSA在PDT/PTT的协同作用下,在10min时可以达到99%以上的杀菌率。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (3)

1.一种Ag2S@TCPP-UiO-66-NH2光催化抗菌材料在制备灭活耐甲氧西林金黄色葡萄球菌MRSA和产超广谱β-内酰胺酶大肠杆菌ESBLE.coli的药物中的应用,其特征在于,所述的Ag2S@TCPP-UiO-66-NH2光响应抗菌材料的用量为20μg,MRSA和ESBLE.coli的菌液体积为20μL,菌液的浓度为106CFU/mL;
该光催化抗菌材料为70-150nm不等的、表面不光滑的圆球;
该光催化抗菌材料的制备方法,包括如下步骤:
S1.TCPP的合成
将4-羧基苯甲醛和吡咯,超声分散于丙酸中,在黑暗的条件下,热回流一段时间,得到黑色溶液,待溶液冷却,向反应液中加入甲醇,在冰水浴的条件下搅拌,反应结束后,通过抽滤的方法,用甲醇和去离子水分别交替清洗,所得产物在真空干燥箱中干燥,得到的紫色粉末即为TCPP;
S2.TCPP-UiO-66-NH2的合成
在锥形瓶中,分别称取46-92mg的四氯化锆、35.8-71.6mg的2-氨基对苯二甲酸和15.5-31mg的TCPP,并加入22.8-45.6mL的N,N二甲基甲酰胺溶剂DMF和2.8-5.6mL的冰乙酸,超声30-60min至完全溶解后转移至反应釜中,120℃加热12-24h,反应结束后,待反应釜自然冷却至室温,1000rpm离心10-20min收集样品,并分别用DMF和甲醇交替清洗三次,将收集到的固体在60℃的真空干燥箱中干燥12-24h,得到的淡紫色粉末即为TCPP-UiO-66-NH2
TCPP-UiO-66-NH2的活化:将TCPP-UiO-66-NH2分散在DMF中,120℃热回流2-4h,1000rpm离心10-20min收集固体;再将样品在甲醇中浸泡1-3天,每12-24h更换甲醇;
S3.Ag2S@TCPP-UiO-66-NH2的合成
称取50-100mg的TCPP-UiO-66-NH2在超声的条件下分散于15-30mL去离子水中,10-20min后,在分散液中加入14.1-27.2mgAgNO3,在黑暗条件下搅拌30-60min,然后将溶解在15-30mL去离子水中的14.6-19.2mgNa2S·9H2O缓慢滴加到上述分散液中,在黑暗条件下继续搅拌1-2h,反应结束后,将溶液经去离子水和无水乙醇分别洗涤三遍,47℃干燥12-24h得到Ag2S@TCPP-UiO-66-NH2
2.如权利要求1所述的Ag2S@TCPP-UiO-66-NH2光催化抗菌材料在制备灭活耐甲氧西林金黄色葡萄球菌MRSA和产超广谱β-内酰胺酶大肠杆菌ESBL E.coli的药物中的应用,其特征在于,所述步骤S1.TCPP的合成的具体步骤为:称取3.04-6.08g的4-羧基苯甲醛和1.4-2.8g的吡咯,超声分散于75-150mL的丙酸中,在黑暗的条件下,100-135℃热回流2-4h,得到黑色溶液,待溶液冷却至室温,向反应液中加入100-200mL的甲醇,在冰水浴的条件下搅拌30-60min,反应结束后,通过抽滤的方法,用甲醇和去离子水分别交替清洗三遍,所得产物在真空干燥箱中,80℃干燥12-24h,得到的紫色粉末即为TCPP。
3.如权利要求1所述的Ag2S@TCPP-UiO-66-NH2光催化抗菌材料在制备灭活耐甲氧西林金黄色葡萄球菌MRSA和产超广谱β-内酰胺酶大肠杆菌ESBL E.coli的药物中的应用,其特征在于,Ag2S@TCPP-UiO-66-NH2光催化抗菌材料用于灭活MRSA和ESBLE.coli的条件为:将Ag2S@TCPP-UiO-66-NH2加入含有MRSA和ESBLE.coli的菌液中,将菌液置于808nm红外激光器下照射0-10min。
CN202210562512.1A 2022-05-23 2022-05-23 一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用 Active CN115068605B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210562512.1A CN115068605B (zh) 2022-05-23 2022-05-23 一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210562512.1A CN115068605B (zh) 2022-05-23 2022-05-23 一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115068605A CN115068605A (zh) 2022-09-20
CN115068605B true CN115068605B (zh) 2024-02-23

Family

ID=83250160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210562512.1A Active CN115068605B (zh) 2022-05-23 2022-05-23 一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115068605B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117159791B (zh) * 2023-11-01 2023-12-26 云南伦扬科技有限公司 一种用于糖尿病伤口愈合刺猬花状纳米酶水凝胶
CN117443455B (zh) * 2023-12-26 2024-05-03 吉林农业大学 一种邻苯二酚-甲醛树脂微球光催化杂化材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104721843A (zh) * 2015-04-13 2015-06-24 北京化工大学 一种用近红外荧光示踪的pH响应的疏水药物纳米胶囊及其制备方法
WO2018065884A1 (en) * 2016-10-03 2018-04-12 King Abdullah University Of Science And Technology Nanocluster capped mesoporous nanoparticles, methods of making and use
CN106955739B (zh) * 2017-03-22 2019-12-06 西北师范大学 一种还原氧化石墨烯/卟啉/铂纳米复合材料及其制备和应用
CN110779976A (zh) * 2019-11-15 2020-02-11 东莞理工学院 基于UiO-66(NH2)-硫化银复合材料的癌坯抗原检测方法
CN111110843A (zh) * 2019-12-16 2020-05-08 江苏大学 光敏半导体Zr-TCPP MOFs负载Ag纳米粒子复合材料的制备方法及其抗菌应用
CN113876949A (zh) * 2021-10-21 2022-01-04 四川大学 一种复合抗菌材料及其制备方法和应用
CN113907089A (zh) * 2021-09-27 2022-01-11 江苏格姆思体育科技研究院有限公司 一种复方空气杀菌剂的制备方法
CN114479105A (zh) * 2022-01-25 2022-05-13 福建农林大学 用于抗菌治疗的金属有机框架材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136621B1 (en) * 2007-04-04 2013-05-08 Perlen Converting AG Antimicrobial material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104721843A (zh) * 2015-04-13 2015-06-24 北京化工大学 一种用近红外荧光示踪的pH响应的疏水药物纳米胶囊及其制备方法
WO2018065884A1 (en) * 2016-10-03 2018-04-12 King Abdullah University Of Science And Technology Nanocluster capped mesoporous nanoparticles, methods of making and use
CN106955739B (zh) * 2017-03-22 2019-12-06 西北师范大学 一种还原氧化石墨烯/卟啉/铂纳米复合材料及其制备和应用
CN110779976A (zh) * 2019-11-15 2020-02-11 东莞理工学院 基于UiO-66(NH2)-硫化银复合材料的癌坯抗原检测方法
CN111110843A (zh) * 2019-12-16 2020-05-08 江苏大学 光敏半导体Zr-TCPP MOFs负载Ag纳米粒子复合材料的制备方法及其抗菌应用
CN113907089A (zh) * 2021-09-27 2022-01-11 江苏格姆思体育科技研究院有限公司 一种复方空气杀菌剂的制备方法
CN113876949A (zh) * 2021-10-21 2022-01-04 四川大学 一种复合抗菌材料及其制备方法和应用
CN114479105A (zh) * 2022-01-25 2022-05-13 福建农林大学 用于抗菌治疗的金属有机框架材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties for rapid sterilization;Xiong Ke et al.;《COLLOID AND INTERFACE SCIENCE COMMUNICATIONS》;第33卷;第100201页 *
Ag2S nanoparticle-mediated multiple ablations reinvigorates the immune response for enhanced cancer photo-immunotherapy;Han Ruxia et al.;《Biomaterials》;第264卷;第120451页 *
基于碳量子点/硫化银的抗菌材料制备及性能研究;高翔;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;第2022卷(第1期);第B020-729页 *

Also Published As

Publication number Publication date
CN115068605A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN115068605B (zh) 一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用
Ding et al. Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization
Yan et al. Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light
Koli et al. Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs
Wu et al. Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach
Popov et al. Photo-induced toxicity of tungsten oxide photochromic nanoparticles
CN111909691B (zh) 一种可光热抗菌近红外碳量子点的制备方法及其产品和应用
Hassan et al. Fabrication, characterization and antibacterial effect of novel electrospun TiO2 nanorods on a panel of pathogenic bacteria
Naeimi et al. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity
Zhang et al. Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection
Gorle et al. Near infrared light activatable PEI-wrapped bismuth selenide nanocomposites for photothermal/photodynamic therapy induced bacterial inactivation and dye degradation
CN105688992A (zh) 一种Ag/Fe3O4/纳米纤维素三元复合材料及其制备方法
Yang et al. Ag functionalized SnS 2 with enhanced photothermal activity for safe and efficient wound disinfection
CN114848818B (zh) 黄连素衍生物-金属络合物纳米材料及其制备方法和应用
Singh et al. Oxidized guar gum–ZnO hybrid nanostructures: synthesis, characterization and antibacterial activity
CN113827720A (zh) 一种经过还原的金属氧化物半导体纳米材料在抗菌材料中的应用
Xiong et al. Near-infrared light-responsive photothermal α-Fe 2 O 3@ Au/PDA core/shell nanostructure with on–off controllable anti-bacterial effects
CN106882791B (zh) 水分散性碳纳米洋葱的制备方法及其应用
CN114288406B (zh) 一种Zn-MOF@Ti3C2Tx杂化材料及其制备方法、应用
Liu et al. Nanosilver-decorated covalent organic frameworks for enhanced photodynamic, photothermal, and antibacterial properties
CN113875771A (zh) 一种Zr-MOF纳米材料在制备光催化抗菌材料中的应用
Kim et al. NIR-driven SnSe particles for rapid and effective bacteria sterilization
Luo et al. Photocatalytic sterilization of TiO2 films coated on Al fiber
CN116270480A (zh) 一种咖啡酸金属多酚包覆金属有机骨架纳米粒子及其制备方法和应用
CN111228488A (zh) 一种LDH-Ce6-Ag纳米复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant