CN115050839A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
CN115050839A
CN115050839A CN202210863090.1A CN202210863090A CN115050839A CN 115050839 A CN115050839 A CN 115050839A CN 202210863090 A CN202210863090 A CN 202210863090A CN 115050839 A CN115050839 A CN 115050839A
Authority
CN
China
Prior art keywords
oxide layer
layer
region
drain
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210863090.1A
Other languages
Chinese (zh)
Other versions
CN115050839B (en
Inventor
吴尚霖
陈衍豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW111120152A external-priority patent/TWI816413B/en
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Publication of CN115050839A publication Critical patent/CN115050839A/en
Application granted granted Critical
Publication of CN115050839B publication Critical patent/CN115050839B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device and a method of manufacturing the same. The semiconductor device includes a substrate, a first oxide layer, an insulating pattern, a metal oxide layer, a gate dielectric layer, a gate electrode, a source electrode, and a drain electrode. The first oxide layer is located on the substrate. The insulation pattern is positioned on the first oxide layer and comprises a silicon nitride layer and a second oxide layer. The silicon nitride layer is located between the first oxide layer and the second oxide layer. The metal oxide layer contacts the upper surface of the first oxide layer, the sidewalls of the insulating pattern, and the upper surface of the insulating pattern. The gate dielectric layer is located on the metal oxide layer. The gate is located on the gate dielectric layer. Part of the insulation pattern is located between the gate and the substrate. The source electrode and the drain electrode are electrically connected with the metal oxide layer.

Description

半导体装置及其制造方法Semiconductor device and method of manufacturing the same

技术领域technical field

本发明涉及一种半导体装置及其制造方法。The present invention relates to a semiconductor device and a method of manufacturing the same.

背景技术Background technique

目前,常见的薄膜晶体管通常以非晶硅半导体作为通道,其中非晶硅半导体由于工艺简单且成本低廉,因此以广泛的应用于各种薄膜晶体管中。At present, common thin film transistors usually use amorphous silicon semiconductors as channels, wherein amorphous silicon semiconductors are widely used in various thin film transistors due to their simple process and low cost.

随着显示技术的进步,显示面板的分辨率逐年提升。为了使像素电路中的薄膜晶体管缩小,许多厂商致力于研发新的半导体材料,例如金属氧化物半导体材料。在金属氧化物半导体材料中,氧化铟镓锌(indium gallium zinc oxide,IGZO)同时具有面积小以及电子迁移率高的优点,因此被视为一种重要的新型半导体材料。With the advancement of display technology, the resolution of display panels has increased year by year. In order to shrink thin film transistors in pixel circuits, many manufacturers are working on developing new semiconductor materials, such as metal oxide semiconductor materials. Among metal oxide semiconductor materials, indium gallium zinc oxide (IGZO) has the advantages of small area and high electron mobility, so it is regarded as an important new semiconductor material.

发明内容SUMMARY OF THE INVENTION

本发明提供一种半导体装置及其制造方法,能改善漏极处的热载子效应,借此提升可靠度。The present invention provides a semiconductor device and a manufacturing method thereof, which can improve the hot carrier effect at the drain, thereby improving reliability.

本发明的至少一实施例提供一种半导体装置。半导体装置包括基板、第一氧化物层、绝缘图案、金属氧化物层、栅介电层、栅极、源极以及漏极。第一氧化物层位于基板之上。绝缘图案位于第一氧化物层上,且包括氮化硅层以及第二氧化物层。氮化硅层位于第一氧化物层与第二氧化物层之间。金属氧化物层接触第一氧化物层的上表面、绝缘图案的侧壁以及绝缘图案的上表面。栅介电层位于金属氧化物层上。栅极位于栅介电层上。部分绝缘图案位于栅极与基板之间。源极以及漏极电性连接金属氧化物层。At least one embodiment of the present invention provides a semiconductor device. The semiconductor device includes a substrate, a first oxide layer, an insulating pattern, a metal oxide layer, a gate dielectric layer, a gate electrode, a source electrode, and a drain electrode. The first oxide layer is over the substrate. The insulating pattern is on the first oxide layer and includes a silicon nitride layer and a second oxide layer. A silicon nitride layer is located between the first oxide layer and the second oxide layer. The metal oxide layer contacts the upper surface of the first oxide layer, the sidewalls of the insulating pattern, and the upper surface of the insulating pattern. A gate dielectric layer is on the metal oxide layer. The gate is on the gate dielectric layer. Part of the insulating pattern is located between the gate and the substrate. The source electrode and the drain electrode are electrically connected to the metal oxide layer.

本发明的至少一实施例提供一种半导体装置的制造方法,包括:形成第一氧化物层于基板之上;形成绝缘图案于第一氧化物层上,且绝缘图案包括氮化硅层以及第二氧化物层,其中氮化硅层位于第一氧化物层与第二氧化物层之间;形成金属氧化物层于第一氧化物层的上表面、绝缘图案的侧壁以及绝缘图案的上表面上;形成栅介电层于金属氧化物层上;形成栅极于栅介电层上,其中部分绝缘图案位于栅极与基板之间;形成电性连接金属氧化物层的源极以及漏极。At least one embodiment of the present invention provides a method for fabricating a semiconductor device, comprising: forming a first oxide layer on a substrate; forming an insulating pattern on the first oxide layer, wherein the insulating pattern includes a silicon nitride layer and a first oxide layer. A silicon dioxide layer, wherein the silicon nitride layer is located between the first oxide layer and the second oxide layer; a metal oxide layer is formed on the upper surface of the first oxide layer, the sidewalls of the insulating pattern and the top of the insulating pattern on the surface; forming a gate dielectric layer on the metal oxide layer; forming a gate electrode on the gate dielectric layer, wherein part of the insulating pattern is located between the gate electrode and the substrate; forming a source electrode and a drain electrode electrically connected to the metal oxide layer pole.

本发明的至少一实施例提供一种半导体装置。半导体装置包括基板、漏极、绝缘图案、金属氧化物层、栅介电层、栅极以及源极。漏极位于基板之上。绝缘图案位于漏极之上,且漏极位于绝缘图案的第一接触孔下方。金属氧化物层位于绝缘图案上,且填入第一接触孔中。金属氧化物层接触绝缘图案的上表面、绝缘图案的第一接触孔的侧壁以及漏极。栅介电层位于金属氧化物层上。栅极位于栅介电层上。源极电性连接金属氧化物层。At least one embodiment of the present invention provides a semiconductor device. The semiconductor device includes a substrate, a drain electrode, an insulating pattern, a metal oxide layer, a gate dielectric layer, a gate electrode, and a source electrode. The drain is on the substrate. The insulating pattern is over the drain, and the drain is under the first contact hole of the insulating pattern. The metal oxide layer is on the insulating pattern and fills the first contact hole. The metal oxide layer contacts the upper surface of the insulating pattern, the sidewall of the first contact hole of the insulating pattern, and the drain electrode. A gate dielectric layer is on the metal oxide layer. The gate is on the gate dielectric layer. The source electrode is electrically connected to the metal oxide layer.

本发明的至少一实施例提供一种半导体装置的制造方法,包括形成漏极于基板之上;形成毯覆于漏极上的氮化硅层;形成毯覆于氮化硅层上的氧化物层;对氮化硅层以及氧化物层执行第一图案化工艺,以形成第一接触孔以及开口,其中第一接触孔穿过氧化物层以及氮化硅层,且开口穿过氧化物层且不穿过氮化硅层;形成金属氧化物层于氮化硅层以及氧化物层上,且金属氧化物层填入第一接触孔中,并接触氧化物层的上表面、第一接触孔的侧壁以及漏极;形成栅介电层于金属氧化物层上;形成栅极于栅介电层上;形成电性连接金属氧化物层的源极。At least one embodiment of the present invention provides a method for fabricating a semiconductor device, including forming a drain electrode on a substrate; forming a silicon nitride layer blanketing the drain electrode; forming an oxide blanket blanketing the silicon nitride layer layer; performing a first patterning process on the silicon nitride layer and the oxide layer to form first contact holes and openings, wherein the first contact holes pass through the oxide layer and the silicon nitride layer, and the openings pass through the oxide layer and does not pass through the silicon nitride layer; a metal oxide layer is formed on the silicon nitride layer and the oxide layer, and the metal oxide layer fills the first contact hole and contacts the upper surface of the oxide layer and the first contact The sidewall of the hole and the drain; forming a gate dielectric layer on the metal oxide layer; forming a gate on the gate dielectric layer; forming a source electrode electrically connected to the metal oxide layer.

附图说明Description of drawings

图1A是依照本发明的一实施例的一种半导体装置的俯视图。FIG. 1A is a top view of a semiconductor device according to an embodiment of the present invention.

图1B是图1A的线a-a’的剖面示意图。Fig. 1B is a schematic cross-sectional view taken along line a-a' of Fig. 1A.

图2A至图2E是依照本发明的一实施例的一种半导体装置的制造方法的剖面示意图。2A to 2E are schematic cross-sectional views of a method for fabricating a semiconductor device according to an embodiment of the present invention.

图3A是依照本发明的一实施例的一种半导体装置的俯视图。3A is a top view of a semiconductor device according to an embodiment of the present invention.

图3B是图3A的线a-a’的剖面示意图。Fig. 3B is a schematic cross-sectional view taken along the line a-a' of Fig. 3A.

图4A是依照本发明的一实施例的一种半导体装置的俯视图。4A is a top view of a semiconductor device according to an embodiment of the present invention.

图4B是图4A的线a-a’的剖面示意图。Fig. 4B is a schematic cross-sectional view taken along the line a-a' of Fig. 4A.

图5A至10A是依照本发明的一实施例的一种半导体装置的制造方法的俯视图。5A to 10A are top views of a method of fabricating a semiconductor device according to an embodiment of the present invention.

图5B至10B分别是图5A至图10A的线a-a’的剖面示意图。5B to 10B are schematic cross-sectional views along line a-a' of FIGS. 5A to 10A, respectively.

图11A是依照本发明的一实施例的一种显示装置的俯视图。FIG. 11A is a top view of a display device according to an embodiment of the present invention.

图11B是图11A的局部放大示意图。FIG. 11B is a partial enlarged schematic view of FIG. 11A .

附图标记说明:Description of reference numbers:

10A,10B,10C:半导体装置10A, 10B, 10C: Semiconductor devices

100:基板100: Substrate

110:第一氧化物层110: first oxide layer

120:绝缘图案120: Insulation pattern

122:氮化硅层122: Silicon nitride layer

124第二氧化物层124 second oxide layer

130:栅介电层130: Gate Dielectric Layer

140:层间介电层140: Interlayer dielectric layer

AA:显示区AA: display area

a-a’:线a-a': line

BA:周边区BA: Surrounding area

ch:通道区ch: channel area

D:漏极D: Drain

dr:漏极区dr: drain region

G:栅极G: Gate

HD:高度差HD: Height difference

HDF:散热结构HDF: Thermal Structure

h:氢浓度渐变区h: hydrogen concentration gradient area

ND:法线方向ND: normal direction

OP:开口OP: open mouth

OS,OS’:金属氧化物层OS,OS': metal oxide layer

P:掺杂工艺P: doping process

PR:图化的光刻胶层PR: patterned photoresist layer

S:源极S: source

sr:源极区sr: source region

sw,sw1a,sw1b,sw2:侧壁sw, sw1a, sw1b, sw2: sidewalls

T:连接电极T: Connection electrode

t1,t2,t3,t4:厚度t1,t2,t3,t4: Thickness

ts1,ts2:上表面ts1, ts2: upper surface

V1:第一接触孔V1: first contact hole

V2:第二接触孔V2: second contact hole

V3:第三接触孔V3: third contact hole

具体实施方式Detailed ways

图1A是依照本发明的一实施例的一种半导体装置的俯视图。图1B是图1A的线a-a’的剖面示意图。FIG. 1A is a top view of a semiconductor device according to an embodiment of the present invention. Fig. 1B is a schematic cross-sectional view taken along line a-a' of Fig. 1A.

请参考图1A与图1B,半导体装置10A包括基板100、第一氧化物层110、绝缘图案120、金属氧化物层OS、栅介电层130、栅极G、源极S以及漏极D,其中绝缘图案120包括氮化硅层122以及第二氧化物层124。在本实施例中,半导体装置10A还包括层间介电层140。为了方便说明,图1A示出了金属氧化物层OS、氮化硅层122、栅极G、源极S以及漏极D,并省略示出其他构件。1A and FIG. 1B , the semiconductor device 10A includes a substrate 100 , a first oxide layer 110 , an insulating pattern 120 , a metal oxide layer OS, a gate dielectric layer 130 , a gate G, a source S and a drain D, The insulating pattern 120 includes a silicon nitride layer 122 and a second oxide layer 124 . In this embodiment, the semiconductor device 10A further includes an interlayer dielectric layer 140 . For convenience of description, FIG. 1A shows the metal oxide layer OS, the silicon nitride layer 122 , the gate electrode G, the source electrode S, and the drain electrode D, and other components are omitted.

基板100的材质可为玻璃、石英、有机聚合物或是不透光/反射材料(例如:导电材料、金属、晶圆、陶瓷或其他可适用的材料)或是其他可适用的材料。若使用导电材料或金属时,则在基板100上覆盖一层绝缘层(未示出),以避免短路问题。在一些实施例中,基板100为柔性基板,且基板100的材料例如为聚乙烯对苯二甲酸酯(polyethyleneterephthalate,PET)、聚二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚酯(polyester,PES)、聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)、聚碳酸酯(polycarbonate,PC)、聚酰亚胺(polyimide,PI)或金属软板(Metal Foil)或其他柔性材质。The material of the substrate 100 can be glass, quartz, organic polymer or opaque/reflective material (eg, conductive material, metal, wafer, ceramic or other applicable materials) or other applicable materials. If conductive material or metal is used, an insulating layer (not shown) is covered on the substrate 100 to avoid the short circuit problem. In some embodiments, the substrate 100 is a flexible substrate, and the material of the substrate 100 is, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester ( polyester, PES), polymethylmethacrylate (polymethylmethacrylate, PMMA), polycarbonate (polycarbonate, PC), polyimide (polyimide, PI) or metal soft plate (Metal Foil) or other flexible materials.

第一氧化物层110位于基板100之上。在一些实施例中,第一氧化物层110例如包括氧化硅、氮氧化硅、氧化铝或其他合适的材料。在一些实施例中,第一氧化物层110的厚度t1为500埃至3000埃。The first oxide layer 110 is located on the substrate 100 . In some embodiments, the first oxide layer 110 includes, for example, silicon oxide, silicon oxynitride, aluminum oxide, or other suitable materials. In some embodiments, the thickness t1 of the first oxide layer 110 is 500 angstroms to 3000 angstroms.

绝缘图案120位于第一氧化物层110上,且包括氮化硅层122以及第二氧化物层124。在一些实施例中,氮化硅层122中包含氢元素。在一些实施例中,氮化硅层122的厚度t2为100埃至1500埃。第二氧化物层124位于氮化硅层122上,且氮化硅层122位于第一氧化物层110与第二氧化物层124之间。第二氧化物层124例如包括氧化硅、氮氧化硅、氧化铝或其他合适的材料。在一些实施例中,第一氧化物层110与第二氧化物层124皆为氧化硅或氮氧化硅,且第一氧化物层110的氧浓度大于第二氧化物层124的氧浓度。举例来说,第一氧化物层110包括SiOx,第二氧化物层124包括SiOy,且x大于y。在一些实施例中,第二氧化物层124的厚度t3为100埃至1500埃。The insulating pattern 120 is located on the first oxide layer 110 and includes a silicon nitride layer 122 and a second oxide layer 124 . In some embodiments, the silicon nitride layer 122 contains hydrogen. In some embodiments, the thickness t2 of the silicon nitride layer 122 is 100 angstroms to 1500 angstroms. The second oxide layer 124 is located on the silicon nitride layer 122 , and the silicon nitride layer 122 is located between the first oxide layer 110 and the second oxide layer 124 . The second oxide layer 124 includes, for example, silicon oxide, silicon oxynitride, aluminum oxide, or other suitable materials. In some embodiments, the first oxide layer 110 and the second oxide layer 124 are both silicon oxide or silicon oxynitride, and the oxygen concentration of the first oxide layer 110 is greater than that of the second oxide layer 124 . For example, the first oxide layer 110 includes SiOx, the second oxide layer 124 includes SiOy, and x is greater than y. In some embodiments, the thickness t3 of the second oxide layer 124 is 100 angstroms to 1500 angstroms.

金属氧化物层OS位于第一氧化物层110以及绝缘图案120上。金属氧化物层OS接触第一氧化物层110的上表面ts1、绝缘图案120的侧壁sw以及绝缘图案120的上表面ts2。在一些实施例中,绝缘图案120的侧壁sw包括氮化硅层122以及第二氧化物层124,且金属氧化物层OS在侧壁sw的位置接触氮化硅层122以及第二氧化物层124。The metal oxide layer OS is located on the first oxide layer 110 and the insulating pattern 120 . The metal oxide layer OS contacts the upper surface ts1 of the first oxide layer 110 , the sidewall sw of the insulating pattern 120 , and the upper surface ts2 of the insulating pattern 120 . In some embodiments, the sidewall sw of the insulating pattern 120 includes the silicon nitride layer 122 and the second oxide layer 124 , and the metal oxide layer OS contacts the silicon nitride layer 122 and the second oxide layer at the position of the sidewall sw layer 124.

金属氧化物层OS包括源极区sr、漏极区dr以及位于源极区sr与漏极区dr之间的通道区ch。源极区sr与漏极区dr经掺杂而具有低于通道区ch的电阻率。在本实施例中,源极区sr接触第一氧化物层110的上表面ts1,通道区ch接触第一氧化物层110的上表面ts1以及绝缘图案120的侧壁sw,且漏极区dr接触绝缘图案120的上表面ts2。在一些实施例中,源极区sr与基板100之间的距离小于漏极区dr与基板100之间的距离。在一些实施例中,漏极区dr的底面与源极区sr的底面之间具有高度差HD,高度差HD例如约等于绝缘图案120的厚度。在本实施例中,通道区ch连接漏极区dr的部分沿着垂直方向(法线方向ND)延伸,可减少金属氧化物层OS在靠近漏极D处因横向电场而产生的热载子效应。The metal oxide layer OS includes a source region sr, a drain region dr, and a channel region ch between the source region sr and the drain region dr. The source region sr and the drain region dr are doped to have a lower resistivity than the channel region ch. In this embodiment, the source region sr contacts the upper surface ts1 of the first oxide layer 110 , the channel region ch contacts the upper surface ts1 of the first oxide layer 110 and the sidewall sw of the insulating pattern 120 , and the drain region dr The upper surface ts2 of the insulating pattern 120 is contacted. In some embodiments, the distance between the source region sr and the substrate 100 is smaller than the distance between the drain region dr and the substrate 100 . In some embodiments, there is a height difference HD between the bottom surface of the drain region dr and the bottom surface of the source region sr, and the height difference HD is, for example, approximately equal to the thickness of the insulating pattern 120 . In this embodiment, the part of the channel region ch connected to the drain region dr extends along the vertical direction (the normal direction ND), which can reduce the hot carrier generated by the lateral electric field in the metal oxide layer OS near the drain D. effect.

在一些实施例中,由于漏极区dr位于包含氢元素的氮化硅层122之上,漏极区dr的氢浓度大于源极区sr的氢浓度。因此,漏极区dr的氢电阻率低于源极区sr的电阻率。In some embodiments, since the drain region dr is located on the silicon nitride layer 122 containing hydrogen element, the hydrogen concentration of the drain region dr is greater than that of the source region sr. Therefore, the hydrogen resistivity of the drain region dr is lower than that of the source region sr.

在一些实施例中,金属氧化物层OS的材料包括氧化铟镓锌(IGZO)、氧化铟锡锌(ITZO)、氧化铝锌锡(AZTO)、氧化铟钨锌(IWZO)等四元金属化合物或包含镓(Ga)、锌(Zn)、铟(In)、锡(Sn)、铝(Al)、钨(W)中的任三者的三元金属构成的氧化物。In some embodiments, the material of the metal oxide layer OS includes quaternary metal compounds such as indium gallium zinc oxide (IGZO), indium tin zinc oxide (ITZO), aluminum zinc tin (AZTO), and indium tungsten zinc oxide (IWZO). Or an oxide composed of a ternary metal including any three of gallium (Ga), zinc (Zn), indium (In), tin (Sn), aluminum (Al), and tungsten (W).

栅介电层130位于金属氧化物层OS上。栅介电层130例如包括氧化硅、氮氧化硅、氧化铝、氧化铪或其他合适的材料。在一些实施例中,栅介电层130的厚度t4为500埃至3000埃。The gate dielectric layer 130 is on the metal oxide layer OS. The gate dielectric layer 130 includes, for example, silicon oxide, silicon oxynitride, aluminum oxide, hafnium oxide, or other suitable materials. In some embodiments, the thickness t4 of the gate dielectric layer 130 is 500 angstroms to 3000 angstroms.

栅极G位于栅介电层130上。部分绝缘图案120位于栅极G与基板100之间。在本实施例中,在基板100的顶面的法线方向ND上,部分栅极G重叠于绝缘图案120,且另一部分栅极G未重叠于绝缘图案120。在本实施例中,漏极区dr延伸至栅极G与基板100之间。部分栅极G重叠于漏极区dr,且另一部分重叠于通道区ch。The gate G is on the gate dielectric layer 130 . Part of the insulating pattern 120 is located between the gate G and the substrate 100 . In this embodiment, in the normal direction ND of the top surface of the substrate 100 , part of the gate G overlaps the insulating pattern 120 , and another part of the gate G does not overlap the insulating pattern 120 . In this embodiment, the drain region dr extends between the gate G and the substrate 100 . Part of the gate G overlaps the drain region dr, and another part overlaps the channel region ch.

在一些实施例中,栅极G的材料可包括金属,例如铬、金、银、铜、锡、铅、铪、钨、钼、钕、钛、钽、铝、锌或上述金属的任意组合的合金或上述金属及/或合金的叠层,但本发明不以此为限。栅极G也可以使用其他导电材料,例如:金属的氮化物、金属的氧化物、金属的氮氧化物、金属与其它导电材料的堆叠层或是其他具有导电性质的材料。In some embodiments, the material of the gate G may include metals such as chromium, gold, silver, copper, tin, lead, hafnium, tungsten, molybdenum, neodymium, titanium, tantalum, aluminum, zinc, or any combination of the foregoing metals Alloys or stacks of the above metals and/or alloys, but the present invention is not limited thereto. The gate G can also use other conductive materials, such as metal nitride, metal oxide, metal oxynitride, a stacked layer of metal and other conductive materials, or other materials with conductive properties.

层间介电层140设置于栅介电层130上。层间介电层140覆盖栅极G。在一些实施例中,层间介电层140的材料包括氧化硅、氮化硅、氮氧化硅、氧化铪、氧化铝或其他绝缘材料。The interlayer dielectric layer 140 is disposed on the gate dielectric layer 130 . The interlayer dielectric layer 140 covers the gate G. In some embodiments, the material of the interlayer dielectric layer 140 includes silicon oxide, silicon nitride, silicon oxynitride, hafnium oxide, aluminum oxide, or other insulating materials.

漏极D与源极S设置于层间介电层140上。在法线方向ND上,漏极D重叠于绝缘图案120,而源极S未重叠于绝缘图案120。漏极D与源极S通过层间介电层140中的第一接触孔V1与第二接触孔V2而分别电性连接至金属氧化物层OS的漏极区dr与源极区sr。在一些实施例中,漏极D与源极S的材料可包括金属,例如铬、金、银、铜、锡、铅、铪、钨、钼、钕、钛、钽、铝、锌或上述金属的任意组合的合金或上述金属及/或合金的叠层,但本发明不以此为限。漏极D与源极S也可以使用其他导电材料,例如:金属的氮化物、金属的氧化物、金属的氮氧化物、金属与其它导电材料的堆叠层或是其他具有导电性质的材料。The drain electrode D and the source electrode S are disposed on the interlayer dielectric layer 140 . In the normal direction ND, the drain electrode D overlaps the insulating pattern 120 , and the source electrode S does not overlap the insulating pattern 120 . The drain electrode D and the source electrode S are respectively electrically connected to the drain electrode region dr and the source electrode region sr of the metal oxide layer OS through the first contact hole V1 and the second contact hole V2 in the interlayer dielectric layer 140 . In some embodiments, the material of the drain electrode D and the source electrode S may include metals, such as chromium, gold, silver, copper, tin, lead, hafnium, tungsten, molybdenum, neodymium, titanium, tantalum, aluminum, zinc or the above metals Any combination of alloys or stacks of the above metals and/or alloys, but the present invention is not limited thereto. The drain electrode D and the source electrode S can also use other conductive materials, such as metal nitride, metal oxide, metal oxynitride, a stacked layer of metal and other conductive materials, or other materials with conductive properties.

图2A至图2E是图1A与图1B的半导体装置10A的制造方法的剖面示意图。2A to 2E are schematic cross-sectional views illustrating a method of manufacturing the semiconductor device 10A of FIGS. 1A and 1B .

请参考图2A,形成第一氧化物层110于基板100之上。接着,形成绝缘图案120于第一氧化物层110上。在一些实施例中,形成绝缘图案120的方法包括,形成毯覆于第一氧化物层110上的氮化硅材料层。接着,形成毯覆于氮化硅材料层上的氧化物材料层。然后通过光刻蚀刻工艺图案化氧化物材料层以及氮化硅材料层以形成氮化硅层122以及第二氧化物层124。在一些实施例中,形成氧化物材料层以及氮化硅材料层的方法包括化学气相沉积或等离子体增强化学气相沉积,且形成氮化硅材料层时所用的气体包括硅甲烷(SiH4)、氮气(N2)、氨气(NH3)以及其他合适的气体,因此,氮化硅层122中包括氢元素。Referring to FIG. 2A , a first oxide layer 110 is formed on the substrate 100 . Next, an insulating pattern 120 is formed on the first oxide layer 110 . In some embodiments, the method of forming the insulating pattern 120 includes forming a silicon nitride material layer blanketed on the first oxide layer 110 . Next, an oxide material layer blanketed on the silicon nitride material layer is formed. The oxide material layer and the silicon nitride material layer are then patterned through a photolithography etching process to form the silicon nitride layer 122 and the second oxide layer 124 . In some embodiments, the method for forming the oxide material layer and the silicon nitride material layer includes chemical vapor deposition or plasma enhanced chemical vapor deposition, and the gas used for forming the silicon nitride material layer includes silicon methane (SiH 4 ), Nitrogen gas (N 2 ), ammonia gas (NH 3 ), and other suitable gases, therefore, the silicon nitride layer 122 includes hydrogen element.

请参考图2B,形成金属氧化物OS’于第一氧化物层110的上表面ts1、绝缘图案120的侧壁sw以及绝缘图案120的上表面ts2上。在本实施例中,第一氧化物层110的上表面ts1与绝缘图案120的上表面ts2之间具有断差,且金属氧化物OS’覆盖第一氧化物层110的上表面ts1与绝缘图案120的上表面ts2之间的断差位置。Referring to FIG. 2B , a metal oxide OS' is formed on the upper surface ts1 of the first oxide layer 110 , the sidewall sw of the insulating pattern 120 and the upper surface ts2 of the insulating pattern 120 . In this embodiment, there is a discontinuity between the upper surface ts1 of the first oxide layer 110 and the upper surface ts2 of the insulating pattern 120 , and the metal oxide OS′ covers the upper surface ts1 of the first oxide layer 110 and the insulating pattern The position of the break between the upper surfaces ts2 of 120.

在一些实施例中,第一氧化物层110具有储存氧元素的功能。在沉积金属氧化物OS’时,部分氧元素扩散至第一氧化物层110中。此时,第一氧化物层110具有相对较高的氧浓度。然而,由于绝缘图案120的第二氧化物层124的储存氧元素的能力较差,因此,第二氧化物层124具有相对较低的氧浓度。In some embodiments, the first oxide layer 110 has a function of storing oxygen elements. When the metal oxide OS' is deposited, part of the oxygen element diffuses into the first oxide layer 110. At this time, the first oxide layer 110 has a relatively high oxygen concentration. However, since the second oxide layer 124 of the insulating pattern 120 has a poor ability to store oxygen elements, the second oxide layer 124 has a relatively low oxygen concentration.

形成栅介电层130于金属氧化物层OS’上。在一些实施例中,在沉积栅介电层130时会对金属氧化物层OS’加热,使金属氧化物层OS’中的氧扩散出去,例如扩散至第一氧化物层110或栅介电层130中,并于金属氧化物层OS’中产生氧空缺,使金属氧化物层OS’的电阻率下降。由于第二氧化物层124的储存氧元素的能力较差,因此,位于第二氧化物层124上方的金属氧化物层OS’中的氧较不容易向下扩散至第二氧化物层124中。此外,在一些实施例中,氮化硅层122的氢会向上扩散至位于第二氧化物层124上方的金属氧化物层OS’中,进一步降低第二氧化物层124上方的金属氧化物层OS’的电阻率。A gate dielectric layer 130 is formed on the metal oxide layer OS'. In some embodiments, the metal oxide layer OS' is heated when the gate dielectric layer 130 is deposited, so that oxygen in the metal oxide layer OS' diffuses out, eg, to the first oxide layer 110 or the gate dielectric. In the layer 130, oxygen vacancies are generated in the metal oxide layer OS', so that the resistivity of the metal oxide layer OS' decreases. Oxygen in the metal oxide layer OS' located above the second oxide layer 124 is less likely to diffuse down into the second oxide layer 124 due to the poor ability of the second oxide layer 124 to store oxygen elements . In addition, in some embodiments, the hydrogen of the silicon nitride layer 122 diffuses upward into the metal oxide layer OS′ located above the second oxide layer 124 , further reducing the metal oxide layer above the second oxide layer 124 The resistivity of OS'.

请参考图2C,在一些实施例中,在沉积栅介电层130之后,进行退火工艺,以使第一氧化物层110与栅介电层130中储存的氧元素扩散至金属氧化物层OS’中。氧元素与金属氧化物层OS’的氧空缺结合,使金属氧化物层OS’的电阻率上升,例如电阻率从约1E+4ohm/sq提升至1E+8ohm/sq以上。Referring to FIG. 2C , in some embodiments, after the gate dielectric layer 130 is deposited, an annealing process is performed to diffuse the oxygen elements stored in the first oxide layer 110 and the gate dielectric layer 130 to the metal oxide layer OS 'middle. The oxygen element combines with the oxygen vacancies of the metal oxide layer OS' to increase the resistivity of the metal oxide layer OS', for example, the resistivity is increased from about 1E+4ohm/sq to more than 1E+8ohm/sq.

在一些实施例中,由于第一氧化物层110中储存的氧元素较第二氧化物层124中储存的氧元素多,较多的氧元素会扩散至位于第一氧化物层110上的部分金属氧化物层OS’,使位于第一氧化物层110上的部分金属氧化物层OS’的氧浓度提升较多,而位于第二氧化物层124上的另一部分金属氧化物层OS’的氧浓度则相对提升较少。换句话说,在形成退火工艺之后,位于第一氧化物层110上的部分金属氧化物层OS’的电阻率会高于位于第二氧化物层124上的另一部分金属氧化物层OS’的电阻率。In some embodiments, since more oxygen is stored in the first oxide layer 110 than in the second oxide layer 124 , more oxygen will diffuse to the portion located on the first oxide layer 110 In the metal oxide layer OS', the oxygen concentration of the part of the metal oxide layer OS' located on the first oxide layer 110 is increased more, and the oxygen concentration of another part of the metal oxide layer OS' located on the second oxide layer 124 The oxygen concentration is relatively small. In other words, after the formation annealing process, the resistivity of the part of the metal oxide layer OS' on the first oxide layer 110 is higher than that of the other part of the metal oxide layer OS' on the second oxide layer 124 resistivity.

请参考图2D,形成栅极G于栅介电层130上。接着,以栅极G为遮罩,对金属氧化物层OS’执行掺杂工艺P,以于金属氧化物层OS’中形成源极区sr、漏极区dr以及位于源极区sr与漏极区dr之间的通道区ch。在一些实施例中,掺杂工艺P例如为氢等离子体掺杂工艺或其他合适的工艺。Referring to FIG. 2D , a gate G is formed on the gate dielectric layer 130 . Next, using the gate G as a mask, a doping process P is performed on the metal oxide layer OS', so as to form a source region sr, a drain region dr, and a source region sr and a drain region in the metal oxide layer OS' The channel region ch between the polar regions dr. In some embodiments, the doping process P is, for example, a hydrogen plasma doping process or other suitable processes.

在一些实施例中,氮化硅层122中的氢元素可以维持金属氧化物层OS的漏极区dr的氢浓度,使漏极区dr中的氢不容易在后续工艺中逸散。此外,在一些实施例中,氮化硅层122中的氢元素扩散至漏极区dr中,使漏极区dr的氢浓度大于源极区sr的氢浓度。另外,由于部分氮化硅层122位于栅极G与基板100之间,部分重叠于栅极G的金属氧化物层OS’/OS亦会被氢元素所掺杂,使部分重叠于栅极G的金属氧化物层OS’/OS转变为漏极区dr,进一步减少栅极G边缘处的电场所产生的热载子效应。在一些实施例中,重叠于栅极G的漏极区dr与未重叠于栅极G的漏极区dr具有不同的氢浓度,其中未重叠于栅极G的漏极区dr的氢浓度大于重叠于栅极G的漏极区dr的漏极区dr的氢浓度。In some embodiments, the hydrogen element in the silicon nitride layer 122 can maintain the hydrogen concentration of the drain region dr of the metal oxide layer OS, so that the hydrogen in the drain region dr is not easily dissipated in subsequent processes. In addition, in some embodiments, the hydrogen element in the silicon nitride layer 122 diffuses into the drain region dr, so that the hydrogen concentration of the drain region dr is greater than that of the source region sr. In addition, since part of the silicon nitride layer 122 is located between the gate G and the substrate 100 , the metal oxide layer OS′/OS partially overlapping the gate G will also be doped with hydrogen, so that part of the metal oxide layer OS′/OS overlapping the gate G will be doped with hydrogen. The metal oxide layer OS'/OS is transformed into the drain region dr, which further reduces the hot carrier effect generated by the electric field at the edge of the gate G. In some embodiments, the drain region dr overlapping the gate G and the drain region dr not overlapping the gate G have different hydrogen concentrations, wherein the hydrogen concentration of the drain region dr not overlapping the gate G is greater than The hydrogen concentration of the drain region dr overlapping the drain region dr of the gate G.

请参考图2E,形成层间介电层140于栅介电层130上。层间介电层140包覆栅极G。Referring to FIG. 2E , an interlayer dielectric layer 140 is formed on the gate dielectric layer 130 . The interlayer dielectric layer 140 covers the gate G.

接着,执行一次或多次蚀刻工艺以形成穿过层间介电层140以及栅介电层130的第一接触孔V1以及第二接触孔V2。第一接触孔V1以及第二接触孔V2重叠并暴露出金属氧化物层OS的漏极区dr以及源极区sr。Next, one or more etching processes are performed to form the first contact hole V1 and the second contact hole V2 through the interlayer dielectric layer 140 and the gate dielectric layer 130 . The first contact hole V1 and the second contact hole V2 overlap and expose the drain region dr and the source region sr of the metal oxide layer OS.

最后请回到图1,形成漏极D以及源极S于层间介电层140上,且形成漏极D以及源极S于第一接触孔V1以及第二接触孔V2中。漏极D以及源极S分别连接至金属氧化物层OS的漏极区dr以及源极区sr。至此,半导体装置10A大致完成。Finally, returning to FIG. 1 , the drain electrode D and the source electrode S are formed on the interlayer dielectric layer 140 , and the drain electrode D and the source electrode S are formed in the first contact hole V1 and the second contact hole V2 . The drain electrode D and the source electrode S are respectively connected to the drain electrode region dr and the source electrode region sr of the metal oxide layer OS. So far, the semiconductor device 10A is substantially completed.

基于上述,绝缘图案120中的氮化硅层122可以改善金属氧化物层OS中的氢元素在加热工艺中出现逸散的问题,甚至可以对金属氧化物层OS提供额外氢元素。因此,绝缘图案120中的氮化硅层122可以避免金属氧化物层OS的漏极区dr因为氢元素逸散而导致电阻率上升,进而改善靠近漏极D处的热载子效应。Based on the above, the silicon nitride layer 122 in the insulating pattern 120 can improve the problem that the hydrogen element in the metal oxide layer OS escapes during the heating process, and can even provide additional hydrogen element to the metal oxide layer OS. Therefore, the silicon nitride layer 122 in the insulating pattern 120 can avoid the increase of the resistivity of the drain region dr of the metal oxide layer OS due to the escape of hydrogen, thereby improving the hot carrier effect near the drain D.

图3A是依照本发明的一实施例的一种半导体装置的俯视图。图3B是图3A的线a-a’的剖面示意图。在此必须说明的是,图3A和图3B的实施例沿用图1A和图1B的实施例的元件标号与部分内容,其中采用相同或近似的标号来表示相同或近似的元件,并且省略了相同技术内容的说明。关于省略部分的说明可参考前述实施例,在此不赘述。3A is a top view of a semiconductor device according to an embodiment of the present invention. Fig. 3B is a schematic cross-sectional view taken along the line a-a' of Fig. 3A. It must be noted here that the embodiments of FIGS. 3A and 3B use the element numbers and part of the content of the embodiment of FIGS. 1A and 1B , wherein the same or similar numbers are used to represent the same or similar elements, and the same elements are omitted. Description of technical content. For the description of the omitted part, reference may be made to the foregoing embodiments, which will not be repeated here.

图3A和图3B的半导体装置10B与图1A和图1B的半导体装置10A的主要差异在于:半导体装置10B的绝缘图案120的氮化硅层122未延伸至于栅极G下方。The main difference between the semiconductor device 10B of FIGS. 3A and 3B and the semiconductor device 10A of FIGS. 1A and 1B is that the silicon nitride layer 122 of the insulating pattern 120 of the semiconductor device 10B does not extend below the gate G.

请参考图3A与图3B,在本实施例中,氮化硅层122在法线方向ND上不重叠于栅极G。金属氧化物层OS的漏极区dr未延伸至于栅极G下方。Referring to FIG. 3A and FIG. 3B , in this embodiment, the silicon nitride layer 122 does not overlap the gate G in the normal direction ND. The drain region dr of the metal oxide layer OS does not extend below the gate G.

在本实施例中,绝缘图案120的侧壁sw仅包括第二氧化物层124,且金属氧化物层OS未直接接触氮化硅层122。In this embodiment, the sidewall sw of the insulating pattern 120 only includes the second oxide layer 124 , and the metal oxide layer OS does not directly contact the silicon nitride layer 122 .

另外,在本实施例中,绝缘图案120的氮化硅层122与第二氧化物层124包括不同的形状。氮化硅层122与第二氧化物层124是由不同次光刻蚀刻工艺所定义。In addition, in this embodiment, the silicon nitride layer 122 and the second oxide layer 124 of the insulating pattern 120 include different shapes. The silicon nitride layer 122 and the second oxide layer 124 are defined by different lithographic etching processes.

基于上述,绝缘图案120中的氮化硅层122可以改善金属氧化物层OS中的氢元素在加热工艺中出现逸散的问题,甚至可以对金属氧化物层OS提供额外氢元素。因此,绝缘图案120中的氮化硅层122可以避免金属氧化物层OS的漏极区dr因为氢元素逸散而导致电阻率上升,进而改善靠近漏极D处的热载子效应。Based on the above, the silicon nitride layer 122 in the insulating pattern 120 can improve the problem that the hydrogen element in the metal oxide layer OS escapes during the heating process, and can even provide additional hydrogen element to the metal oxide layer OS. Therefore, the silicon nitride layer 122 in the insulating pattern 120 can avoid the increase of the resistivity of the drain region dr of the metal oxide layer OS due to the escape of hydrogen, thereby improving the hot carrier effect near the drain D.

图4A是依照本发明的一实施例的一种半导体装置的俯视图。图4B是图4A的线a-a’的剖面示意图。4A is a top view of a semiconductor device according to an embodiment of the present invention. Fig. 4B is a schematic cross-sectional view taken along the line a-a' of Fig. 4A.

请参考图4A与图4B,半导体装置10C包括基板100、漏极D、绝缘图案120、金属氧化物层OS、栅介电层130、栅极G以及源极S,其中绝缘图案120包括氮化硅层122以及第二氧化物层124。在本实施例中,半导体装置10C还包括散热结构HDF、层间介电层140以及连接电极T。为了方便说明,图4A示出了散热结构HDF、漏极D、金属氧化物层OS、栅极G、源极S以及连接电极T,并省略示出其他构件。4A and 4B, the semiconductor device 10C includes a substrate 100, a drain D, an insulating pattern 120, a metal oxide layer OS, a gate dielectric layer 130, a gate G and a source S, wherein the insulating pattern 120 includes a nitride The silicon layer 122 and the second oxide layer 124 . In this embodiment, the semiconductor device 10C further includes a heat dissipation structure HDF, an interlayer dielectric layer 140 and a connection electrode T. As shown in FIG. For convenience of description, FIG. 4A shows the heat dissipation structure HDF, the drain D, the metal oxide layer OS, the gate G, the source S, and the connection electrode T, and other components are omitted.

散热结构HDF位于基板100之上。在本实施例中,散热结构HDF直接形成于基板100上,但本发明不以此为限。在其他实施例中,散热结构HDF与基板100之间还夹有其他缓冲层,例如氧化硅、氮化硅、氮氧化硅或其他绝缘材料。在一些实施例中,散热结构HDF为导热绝缘材料,例如氮化铝、氧化铝或其他的材料。在一些实施例中,散热结构HDF的导热系数大于2W·m-1-1。散热结构HDF的厚度可以依照实际需求而进行调整。The heat dissipation structure HDF is located on the substrate 100 . In this embodiment, the heat dissipation structure HDF is directly formed on the substrate 100, but the invention is not limited to this. In other embodiments, other buffer layers such as silicon oxide, silicon nitride, silicon oxynitride or other insulating materials are sandwiched between the heat dissipation structure HDF and the substrate 100 . In some embodiments, the heat dissipation structure HDF is a thermally conductive insulating material, such as aluminum nitride, aluminum oxide, or other materials. In some embodiments, the thermal conductivity of the heat dissipation structure HDF is greater than 2W·m −1 °C −1 . The thickness of the heat dissipation structure HDF can be adjusted according to actual needs.

漏极D位于基板100之上。在本实施例中,漏极D直接形成于散热结构HDF上。散热结构HDF位于漏极D与基板100之间,且热连接漏极D。漏极D垂直投影于基板100的面积小于散热结构HDF垂直投影于基板100的面积。The drain D is located on the substrate 100 . In this embodiment, the drain D is directly formed on the heat dissipation structure HDF. The heat dissipation structure HDF is located between the drain D and the substrate 100 and is thermally connected to the drain D. The vertical projection area of the drain D on the substrate 100 is smaller than the vertical projection area of the heat dissipation structure HDF on the substrate 100 .

绝缘图案120位于漏极D之上。绝缘图案120包括氮化硅层122以及第二氧化物层124。在一些实施例中,氮化硅层122中包含氢元素。在一些实施例中,氮化硅层122的厚度t2为30纳米至300纳米。第二氧化物层124位于氮化硅层122上,且氮化硅层122位于第二氧化物层124与基板100之间。第二氧化物层124包括氧化硅、氮氧化硅、氧化铝或其他绝缘材料。在一些实施例中,第二氧化物层124的厚度t3为50纳米至200纳米。The insulating pattern 120 is located on the drain D. The insulating pattern 120 includes a silicon nitride layer 122 and a second oxide layer 124 . In some embodiments, the silicon nitride layer 122 contains hydrogen. In some embodiments, the thickness t2 of the silicon nitride layer 122 is 30 nm to 300 nm. The second oxide layer 124 is located on the silicon nitride layer 122 , and the silicon nitride layer 122 is located between the second oxide layer 124 and the substrate 100 . The second oxide layer 124 includes silicon oxide, silicon oxynitride, aluminum oxide, or other insulating materials. In some embodiments, the thickness t3 of the second oxide layer 124 is 50 nm to 200 nm.

绝缘图案120具有第一接触孔V1以及第二接触孔V2。第一接触孔V1的侧壁sw1a、sw1b包括氮化硅层122以及第二氧化物层124。第二接触孔V2的侧壁sw2包括第二氧化物层124。漏极D位于绝缘图案120的第一接触孔V1以及第二接触孔V2下方。在本实施例中,绝缘图案120的第二氧化物层124具有开口OP,且第二接触孔V2穿过开口OP底部的氮化硅层122。在一些实施例中,开口OP的宽度大于第二接触孔V2的宽度。The insulating pattern 120 has a first contact hole V1 and a second contact hole V2. The sidewalls sw1a and sw1b of the first contact hole V1 include a silicon nitride layer 122 and a second oxide layer 124 . The sidewall sw2 of the second contact hole V2 includes the second oxide layer 124 . The drain D is located under the first contact hole V1 and the second contact hole V2 of the insulating pattern 120 . In this embodiment, the second oxide layer 124 of the insulating pattern 120 has an opening OP, and the second contact hole V2 passes through the silicon nitride layer 122 at the bottom of the opening OP. In some embodiments, the width of the opening OP is greater than the width of the second contact hole V2.

金属氧化物层OS位于绝缘图案120上,且填入第一接触孔V1中。金属氧化物层OS接触绝缘图案120的上表面ts2、绝缘图案120的第一接触孔V1的侧壁sw1a、sw1b以及漏极D。在本实施例中,金属氧化物层OS接触氮化硅层122以及氧化物层124。The metal oxide layer OS is located on the insulating pattern 120 and filled in the first contact hole V1. The metal oxide layer OS contacts the upper surface ts2 of the insulating pattern 120 , the sidewalls sw1a and sw1b of the first contact hole V1 of the insulating pattern 120 , and the drain electrode D. In this embodiment, the metal oxide layer OS contacts the silicon nitride layer 122 and the oxide layer 124 .

金属氧化物层OS包括按序连接的源极区sr、通道区ch、氢浓度渐变区h以及漏极区dr。通道区ch连接于氢浓度渐变区h与源极区sr之间。氢浓度渐变区h连接于通道区ch与漏极区dr之间。源极区sr、氢浓度渐变区h以及漏极区dr经掺杂而具有低于通道区ch的电阻率。在本实施例中,漏极D的电阻率低于源极区sr以及漏极区dr的电阻率,源极区sr以及漏极区dr的电阻率低于氢浓度渐变区h的电阻率,且氢浓度渐变区h的电阻率低于通道区ch的电阻率。The metal oxide layer OS includes a source region sr, a channel region ch, a hydrogen concentration gradient region h, and a drain region dr which are connected in sequence. The channel region ch is connected between the hydrogen concentration gradient region h and the source region sr. The hydrogen concentration gradient region h is connected between the channel region ch and the drain region dr. The source region sr, the hydrogen concentration gradient region h, and the drain region dr are doped to have a lower resistivity than the channel region ch. In this embodiment, the resistivity of the drain D is lower than the resistivity of the source region sr and the drain region dr, the resistivity of the source region sr and the drain region dr is lower than the resistivity of the hydrogen concentration gradient region h, And the resistivity of the hydrogen concentration gradient region h is lower than that of the channel region ch.

源极区sr接触第二氧化物层124的上表面ts2。通道区ch接触上表面ts2以及侧壁sw1a处的第二氧化物层124。氢浓度渐变区h接触侧壁sw1a处的氮化硅层122以及漏极D的上表面。漏极区dr电性连接漏极D,并接触漏极D的上表面、侧壁sw1b处的氮化硅层122以及侧壁sw1b处的第二氧化物层124。在本实施例中,漏极区dr的底面与源极区sr的底面之间具有高度差HD,高度差HD例如约等于第一接触孔V1的深度。在本实施例中,部分通道区ch沿着第一接触孔V1的侧壁sw1a延伸。The source region sr contacts the upper surface ts2 of the second oxide layer 124 . The channel region ch contacts the upper surface ts2 and the second oxide layer 124 at the sidewall sw1a. The hydrogen concentration gradient region h contacts the silicon nitride layer 122 at the sidewall sw1a and the upper surface of the drain electrode D. As shown in FIG. The drain region dr is electrically connected to the drain D, and contacts the upper surface of the drain D, the silicon nitride layer 122 at the sidewall sw1b, and the second oxide layer 124 at the sidewall sw1b. In this embodiment, there is a height difference HD between the bottom surface of the drain region dr and the bottom surface of the source region sr, and the height difference HD is, for example, approximately equal to the depth of the first contact hole V1. In this embodiment, part of the channel region ch extends along the sidewall sw1a of the first contact hole V1.

在一些实施例中,氮化硅层122中的氢元素或扩散至氢浓度渐变区h。在一些实施例中,漏极区dr以及源极区sr经由氢等离子体处理而具有大于氢浓度渐变区h的氢浓度。在一些实施例中,由于部分漏极区dr接触侧壁sw1b处的氮化硅层122,因此,漏极区dr的氢浓度大于源极区sr的氢浓度。In some embodiments, the hydrogen element in the silicon nitride layer 122 may diffuse into the hydrogen concentration gradient region h. In some embodiments, the drain region dr and the source region sr have a hydrogen concentration greater than that of the hydrogen concentration gradient region h through hydrogen plasma treatment. In some embodiments, since a portion of the drain region dr contacts the silicon nitride layer 122 at the sidewall sw1b, the hydrogen concentration of the drain region dr is greater than that of the source region sr.

在一些实施例中,金属氧化物层OS的材料包括氧化铟镓锌(IGZO)、氧化铟锡锌(ITZO)、氧化铝锌锡(AZTO)、氧化铟钨锌(IWZO)等四元金属化合物或包含镓(Ga)、锌(Zn)、铟(In)、锡(Sn)、铝(Al)、钨(W)中的任三者的三元金属构成的氧化物。In some embodiments, the material of the metal oxide layer OS includes quaternary metal compounds such as indium gallium zinc oxide (IGZO), indium tin zinc oxide (ITZO), aluminum zinc tin (AZTO), and indium tungsten zinc oxide (IWZO). Or an oxide composed of a ternary metal including any three of gallium (Ga), zinc (Zn), indium (In), tin (Sn), aluminum (Al), and tungsten (W).

栅介电层130位于金属氧化物层OS上。栅介电层130例如包括氧化硅、氮氧化硅、氧化铝、氧化铪或其他合适的材料。在一些实施例中,栅介电层130的厚度t4为50纳米至200纳米。部分栅介电层130填入第一接触孔V1中以及开口OP中。The gate dielectric layer 130 is on the metal oxide layer OS. The gate dielectric layer 130 includes, for example, silicon oxide, silicon oxynitride, aluminum oxide, hafnium oxide, or other suitable materials. In some embodiments, the thickness t4 of the gate dielectric layer 130 is 50 nm to 200 nm. A portion of the gate dielectric layer 130 is filled in the first contact hole V1 and the opening OP.

栅极G位于栅介电层130上。部分绝缘图案120位于栅极G与基板100之间。漏极D延伸至栅极G与基板100之间。在本实施例中,在基板的顶面的法线方向ND上,部分栅极G重叠于绝缘图案120,且另一部分栅极G未重叠于绝缘图案120。在本实施例中,部分栅极G重叠于氢浓度渐变区h,且另一部分重叠于通道区ch。在本实施例中,部分栅极G填入第一接触孔V1中。The gate G is on the gate dielectric layer 130 . Part of the insulating pattern 120 is located between the gate G and the substrate 100 . The drain D extends between the gate G and the substrate 100 . In this embodiment, in the normal direction ND of the top surface of the substrate, part of the gate G overlaps the insulating pattern 120 , and another part of the gate G does not overlap the insulating pattern 120 . In this embodiment, part of the gate G overlaps with the hydrogen concentration gradient region h, and another part overlaps with the channel region ch. In this embodiment, part of the gate G is filled in the first contact hole V1.

间介电层140设置于栅介电层130上。层间介电层140覆盖栅极G。在一些实施例中,层间介电层140的材料包括氧化硅、氮化硅、氮氧化硅、氧化铪、氧化铝或其他绝缘材料。部分层间介电层140填入第一接触孔V1中以及开口OP中。The inter-dielectric layer 140 is disposed on the gate dielectric layer 130 . The interlayer dielectric layer 140 covers the gate G. In some embodiments, the material of the interlayer dielectric layer 140 includes silicon oxide, silicon nitride, silicon oxynitride, hafnium oxide, aluminum oxide, or other insulating materials. Part of the interlayer dielectric layer 140 is filled in the first contact hole V1 and the opening OP.

连接电极T与源极S设置于层间介电层140上。连接电极T与源极S通过层间介电层140、栅介电层130以及绝缘图案120中的第二接触孔V2与层间介电层140以及栅介电层130中的第三接触孔V3而分别电性连接至漏极D与金属氧化物层OS的源极区sr。在本实施例中,第二接触孔V2的侧壁sw2包括层间介电层140、栅介电层130以及氮化硅层122,第三接触孔V3的侧壁包括层间介电层140以及栅介电层130。The connection electrode T and the source electrode S are disposed on the interlayer dielectric layer 140 . The connection electrode T and the source electrode S pass through the interlayer dielectric layer 140 , the gate dielectric layer 130 and the second contact hole V2 in the insulating pattern 120 and the interlayer dielectric layer 140 and the third contact hole in the gate dielectric layer 130 V3 is electrically connected to the drain D and the source region sr of the metal oxide layer OS, respectively. In this embodiment, the sidewall sw2 of the second contact hole V2 includes the interlayer dielectric layer 140 , the gate dielectric layer 130 and the silicon nitride layer 122 , and the sidewall of the third contact hole V3 includes the interlayer dielectric layer 140 and the gate dielectric layer 130 .

图5A至10A是图4A与图4B的半导体装置10C的制造方法的俯视图。图5B至10B分别是图5A至图10A的线a-a’的剖面示意图。5A to 10A are plan views of a method of manufacturing the semiconductor device 10C of FIGS. 4A and 4B . 5B to 10B are schematic cross-sectional views along line a-a' of FIGS. 5A to 10A, respectively.

请参考图5A至图6A以及图5B至图6B,形成散热结构HDF以及漏极D于基板100之上。形成包括第一接触孔V1的绝缘图案120于漏极D之上。漏极D位于第一接触孔V1下方,且被第一接触孔V1所暴露。Please refer to FIGS. 5A to 6A and FIGS. 5B to 6B , a heat dissipation structure HDF and a drain D are formed on the substrate 100 . An insulating pattern 120 including a first contact hole V1 is formed on the drain electrode D. As shown in FIG. The drain D is located under the first contact hole V1 and is exposed by the first contact hole V1.

形成包括第一接触孔V1的绝缘图案120的方法包括:形成毯覆于漏极D上的氮化硅层122;形成毯覆于氮化硅层122上的第二氧化物层124;接着,对氮化硅层122以及第二氧化物层124执行第一图案化工艺,以形成第一接触孔V1以及开口OP,其中第一接触孔V1穿过氮化硅层122以及第二氧化物层124,且开口OP穿过第二氧化物层124且不穿过氮化硅层122。第一接触孔V1暴露出漏极D,开口OP暴露出氮化硅层122。The method of forming the insulating pattern 120 including the first contact hole V1 includes: forming a silicon nitride layer 122 blanketing the drain electrode D; forming a second oxide layer 124 blanketing the silicon nitride layer 122; and then, A first patterning process is performed on the silicon nitride layer 122 and the second oxide layer 124 to form a first contact hole V1 and an opening OP, wherein the first contact hole V1 passes through the silicon nitride layer 122 and the second oxide layer 124 , and the opening OP passes through the second oxide layer 124 and does not pass through the silicon nitride layer 122 . The first contact hole V1 exposes the drain electrode D, and the opening OP exposes the silicon nitride layer 122 .

举例来说,第一图案化工艺包括:于第二氧化物层124上形成图化的光刻胶层PR,其中图化的光刻胶层PR包括厚度不同的部分;接着,以图化的光刻胶层PR为掩模蚀刻氮化硅层122以及第二氧化物层124。图化的光刻胶层PR中厚度较薄的部分对应开口OP的位置,而图化的光刻胶层PR的开口对应第一接触孔V1的位置。在本实施例中,第一图案化工艺例如包括半色调掩模(Half-tone Mask)工艺。For example, the first patterning process includes: forming a patterned photoresist layer PR on the second oxide layer 124, wherein the patterned photoresist layer PR includes portions with different thicknesses; The photoresist layer PR is used as a mask to etch the silicon nitride layer 122 and the second oxide layer 124 . The thinner part of the patterned photoresist layer PR corresponds to the location of the opening OP, and the opening of the patterned photoresist layer PR corresponds to the location of the first contact hole V1. In this embodiment, the first patterning process includes, for example, a half-tone mask process.

请参考图7A与图7B,移除图化的光刻胶层PR。接着,形成金属氧化物层OS’于氮化硅层122以及氧化物层124上,且金属氧化物层OS’填入第一接触孔V1中,并接触氧化物层124的上表面ts2、第一接触孔V1的侧壁sw1a、sw1b以及漏极D。Referring to FIGS. 7A and 7B , the patterned photoresist layer PR is removed. Next, a metal oxide layer OS' is formed on the silicon nitride layer 122 and the oxide layer 124, and the metal oxide layer OS' fills the first contact hole V1 and contacts the upper surface ts2 of the oxide layer 124, the first contact hole V1, and the first contact hole V1. The sidewalls sw1a, sw1b and the drain D of a contact hole V1.

在一些实施例中,形成金属氧化物层OS’的方法包括:首先,形成毯覆于氮化硅层122、氧化物层124以及漏极D上的半导体材料层(未绘出);接着,于半导体材料层(未绘出)上形成图案化的光刻胶层;然后,以图案化的光刻胶层为掩模蚀刻半导体材料层(未绘出)以形成金属氧化物层OS’;最后,移除图案化的光刻胶层。在本实施例中,由于开口OP处的漏极D被氮化硅层122所覆盖,因此在形成半导体材料层(未绘出)时,半导体材料层(未绘出)不会直接通过开口OP而接触漏极D,进而避免开口OP下方的漏极D在蚀刻半导体材料层(未绘出)时受损。In some embodiments, the method of forming the metal oxide layer OS' includes: first, forming a semiconductor material layer (not shown) blanketed on the silicon nitride layer 122, the oxide layer 124 and the drain electrode D; then, forming a patterned photoresist layer on the semiconductor material layer (not shown); then, using the patterned photoresist layer as a mask to etch the semiconductor material layer (not shown) to form a metal oxide layer OS'; Finally, the patterned photoresist layer is removed. In this embodiment, since the drain D at the opening OP is covered by the silicon nitride layer 122, when the semiconductor material layer (not shown) is formed, the semiconductor material layer (not shown) will not directly pass through the opening OP The drain electrode D is contacted, thereby preventing the drain electrode D under the opening OP from being damaged when the semiconductor material layer (not shown) is etched.

请参考图8A与图8B,形成栅介电层130于金属氧化物层OS’上。形成栅极G于栅介电层130上。Referring to FIG. 8A and FIG. 8B, a gate dielectric layer 130 is formed on the metal oxide layer OS'. A gate G is formed on the gate dielectric layer 130 .

以栅极G为遮罩,对金属氧化物层OS’执行掺杂工艺P,以于金属氧化物层OS’中形成源极区sr、漏极区dr、氢浓度渐变区h以及通道区ch。通道区ch连接于源极区sr与氢浓度渐变区h之间。氢浓度渐变区h连接于通道区ch与漏极区dr之间。氢浓度渐变区h以及通道区ch重叠于栅极G。在一些实施例中,掺杂工艺P例如为氢等离子体掺杂工艺或其他合适的工艺。Using the gate G as a mask, a doping process P is performed on the metal oxide layer OS' to form a source region sr, a drain region dr, a hydrogen concentration gradient region h and a channel region ch in the metal oxide layer OS' . The channel region ch is connected between the source region sr and the hydrogen concentration gradient region h. The hydrogen concentration gradient region h is connected between the channel region ch and the drain region dr. The hydrogen concentration gradient region h and the channel region ch overlap the gate G. In some embodiments, the doping process P is, for example, a hydrogen plasma doping process or other suitable processes.

在一些实施例中,氮化硅层122中的氢元素扩散至金属氧化物层OS’/OS中。然而,由于源极区sr以及漏极区dr直接接受掺杂工艺P的氢元素掺杂,源极区sr以及漏极区dr的氢浓度大于氢浓度渐变区h的氢浓度。因此,源极区sr以及漏极区dr的电阻率低于氢浓度渐变区h的电阻率,且氢浓度渐变区h的电阻率低于通道区ch的电阻率。通过氢浓度渐变区h的设置可以减少栅极G边缘处的电场所产生的热载子效应。In some embodiments, the hydrogen element in the silicon nitride layer 122 diffuses into the metal oxide layer OS'/OS. However, since the source region sr and the drain region dr are directly doped with hydrogen by the doping process P, the hydrogen concentration of the source region sr and the drain region dr is greater than that of the hydrogen concentration gradient region h. Therefore, the resistivity of the source region sr and the drain region dr is lower than that of the hydrogen concentration gradient region h, and the resistivity of the hydrogen concentration gradient region h is lower than that of the channel region ch. The hot carrier effect generated by the electric field at the edge of the gate G can be reduced by the arrangement of the hydrogen concentration gradient region h.

请参考图9A与图9B,形成层间介电层140于栅介电层130上。层间介电层140包覆栅极G。在一些实施例中,层间介电层140中亦含有氢元素。在一些实施例中,层间介电层140中的氢元素扩散至金属氧化物层OS的源极区sr以及漏极区dr中,进一步提升源极区sr以及漏极区dr的氢浓度,并降低源极区sr以及漏极区dr的电阻率。在一些实施例中,栅极G的材料包括铝,而铝可以作为氢元素阻挡层,避免层间介电层140中的氢元素扩散至通道区ch以及氢浓度渐变区h。Referring to FIGS. 9A and 9B , an interlayer dielectric layer 140 is formed on the gate dielectric layer 130 . The interlayer dielectric layer 140 covers the gate G. In some embodiments, the interlayer dielectric layer 140 also contains hydrogen. In some embodiments, the hydrogen element in the interlayer dielectric layer 140 is diffused into the source region sr and the drain region dr of the metal oxide layer OS to further increase the hydrogen concentration of the source region sr and the drain region dr, And reduce the resistivity of the source region sr and the drain region dr. In some embodiments, the material of the gate G includes aluminum, and aluminum can be used as a hydrogen element blocking layer to prevent the hydrogen element in the interlayer dielectric layer 140 from diffusing into the channel region ch and the hydrogen concentration gradient region h.

请参考图10A与图10B,对层间介电层140、栅介电层130以及氮化硅材料层122执行第二图案化工艺,以在开口OP的位置形成穿过层间介电层140、栅介电层130以及氮化硅材料层122的第二接触孔V2,并同时在金属氧化物层OS的源极区sr上形成穿过层间介电层140以及栅介电层130的第三接触孔V3。Referring to FIGS. 10A and 10B , a second patterning process is performed on the interlayer dielectric layer 140 , the gate dielectric layer 130 and the silicon nitride material layer 122 to form through the interlayer dielectric layer 140 at the position of the opening OP , the gate dielectric layer 130 and the second contact hole V2 of the silicon nitride material layer 122, and at the same time, the source region sr of the metal oxide layer OS is formed through the interlayer dielectric layer 140 and the gate dielectric layer 130. The third contact hole V3.

最后请回到图4A与图4B,形成连接电极T以及源极S于层间介电层140上,且形成连接电极T以及源极S于第二接触孔V2以及第三接触孔V3中。连接电极T以及源极S分别连接至漏极D以及金属氧化物层OS的源极区sr。至此,半导体装置10C大致完成。4A and FIG. 4B, the connection electrode T and the source electrode S are formed on the interlayer dielectric layer 140, and the connection electrode T and the source electrode S are formed in the second contact hole V2 and the third contact hole V3. The connection electrode T and the source electrode S are respectively connected to the drain electrode D and the source region sr of the metal oxide layer OS. So far, the semiconductor device 10C is substantially completed.

图11A是依照本发明的一实施例的一种显示装置的俯视图,其中图11A示出了显示装置的基板100以及散热结构DHF,并省略示出其他构件。图11B是图11A的局部放大示意图。11A is a top view of a display device according to an embodiment of the present invention, wherein FIG. 11A shows a substrate 100 and a heat dissipation structure DHF of the display device, and other components are omitted. FIG. 11B is a partial enlarged schematic view of FIG. 11A .

请参考图11A,显示装置包括显示区AA以及周边区BA。散热结构DHF位于显示区AA中。在本实施例中,散热结构DHF为网状。相较于整面的散热结构DHF,网状的散热结构DHF具有较佳的散热技术效果,且能改善散热结构DHF的应力导致基板100破裂的问题。Referring to FIG. 11A , the display device includes a display area AA and a peripheral area BA. The heat dissipation structure DHF is located in the display area AA. In this embodiment, the heat dissipation structure DHF is in the shape of a mesh. Compared with the whole surface heat dissipation structure DHF, the mesh heat dissipation structure DHF has a better heat dissipation technical effect, and can improve the problem of cracking of the substrate 100 caused by the stress of the heat dissipation structure DHF.

请参考图11B,显示装置包括阵列的多个半导体装置10C,关于半导体装置10C的描述可以参考图4A与图4B的相关段落,于此不再赘述。在本实施例中,多个半导体装置10C的漏极D通过多连接电极T而彼此电性连接。多个半导体装置10C的源极S彼此电性连接。多个半导体装置10C的栅极G彼此电性连接。通过并联多个半导体装置10C,可以减少每个半导体装置10C的驱动电流,进而增加半导体装置10C的可靠度。Referring to FIG. 11B , the display device includes a plurality of semiconductor devices 10C in an array. For the description of the semiconductor devices 10C, reference may be made to the relevant paragraphs in FIGS. 4A and 4B , and details are not repeated here. In this embodiment, the drain electrodes D of the plurality of semiconductor devices 10C are electrically connected to each other through the multi-connection electrodes T. As shown in FIG. The sources S of the plurality of semiconductor devices 10C are electrically connected to each other. The gates G of the plurality of semiconductor devices 10C are electrically connected to each other. By connecting a plurality of semiconductor devices 10C in parallel, the driving current of each semiconductor device 10C can be reduced, thereby increasing the reliability of the semiconductor device 10C.

在本实施例中,多个半导体装置10C的漏极D连接至同一个网状的散热结构DHF。半导体装置10C例如电性连接至有机发光二极管、微型发光二极管或其他发光元件。In this embodiment, the drains D of the plurality of semiconductor devices 10C are connected to the same mesh-shaped heat dissipation structure DHF. The semiconductor device 10C is electrically connected to, for example, organic light emitting diodes, micro light emitting diodes or other light emitting elements.

Claims (20)

1.一种半导体装置,包括:1. A semiconductor device comprising: 一基板;a substrate; 一第一氧化物层,位于该基板之上;a first oxide layer on the substrate; 一绝缘图案,位于该第一氧化物层上,且包括:an insulating pattern on the first oxide layer and comprising: 一氮化硅层;以及a silicon nitride layer; and 一第二氧化物层,其中该氮化硅层位于该第一氧化物层与该第二氧化物层之间;a second oxide layer, wherein the silicon nitride layer is located between the first oxide layer and the second oxide layer; 一金属氧化物层,接触该第一氧化物层的上表面、该绝缘图案的侧壁以及该绝缘图案的上表面;a metal oxide layer contacting the upper surface of the first oxide layer, the sidewall of the insulating pattern and the upper surface of the insulating pattern; 一栅介电层,位于该金属氧化物层上;a gate dielectric layer on the metal oxide layer; 一栅极,位于该栅介电层上,其中部分该绝缘图案位于该栅极与该基板之间;以及a gate on the gate dielectric layer, wherein a portion of the insulating pattern is located between the gate and the substrate; and 一源极以及一漏极,电性连接该金属氧化物层。A source electrode and a drain electrode are electrically connected to the metal oxide layer. 2.如权利要求1所述的半导体装置,其中该第一氧化物层的氧浓度大于该第二氧化物层的氧浓度。2. The semiconductor device of claim 1, wherein the oxygen concentration of the first oxide layer is greater than the oxygen concentration of the second oxide layer. 3.如权利要求1所述的半导体装置,其中该氮化硅层中包含氢元素。3. The semiconductor device of claim 1, wherein the silicon nitride layer contains hydrogen. 4.如权利要求1所述的半导体装置,其中该漏极重叠于该绝缘图案。4. The semiconductor device of claim 1, wherein the drain electrode overlaps the insulating pattern. 5.如权利要求1所述的半导体装置,其中该金属氧化物层包括一源极区、一漏极区以及位于该源极区与该漏极区之间的一通道区,其中该源极区与该基板之间的距离小于该漏极区与该基板之间的距离。5. The semiconductor device of claim 1, wherein the metal oxide layer comprises a source region, a drain region, and a channel region between the source region and the drain region, wherein the source region The distance between the region and the substrate is smaller than the distance between the drain region and the substrate. 6.如权利要求5所述的半导体装置,其中该漏极区的氢浓度大于该源极区的氢浓度。6. The semiconductor device of claim 5, wherein a hydrogen concentration in the drain region is greater than a hydrogen concentration in the source region. 7.一种半导体装置的制造方法,包括:7. A method of manufacturing a semiconductor device, comprising: 形成一第一氧化物层于一基板之上;forming a first oxide layer on a substrate; 形成一绝缘图案于该第一氧化物层上,且该绝缘图案包括:An insulating pattern is formed on the first oxide layer, and the insulating pattern includes: 一氮化硅层;以及a silicon nitride layer; and 一第二氧化物层,其中该氮化硅层位于该第一氧化物层与该第二氧化物层之间;a second oxide layer, wherein the silicon nitride layer is located between the first oxide layer and the second oxide layer; 形成一金属氧化物层于该第一氧化物层的上表面、该绝缘图案的侧壁以及该绝缘图案的上表面上;forming a metal oxide layer on the upper surface of the first oxide layer, the sidewall of the insulating pattern and the upper surface of the insulating pattern; 形成一栅介电层于该金属氧化物层上;forming a gate dielectric layer on the metal oxide layer; 形成一栅极于该栅介电层上,其中部分该绝缘图案位于该栅极与该基板之间;以及forming a gate on the gate dielectric layer, wherein a portion of the insulating pattern is located between the gate and the substrate; and 形成电性连接该金属氧化物层的一源极以及一漏极。A source electrode and a drain electrode electrically connected to the metal oxide layer are formed. 8.如权利要求7所述的半导体装置的制造方法,还包括:8. The method of manufacturing a semiconductor device according to claim 7, further comprising: 以该栅极为遮罩,对该金属氧化物层执行一掺杂工艺,以于该金属氧化物层中形成一源极区、一漏极区以及位于该源极区与该漏极区之间的一通道区,其中该漏极区的氢浓度大于该源极区的氢浓度。Using the gate as a mask, a doping process is performed on the metal oxide layer to form a source region, a drain region and a region between the source region and the drain region in the metal oxide layer a channel region, wherein the hydrogen concentration of the drain region is greater than the hydrogen concentration of the source region. 9.如权利要求7所述的半导体装置的制造方法,还包括执行一退火工艺,使该第一氧化物层中的氧扩散至该金属氧化物层中。9. The method of claim 7, further comprising performing an annealing process to diffuse oxygen in the first oxide layer into the metal oxide layer. 10.一种半导体装置,包括:10. A semiconductor device comprising: 一基板;a substrate; 一漏极,位于该基板之上;a drain located on the substrate; 一绝缘图案,位于该漏极之上,且该漏极位于该绝缘图案的一第一接触孔下方;an insulating pattern located above the drain, and the drain is located below a first contact hole of the insulating pattern; 一金属氧化物层,位于该绝缘图案上,且填入该第一接触孔中,其中该金属氧化物层接触该绝缘图案的上表面、该绝缘图案的该第一接触孔的侧壁以及该漏极;a metal oxide layer on the insulating pattern and filling the first contact hole, wherein the metal oxide layer contacts the upper surface of the insulating pattern, the sidewall of the first contact hole of the insulating pattern and the drain; 一栅介电层,位于该金属氧化物层上;a gate dielectric layer on the metal oxide layer; 一栅极,位于该栅介电层上;以及a gate on the gate dielectric layer; and 一源极,电性连接该金属氧化物层。A source electrode is electrically connected to the metal oxide layer. 11.如权利要求10所述的半导体装置,其中部分该绝缘图案位于该栅极与该基板之间。11. The semiconductor device of claim 10, wherein a portion of the insulating pattern is located between the gate electrode and the substrate. 12.如权利要求10所述的半导体装置,其中该绝缘图案包括:12. The semiconductor device of claim 10, wherein the insulating pattern comprises: 一氧化物层;以及an oxide layer; and 一氮化硅层,位于该氧化物层与该基板之间,其中该第一接触孔的侧壁包括该氮化硅层以及该氧化物层,且该金属氧化物层接触该氮化硅层以及该氧化物层。a silicon nitride layer between the oxide layer and the substrate, wherein the sidewall of the first contact hole includes the silicon nitride layer and the oxide layer, and the metal oxide layer contacts the silicon nitride layer and the oxide layer. 13.如权利要求12所述的半导体装置,其中该金属氧化物层包括:13. The semiconductor device of claim 12, wherein the metal oxide layer comprises: 一源极区,电性连接该源极;a source region electrically connected to the source; 一漏极区,电性连接该漏极;a drain region electrically connected to the drain; 一通道区,重叠于该栅极,且连接该源极区;以及a channel region overlapping the gate and connected to the source region; and 一氢浓度渐变区,重叠于该栅极,且连接于该通道区与该漏极区之间,其中该氢浓度渐变区接触该氮化硅层,且该通道区接触该氧化物层。A hydrogen concentration gradient region overlaps the gate electrode and is connected between the channel region and the drain region, wherein the hydrogen concentration gradient region contacts the silicon nitride layer, and the channel region contacts the oxide layer. 14.如权利要求13所述的半导体装置,其中该氢浓度渐变区的氢浓度小于该漏极区的氢浓度。14. The semiconductor device of claim 13, wherein the hydrogen concentration of the hydrogen concentration gradient region is smaller than the hydrogen concentration of the drain region. 15.如权利要求12所述的半导体装置,其中该漏极延伸至该栅极与该基板之间。15. The semiconductor device of claim 12, wherein the drain electrode extends between the gate electrode and the substrate. 16.如权利要求12所述的半导体装置,还包括:16. The semiconductor device of claim 12, further comprising: 一连接电极,其中该漏极位于该绝缘图案的一第二接触孔下方,且该连接电极填入该第二接触孔以电性连接该漏极。a connection electrode, wherein the drain electrode is located under a second contact hole of the insulating pattern, and the connection electrode fills the second contact hole to electrically connect the drain electrode. 17.如权利要求12所述的半导体装置,还包括:17. The semiconductor device of claim 12, further comprising: 一散热结构,位于该漏极与该基板之间,且热连接该漏极。A heat dissipation structure is located between the drain electrode and the substrate, and is thermally connected to the drain electrode. 18.一种半导体装置的制造方法,包括:18. A method of manufacturing a semiconductor device, comprising: 形成一漏极于一基板之上;forming a drain on a substrate; 形成毯覆于该漏极上的一氮化硅层;forming a silicon nitride layer blanket covering the drain; 形成毯覆于该氮化硅层上的一氧化物层;forming an oxide layer blanketed on the silicon nitride layer; 对该氮化硅层以及该氧化物层执行一第一图案化工艺,以形成一第一接触孔以及一开口,其中该第一接触孔穿过该氧化物层以及该氮化硅层,且该开口穿过该氧化物层且不穿过该氮化硅层;performing a first patterning process on the silicon nitride layer and the oxide layer to form a first contact hole and an opening, wherein the first contact hole passes through the oxide layer and the silicon nitride layer, and the opening passes through the oxide layer and not through the silicon nitride layer; 形成一金属氧化物层于该氮化硅层以及该氧化物层上,且该金属氧化物层填入该第一接触孔中,并接触该氧化物层的上表面、该第一接触孔的侧壁以及该漏极;A metal oxide layer is formed on the silicon nitride layer and the oxide layer, and the metal oxide layer fills the first contact hole and contacts the upper surface of the oxide layer and the first contact hole. sidewalls and the drain; 形成一栅介电层于该金属氧化物层上;forming a gate dielectric layer on the metal oxide layer; 形成一栅极于该栅介电层上;以及forming a gate on the gate dielectric layer; and 形成电性连接该金属氧化物层的一源极。A source electrode electrically connected to the metal oxide layer is formed. 19.如权利要求18所述的半导体装置的制造方法,还包括:19. The method of manufacturing a semiconductor device according to claim 18, further comprising: 对该氮化硅材料层执行一第二图案化工艺,以在该开口的位置形成穿过该氮化硅材料层的一第二接触孔;以及performing a second patterning process on the silicon nitride material layer to form a second contact hole through the silicon nitride material layer at the position of the opening; and 形成一连接电极于该第二接触孔中,以连接该漏极。A connection electrode is formed in the second contact hole to connect the drain electrode. 20.如权利要求18所述的半导体装置的制造方法,还包括:20. The method of manufacturing a semiconductor device according to claim 18, further comprising: 以该栅极为遮罩,对该金属氧化物层执行一掺杂工艺,以于该金属氧化物层中形成一源极区、一漏极区、一氢浓度渐变区以及一通道区,其中该通道区连接于该源极区与该氢浓度渐变区之间,且该氢浓度渐变区连接于该通道区与该漏极区之间,其中该氢浓度渐变区以及该通道区重叠于该栅极,且该氢浓度渐变区的氢浓度小于该漏极区的氢浓度。Using the gate as a mask, a doping process is performed on the metal oxide layer to form a source region, a drain region, a hydrogen concentration gradient region and a channel region in the metal oxide layer, wherein the A channel region is connected between the source region and the hydrogen concentration gradient region, and the hydrogen concentration gradient region is connected between the channel region and the drain region, wherein the hydrogen concentration gradient region and the channel region overlap the gate electrode, and the hydrogen concentration of the hydrogen concentration gradient region is smaller than the hydrogen concentration of the drain region.
CN202210863090.1A 2021-12-09 2022-07-21 Semiconductor device and method for manufacturing the same Active CN115050839B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163287695P 2021-12-09 2021-12-09
US63/287,695 2021-12-09
TW111120152 2022-05-31
TW111120152A TWI816413B (en) 2021-12-09 2022-05-31 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN115050839A true CN115050839A (en) 2022-09-13
CN115050839B CN115050839B (en) 2025-03-21

Family

ID=83167448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210863090.1A Active CN115050839B (en) 2021-12-09 2022-07-21 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
CN (1) CN115050839B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655400A (en) * 2014-12-02 2016-06-08 株式会社日本显示器 Semiconductor device
US20170117374A1 (en) * 2015-10-27 2017-04-27 Nlt Technologies, Ltd. Thin film transistor, display device, and method for manufacturing thin film transistor
US20180308958A1 (en) * 2016-01-07 2018-10-25 Boe Technology Group Co., Ltd. Method for manufacturing array substrate, array substrate and display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655400A (en) * 2014-12-02 2016-06-08 株式会社日本显示器 Semiconductor device
US20170117374A1 (en) * 2015-10-27 2017-04-27 Nlt Technologies, Ltd. Thin film transistor, display device, and method for manufacturing thin film transistor
US20180308958A1 (en) * 2016-01-07 2018-10-25 Boe Technology Group Co., Ltd. Method for manufacturing array substrate, array substrate and display panel

Also Published As

Publication number Publication date
CN115050839B (en) 2025-03-21

Similar Documents

Publication Publication Date Title
TWI816413B (en) Semiconductor device and manufacturing method thereof
US10121901B2 (en) Pixel structure with isolator and method for fabricating the same
TW200845398A (en) Semiconductor device and manufacture method thereof
CN116230720B (en) Display panel and display device
CN114883345A (en) Driving backboard, manufacturing method thereof and display panel
US11355569B2 (en) Active device substrate comprising silicon layer and manufacturing method thereof
CN114937701A (en) Array substrate, manufacturing method thereof and display panel
CN115050839B (en) Semiconductor device and method for manufacturing the same
CN107887275B (en) Low temperature polysilicon thin film and method for manufacturing transistor
CN106469757A (en) Semiconductor device and the manufacture method of semiconductor device
US11177356B2 (en) Thin film transistor, array substrate, display apparatus, and method of fabricating thin film transistor
TWI871159B (en) Semiconductore device and manufacturing method thereof
US12328907B2 (en) Semiconductor device and manufacturing method thereof
TWI874057B (en) Semiconductor device and manufacturing method thereof
CN115084275B (en) Metal oxide TFT and manufacturing method, X-ray detector and display panel
US20230187513A1 (en) Semiconductor device and manufacturing method thereof
TWI866669B (en) Photosensitive device and manufacturing method thereof
US20230187484A1 (en) Semiconductor device and manufacturing method thereof
US20210343526A1 (en) Active device substrate
TW202504117A (en) Semiconductor device and display device
CN119767750A (en) Semiconductor device and display device
WO2022176386A1 (en) Semiconductor device and method for producing semiconductor device
TW202515330A (en) Semiconductor device and display device
CN115188827A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant