CN115049604B - 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 - Google Patents
一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 Download PDFInfo
- Publication number
- CN115049604B CN115049604B CN202210650165.8A CN202210650165A CN115049604B CN 115049604 B CN115049604 B CN 115049604B CN 202210650165 A CN202210650165 A CN 202210650165A CN 115049604 B CN115049604 B CN 115049604B
- Authority
- CN
- China
- Prior art keywords
- image
- box
- suspected defect
- bounding box
- loss function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 238000003708 edge detection Methods 0.000 claims abstract description 6
- 230000005764 inhibitory process Effects 0.000 claims abstract 2
- 230000009466 transformation Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000004927 fusion Effects 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 description 8
- 238000011176 pooling Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Image Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210650165.8A CN115049604B (zh) | 2022-06-09 | 2022-06-09 | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210650165.8A CN115049604B (zh) | 2022-06-09 | 2022-06-09 | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115049604A CN115049604A (zh) | 2022-09-13 |
CN115049604B true CN115049604B (zh) | 2023-04-07 |
Family
ID=83160832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210650165.8A Active CN115049604B (zh) | 2022-06-09 | 2022-06-09 | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115049604B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112304960A (zh) * | 2020-12-30 | 2021-02-02 | 中国人民解放军国防科技大学 | 一种基于深度学习的高分辨率图像物体表面缺陷检测方法 |
WO2022062812A1 (zh) * | 2020-09-28 | 2022-03-31 | 歌尔股份有限公司 | 屏幕缺陷检测方法、装置和电子设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111259930B (zh) * | 2020-01-09 | 2023-04-25 | 南京信息工程大学 | 自适应注意力指导机制的一般性目标检测方法 |
-
2022
- 2022-06-09 CN CN202210650165.8A patent/CN115049604B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022062812A1 (zh) * | 2020-09-28 | 2022-03-31 | 歌尔股份有限公司 | 屏幕缺陷检测方法、装置和电子设备 |
CN112304960A (zh) * | 2020-12-30 | 2021-02-02 | 中国人民解放军国防科技大学 | 一种基于深度学习的高分辨率图像物体表面缺陷检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115049604A (zh) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108986152B (zh) | 一种基于差分图像的异物检测方法及装置 | |
CN103902953B (zh) | 一种屏幕检测系统及方法 | |
Deng et al. | Binocular video-based 3D reconstruction and length quantification of cracks in concrete structures | |
WO2013020143A1 (en) | Image-based crack quantification | |
CN107016646A (zh) | 一种基于改进的逼近投影变换图像拼接方法 | |
CN110287826A (zh) | 一种基于注意力机制的视频目标检测方法 | |
CN111639668A (zh) | 一种基于深度学习的人群密度检测方法 | |
CN111626295B (zh) | 车牌检测模型的训练方法和装置 | |
CN114255197B (zh) | 一种红外与可见光图像自适应融合对齐方法及系统 | |
CN108960115A (zh) | 基于角点的多方向文本检测方法 | |
CN113569737B (zh) | 基于自主学习网络模型笔记本屏幕缺陷检测方法及介质 | |
CN106296587A (zh) | 轮胎模具图像的拼接方法 | |
WO2025007949A1 (zh) | 基于多尺度网格化的覆铜板表面缺陷检测方法 | |
CN107240126A (zh) | 阵列图像的校准方法 | |
CN116977316A (zh) | 一种复杂外形构件损伤缺陷全场检测与量化评估方法 | |
JP4859061B2 (ja) | 画像の補正方法、補正プログラムおよび画像歪み補正装置 | |
CN115205114A (zh) | 一种基于orb特征的高分辨率图像拼接改进算法 | |
CN110547803A (zh) | 一种适用于鱼眼相机俯视拍摄的行人身高估计方法 | |
CN118674723B (zh) | 一种基于深度学习的涂布陶瓷区虚边检测方法 | |
Ouyang et al. | From pixel to infrastructure: Photogrammetry-based tunnel crack digitalization and documentation method using deep learning | |
CN115049604B (zh) | 一种大幅面板材超高分辨率图像的微小缺陷快速检测方法 | |
CN118071979B (zh) | 一种基于深度学习的晶圆预对准方法及系统 | |
CN114240759A (zh) | 一种车底成像处理方法及装置 | |
CN118864526A (zh) | 一种基于模板匹配的打印轨迹快速跟踪方法及系统 | |
CN116465893A (zh) | 畸变镜头下的排水管道缺陷检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220913 Assignee: Foshan Xiangyuan Furniture Manufacturing Co.,Ltd. Assignor: FOSHAN University Contract record no.: X2023980054076 Denomination of invention: A Fast Detection Method for Small Defects in Ultra High Resolution Images of Large Panel Materials Granted publication date: 20230407 License type: Common License Record date: 20231227 Application publication date: 20220913 Assignee: GUANGZHOU YUANFANG COMPUTER SOFTWARE ENGINEERING Co.,Ltd. Assignor: FOSHAN University Contract record no.: X2023980054075 Denomination of invention: A Fast Detection Method for Small Defects in Ultra High Resolution Images of Large Panel Materials Granted publication date: 20230407 License type: Common License Record date: 20231227 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220913 Assignee: FOSHAN WEISHANG FURNITURE MANUFACTURING Co.,Ltd. Assignor: FOSHAN University Contract record no.: X2023980054621 Denomination of invention: A Fast Detection Method for Small Defects in Ultra High Resolution Images of Large Panel Materials Granted publication date: 20230407 License type: Common License Record date: 20240102 |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 528000 No. 18, No. 1, Jiangwan, Guangdong, Foshan Patentee after: Foshan University Country or region after: China Address before: 528000 No. 18, No. 1, Jiangwan, Guangdong, Foshan Patentee before: FOSHAN University Country or region before: China |