CN115049604B - 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 - Google Patents
一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 Download PDFInfo
- Publication number
- CN115049604B CN115049604B CN202210650165.8A CN202210650165A CN115049604B CN 115049604 B CN115049604 B CN 115049604B CN 202210650165 A CN202210650165 A CN 202210650165A CN 115049604 B CN115049604 B CN 115049604B
- Authority
- CN
- China
- Prior art keywords
- image
- box
- suspected defect
- bounding box
- loss function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 238000003708 edge detection Methods 0.000 claims abstract description 5
- 230000005764 inhibitory process Effects 0.000 claims abstract description 3
- 230000009466 transformation Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000004927 fusion Effects 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 description 8
- 238000011176 pooling Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210650165.8A CN115049604B (zh) | 2022-06-09 | 2022-06-09 | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210650165.8A CN115049604B (zh) | 2022-06-09 | 2022-06-09 | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115049604A CN115049604A (zh) | 2022-09-13 |
CN115049604B true CN115049604B (zh) | 2023-04-07 |
Family
ID=83160832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210650165.8A Active CN115049604B (zh) | 2022-06-09 | 2022-06-09 | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115049604B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112304960A (zh) * | 2020-12-30 | 2021-02-02 | 中国人民解放军国防科技大学 | 一种基于深度学习的高分辨率图像物体表面缺陷检测方法 |
WO2022062812A1 (zh) * | 2020-09-28 | 2022-03-31 | 歌尔股份有限公司 | 屏幕缺陷检测方法、装置和电子设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111259930B (zh) * | 2020-01-09 | 2023-04-25 | 南京信息工程大学 | 自适应注意力指导机制的一般性目标检测方法 |
-
2022
- 2022-06-09 CN CN202210650165.8A patent/CN115049604B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022062812A1 (zh) * | 2020-09-28 | 2022-03-31 | 歌尔股份有限公司 | 屏幕缺陷检测方法、装置和电子设备 |
CN112304960A (zh) * | 2020-12-30 | 2021-02-02 | 中国人民解放军国防科技大学 | 一种基于深度学习的高分辨率图像物体表面缺陷检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115049604A (zh) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110210350B (zh) | 一种基于深度学习的快速停车位检测方法 | |
JP3944647B2 (ja) | 物体計測装置、物体計測方法、およびプログラム | |
US10963676B2 (en) | Image processing method and apparatus | |
Li et al. | Automatic crack detection and measurement of concrete structure using convolutional encoder-decoder network | |
CN108986152B (zh) | 一种基于差分图像的异物检测方法及装置 | |
CN114902279A (zh) | 基于机器视觉的自动化缺陷检测 | |
JP5975598B2 (ja) | 画像処理装置、画像処理方法及びプログラム | |
CN107016646A (zh) | 一种基于改进的逼近投影变换图像拼接方法 | |
CN107369159A (zh) | 基于多因素二维灰度直方图的阈值分割方法 | |
CN111626295B (zh) | 车牌检测模型的训练方法和装置 | |
AU2020272936B2 (en) | Methods and systems for crack detection using a fully convolutional network | |
CN114550021B (zh) | 基于特征融合的表面缺陷检测方法及设备 | |
CN111553841B (zh) | 一种基于最佳缝合线更新的实时视频拼接方法 | |
CN105335977A (zh) | 摄像系统及目标对象的定位方法 | |
CN109767381A (zh) | 一种基于特征选择的形状优化的矩形全景图像构造方法 | |
CN103632356B (zh) | 提高图像空间分辨率的方法及装置 | |
US8103116B1 (en) | Estimating pixel variances in the scenes of staring sensors | |
CN115661611A (zh) | 一种基于改进Yolov5网络的红外小目标检测方法 | |
TWI554107B (zh) | 可改變縮放比例的影像調整方法及其攝影機與影像處理系統 | |
CN106203269A (zh) | 一种基于可形变局部块的人脸超分辨率处理方法及系统 | |
CN114399505A (zh) | 工业检测中的检测方法、检测装置 | |
CN115049604B (zh) | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 | |
CN111127355A (zh) | 一种对缺损光流图进行精细补全的方法及其应用 | |
CN109951666A (zh) | 基于监控视频的超分辨复原方法 | |
WO2022205018A1 (zh) | 车牌字符识别方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220913 Assignee: Foshan Xiangyuan Furniture Manufacturing Co.,Ltd. Assignor: FOSHAN University Contract record no.: X2023980054076 Denomination of invention: A Fast Detection Method for Small Defects in Ultra High Resolution Images of Large Panel Materials Granted publication date: 20230407 License type: Common License Record date: 20231227 Application publication date: 20220913 Assignee: GUANGZHOU YUANFANG COMPUTER SOFTWARE ENGINEERING Co.,Ltd. Assignor: FOSHAN University Contract record no.: X2023980054075 Denomination of invention: A Fast Detection Method for Small Defects in Ultra High Resolution Images of Large Panel Materials Granted publication date: 20230407 License type: Common License Record date: 20231227 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220913 Assignee: FOSHAN WEISHANG FURNITURE MANUFACTURING Co.,Ltd. Assignor: FOSHAN University Contract record no.: X2023980054621 Denomination of invention: A Fast Detection Method for Small Defects in Ultra High Resolution Images of Large Panel Materials Granted publication date: 20230407 License type: Common License Record date: 20240102 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
CP03 | Change of name, title or address |
Address after: 528000 No. 18, No. 1, Jiangwan, Guangdong, Foshan Patentee after: Foshan University Country or region after: China Address before: 528000 No. 18, No. 1, Jiangwan, Guangdong, Foshan Patentee before: FOSHAN University Country or region before: China |
|
CP03 | Change of name, title or address |