CN115044805A - Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof - Google Patents

Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof Download PDF

Info

Publication number
CN115044805A
CN115044805A CN202210599720.9A CN202210599720A CN115044805A CN 115044805 A CN115044805 A CN 115044805A CN 202210599720 A CN202210599720 A CN 202210599720A CN 115044805 A CN115044805 A CN 115044805A
Authority
CN
China
Prior art keywords
single crystal
nickel
based single
crystal superalloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210599720.9A
Other languages
Chinese (zh)
Other versions
CN115044805B (en
Inventor
尹海清
徐斌
曲选辉
张聪
张瑞杰
姜雪
王永伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210599720.9A priority Critical patent/CN115044805B/en
Publication of CN115044805A publication Critical patent/CN115044805A/en
Application granted granted Critical
Publication of CN115044805B publication Critical patent/CN115044805B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

The invention discloses a nickel-based single crystal superalloy with balanced multiple properties and a preparation method thereof, and belongs to the technical field of nickel-based single crystal superalloys. The nickel-based single crystal superalloy comprises the following chemical components in atomic percentage: al: 8.5-10.5 at.%, Cr: 14.0-17.0 at.%, Mo: 1.0-1.5 at.%, Nb: 1.0-1.5 at.%, Ta: 1.5-2.0 at.%, W: 0.5-1.0 at.%, Re: 0.5-1.0 at.%; v: 1.5-2.0 at.%, and the balance of Ni. Through the selection of components and heat treatment, the prepared nickel-based single crystal superalloy has the characteristics of high theoretical creep property, low harmful phase, proper precipitation strengthening phase, negative lattice mismatching degree, low density, excellent casting stability and wide enough gamma single-phase region.

Description

Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof
Technical Field
The invention belongs to the technical field of nickel-based single crystal superalloy, and relates to a nickel-based single crystal superalloy with balanced multiple properties and a preparation method thereof.
Background
The nickel-based single crystal superalloy has excellent high-temperature strength, good oxidation resistance, good hot corrosion resistance, good fatigue performance and good fracture toughness. The nickel-based single crystal superalloy can cope with a complex stress environment in an environment with the temperature of over 900 ℃, can maintain the surface stability, and is a common material for aerospace engine blades. The excellent mechanical property of the nickel-based superalloy is the guarantee of stable operation of an aircraft engine and is a key link for promoting the development of aviation industry, so that the excellent mechanical property of the nickel-based superalloy has important significance for the development of aerospace industry in China. The novel high-performance nickel-based single crystal superalloy is beneficial to the production and development of the aviation and aerospace industries in China and also provides a required high-temperature material for the development of other industrial departments.
The excellent properties of nickel-based single crystal superalloys result from a combination of high concentrations of alloying elements, such as CMSX-4 +. The alloy contains up to 9 alloying elements, the maximum concentration of which can be up to 10 wt.%. Varying the alloy content only within the scope of its patent, about 10 would result at a precision of 0.1 wt. -% 6 And (3) an alloy. The large range of alloy compositions has caused researchers to conduct research based on empirical testing. Therefore, the development of high temperature of the nickel-based single machine is often to continue to add new alloy elements or change the content of certain elements on the basis of the previous series. This means that the developed nickel-based single crystal superalloys were developed using experience. The second generation nickel base single crystal high temperature is added on the basis of the first generation nickel base single crystal high temperature<1 at.% rhenium (Re) element, increasing its temperature-bearing capacity by 30 ℃; the third generation nickel base single crystal high temperature raises Re to 1-2 at.% on the basis of the second generation nickel base single crystal high temperature; the fourth generation nickel base single crystal is added with new element ruthenium (Ru) at high temperature.
While many commercial nickel-based single crystal superalloys have good properties, the good properties are not compatible, but some are high and others are low, making it difficult to provide a balance of properties needed for a particular engineering application. For example, PWA1480 has excellent creep resistance, but its processing window is very small. Therefore, it is important to balance the properties of the ni-based single crystal superalloy to meet various use targets.
Chinese patent CN106636759A discloses a platinum group element reinforced high-thermal stability high-strength nickel-based single crystal superalloy, which comprises high-cost cobalt element selection, low chromium content, low corrosion resistance, and addition of ruthenium element, and obviously belongs to the fourth generation nickel-based single crystal high temperature; the addition of the iridium element and the hafnium element can further improve the preparation cost, and the prepared material has high density which exceeds 9.0g/cm 3 And the cost is also high.
Chinese patent CN111961920A discloses a nickel-based single crystal superalloy with high temperature-bearing capacity and a preparation method thereof, which also belongs to the fourth generation nickel-based single crystal superalloy; the selection cost of alloy elements is high, the temperature bearing capacity exceeds the level of typical third generation single crystal high temperature alloy, and the high temperature endurance performance of the alloy elements is superior to that of part of reported fourth generation single crystal high temperature alloy; however, the method does not have multi-property balance, the oxidation resistance and the cost are sacrificed to improve the mechanical property, and the high solution temperature of the precipitated phase reduces the processing window.
Chinese patent CN111647939A discloses a method for making a 2% Ru new type nickel base single crystal superalloy, which also belongs to the fourth generation nickel base single crystal superalloy, and does not include the selection of Re/Ru alloy, although it can avoid the precipitation of harmful phase under high temperature condition, so that it has better creep property under medium temperature/high stress and high temperature/low stress condition, but its high precipitation phase solution temperature reduces the processing window, and has the problems of high density, high ruthenium element cost, and so on, thereby it can't make the balance of multiple properties of the nickel base single crystal superalloy.
Chinese patent CN109371288A discloses a low rhenium, high strength, hot corrosion resistant nickel-based single crystal superalloy and a method for manufacturing the same, which belong to the third generation of nickel-based single crystal superalloy, but include high cost cobalt element selection, stabilizing treatment is required between solid solution and aging treatment in heat treatment, the temperature of each stage of heat treatment is high, the cost is high, and thus other properties such as processing window and density cannot balance the multiple properties of the nickel-based single crystal superalloy.
Chinese patent CN106011540A discloses a low-rhenium third-generation nickel-based single crystal alloy and a preparation method thereof, the smelting process is complex, the operation difficulty is large, the heat treatment process is divided into 10 sections of heat treatment, each section of heat treatment is air-cooled to room temperature, a large amount of heat is consumed, and the cost is high; the resulting alloy has a high degree of lattice mismatch and density, as well as a high content of deleterious phases.
Disclosure of Invention
The invention aims to solve the technical problems that in the prior art, the addition cost of the alloy elements of cobalt, iridium and hafnium of a plurality of commercial nickel-based single crystal superalloys is high, the alloy has poor hot corrosion resistance effect and high content of harmful phases; the heat treatment consumes much energy, is complex to operate and cannot balance multiple performances; the alloy has high density, small lattice mismatching degree, poor casting stability, narrow gamma single-phase region, poor high-temperature creep resistance and the like.
The invention provides the following technical scheme:
the nickel-based single crystal superalloy with balanced multiple properties comprises the following chemical components in atomic percentage: al: 8.5-10.5 at.%, Cr: 14.0-17.0 at.%, Mo: 1.0-1.5 at.%, Nb: 1.0-1.5 at.%, Ta: 1.5-2.0 at.%, W: 0.5-1.0 at.%, Re: 0.5 to 1.0 at.%; v: 1.5-2.0 at.%, and the balance of Ni.
Wherein Al is used to form gamma' precipitate and Al is formed 2 O 3 The protective layer improves the corrosion resistance, so that the content of Al is set to be 8.5-10.5 at%;
cr can improve the solid solution strengthening effect and form Cr 2 O 3 The protective layer improves the corrosion resistance, and the selection range is 14.0-17.0 at%;
mo, W and V promote solid solution strengthening, but too high a content of Mo, W and V can cause TCP phase formation, so that Mo is controlled to be 1.0-1.5 at.%, W is controlled to be 0.5-1.0 at.%, and V is controlled to be 1.5-2.0 at.%; nb and Ta can improve the reversed phase domain boundary energy and gamma' precipitation content of the high-temperature alloy so as to improve the mechanical property of the alloy, but the excessive Nb and Ta can cause the generation of eta phase and reduce the processing window, so that Nb is controlled to be 1.0-1.5 at.%, and Ta is controlled to be 1.5-2.0 at.%; re can improve the creep property, and the range of Re is 0.5-1.0 at.%.
Preferably, the chemical components of the nickel-based single crystal superalloy are as follows according to atomic percentage: al: 9.0-10.0 at.%, Cr: 15.0-17.0 at.%, Mo: 1.0 to 1.5 at.%, Nb: 1.0-1.5 at.%, Ta: 1.5-2.0 at.%, W: 1.0 at.%, Re: 1.0 at.%; v: 2.0 at.%, the remainder being Ni.
Preferably, the volume fraction gamma 'of the nickel-based single crystal superalloy is 40.1-49.0 vol%, the dissolution temperature of gamma' is 1210-1235 ℃, the existence interval of a gamma single phase zone is 100-125 ℃, the volume fraction of a harmful phase is 0.17-1.02 vol%, the lattice mismatch is-0.0023-0.0002, and the density is 8.65-8.77 g/cm 3 The casting spot resistance index is 0.783 to 1.101, and the creep resistance index is 7.504 to 7.673.
Wherein the gamma prime volume fraction affects the mechanical properties of the superalloy. However, too high a volume fraction of γ 'destroys the γ + γ' system, reducing the mechanical properties. For nickel-base superalloys, the creep life increases first and then decreases as the volume fraction of γ' increases. When the volume fraction of gamma' exceeds 40%, the creep life thereof is satisfactory. The calculated result of Thermo-Calc shows that the gamma' volume fraction of the alloy is 40.1-49.0 vol.%.
The size of the gamma' dissolution temperature directly influences the quenching crackability and the temperature bearing capacity of the alloy. High temperature alloys with high gamma prime dissolution temperatures exhibit a greater tendency to quench cracking; superalloys with too low a gamma prime solution temperature exhibit poor temperature capability. The gamma' dissolution temperature is higher than 1120 ℃ and less than 1250 ℃. The calculated result of Thermo-Calc shows that the gamma' dissolving temperature of the alloy is 1210-1235 ℃.
Superalloys are treated by solution and aging to control the size, volume fraction, and distribution of the gamma prime phase for optimum creep resistance. The solution treatment allows the alloying elements to enter the Ni matrix, and a gamma single-phase region is required to exist. This temperature range is considered to be at least 30 ℃ to meet the requirements. The Thermo-Calc calculation result shows that the gamma single-phase region of the alloy has the existence interval of 100-125 ℃.
When the superalloy is exposed to high temperatures, the deleterious phase phases will be a source of crack propagation, which should be avoided at operating temperatures. The volume of the harmful phase does not exceed 1%. The Thermo-Calc calculation result shows that the harmful phase volume fraction of the alloy is 0.17-1.02 vol.%.
Lattice mismatch further affects the coherence of the gamma/gamma' interface and thus the creep resistance. Negative lattice mismatch can promote the formation of creep resistant raft structures, increasing creep resistance. The lattice mismatch of the alloy is calculated by adopting a classical theoretical formula and Thermo-Calc, and the result is-0.0022 to-0.0003.
Density is a critical issue that limits the application of high temperature alloys. Under a certain volume, the high-density high-temperature alloy inevitably increases the weight of the engine, and further generates larger stress in the turbine blade, and the density is less than 9.00g/cm 3 The nickel-based single crystal superalloy meets the requirements. The density of the alloy is 8.65-8.77 g/cm 3
The key to improving resistance to casting mottle is to control the distribution of heavier elements between the interdendritic liquid and the dendrite nuclei. Generally, when the casting parameter evaluation index of the nickel-based single crystal superalloy is greater than or equal to 0.7, the alloy has good casting spot resistance. The casting parameter evaluation index of the alloy is 0.783-1.101.
Creep resistance is a key property of nickel-based single crystal superalloys. The time to reach 1% creep strain for practical gas turbine applications is an important indicator for assessing creep resistance of high temperature alloys. Creep resistance index the creep resistance (i.e., creep limit) of a nickel-base superalloy at 1% creep strain may be evaluated, e.g., 5.80 for RR 2000R. The creep resistance index of the alloy is 7.504-7.673.
To satisfy high temperature oxidation resistance, Al and Cr are added to form Al 2 O 3 And Cr 2 O 3 And a protective layer. Document 1(Metallurgical and Materials transformations A,51(2020), 4902-4921) proposes a corrosion resistant nickel-base superalloy design region of 8.5-12.0 at.% Al and 13.2-18.0 at.% Cr. The Al content of the alloy is 8.5-10.5 at.%, and the Cr content is 14.0-17.0 at.%.
The preparation method of the nickel-based single crystal superalloy with balanced multiple properties comprises the following steps: weighing the raw materials according to the component ratio, smelting by adopting a vacuum induction arc furnace, casting into a master alloy with chemical components meeting the requirements, preparing to obtain a single crystal test rod, finally carrying out heat treatment on the single crystal test rod, and carrying out air cooling to obtain the nickel-based single crystal high-temperature alloy with balanced multiple properties.
Preferably, the raw material selection in the preparation method adopts pure Al and nickel-based intermediate alloy.
Preferably, the heat treatment in the preparation method is solution treatment and aging treatment.
Preferably, the temperature of the solution treatment in the preparation method is 1150-1200 ℃, and the time is 3-6 h; the aging treatment is divided into two stages, the temperature of the aging treatment in the first stage is 1170-1230 ℃, the time is 6-8 hours, and air cooling is carried out; and air cooling the second stage at 880-920 ℃ for 12-18 h.
Preferably, the temperature of the solution treatment in the preparation method is 1170 ℃ and the time is 4 h; the aging treatment is divided into two stages, the temperature of the aging treatment in the first stage is 1195 ℃, the time is 8 hours, and air cooling is carried out; and the temperature of the aging treatment of the second stage is 900 ℃, the time is 16h, and the air cooling is carried out.
Preferably, the temperature bearing capacity of the nickel-based single crystal superalloy prepared by the preparation method is not less than 1180 ℃.
Compared with the prior art, the invention has the following beneficial effects:
in the scheme, compared with various commercial nickel-based single crystal superalloys in the prior art, the nickel-based single crystal superalloy with balanced multiple properties provided by the invention can realize the balance of the multiple properties of the nickel-based single crystal superalloy.
The invention provides a nickel-based single crystal superalloy with balanced multiple propertiesThe content selection is effected by the Al element to form gamma' precipitates and Al at the same time 2 O 3 The protective layer improves the corrosion resistance; cr enhances the solid solution strengthening effect and forms Cr 2 O 3 The protective layer improves the corrosion resistance; improving solid solution strengthening of Mo, W and V; nb and Ta improve the antiphase domain boundary energy and gamma' precipitation content of the high-temperature alloy so as to improve the mechanical property of the alloy; re improves creep performance. The method does not contain cobalt element and ruthenium element selection in the fourth-generation nickel-based single crystal superalloy, has simple and easy operation of heat treatment mode and less energy consumption, and is beneficial to industrial large-scale production.
The selection of the nickel-based single crystal superalloy with balanced properties, which is provided by the invention, with the Cr content of up to 14 at.% is not available in the prior art, and the hot corrosion resistance is also superior to that of the prior art.
In the nickel-based single crystal superalloy with balanced multiple properties, the gamma 'volume fraction and the gamma' dissolution temperature are moderate, the width of a gamma single phase region is obviously superior to that of other commercial nickel-based single crystal superalloys, the density is obviously lower than that of other commercial nickel-based single crystal superalloys, the degree of mismatch of harmful phases and lattices is lower, and the casting spot resistance and the creep resistance are excellent.
In conclusion, the nickel-based single crystal superalloy with balanced multiple properties provided by the invention has the advantages of low component selection cost, simple and convenient heat treatment, low energy consumption, high resource utilization rate, good thermal corrosion resistance and other property balances, and is beneficial to industrial large-scale production.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings required to be used in the description of the embodiments are briefly introduced below, and it is obvious that the drawings in the description below are only some embodiments of the present invention, and it is obvious for those skilled in the art that other drawings can be obtained according to the drawings without creative efforts.
FIG. 1 is an XRD pattern of a multi-property balanced nickel-based single crystal superalloy of the present invention;
FIG. 2 is a comparison of the gamma prime volume fraction at 900 ℃ of a multi-property balanced nickel-based single crystal superalloy of the present invention with a commercial nickel-based single crystal superalloy;
FIG. 3 is a comparison of the gamma prime solution temperature of a multi-property balanced nickel-based single crystal superalloy of the present invention with a commercial nickel-based single crystal superalloy;
FIG. 4 is a comparison of the width of the gamma-single phase region temperature interval of the multi-property balanced nickel-based single crystal superalloy of the present invention with that of a commercial nickel-based single crystal superalloy;
FIG. 5 is a comparison of the detrimental phase content at 900 ℃ of a multi-property balanced nickel-base single crystal superalloy of the present invention with a commercial nickel-base single crystal superalloy;
FIG. 6 is a comparison of lattice mismatch at 900 ℃ for a multi-property balanced nickel-based single crystal superalloy of the present invention and a commercial nickel-based single crystal superalloy;
FIG. 7 is a comparison of density of a multi-property balanced nickel-based single crystal superalloy of the present invention and a commercial nickel-based single crystal superalloy;
FIG. 8 is a comparison of the cast spot resistance of the multi-property balanced nickel-base single crystal superalloys of the present invention with commercial nickel-base single crystal superalloys;
FIG. 9 is a comparison of creep resistance of the multi-property balanced nickel-based single crystal superalloys of the present invention with commercial nickel-based single crystal superalloys;
FIG. 10 is a comparison of Al/Cr addition concentrations for a multi-property balanced nickel-based single crystal superalloy of the present invention with commercial nickel-based single crystal superalloys.
Detailed Description
The technical solutions and the technical problems to be solved in the embodiments of the present invention will be described below with reference to the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the patent of the invention, not all embodiments.
A multi-property balanced Ni-based single crystal superalloy, examples 1-12, has a chemical composition in atomic percent as shown in Table 1.
Weighing raw materials according to the component proportion of examples 1-12 in Table 1, smelting by using a vacuum induction arc furnace, casting into a master alloy with chemical components meeting requirements, preparing a single crystal test rod, and finally carrying out heat treatment on the single crystal test rod, wherein the heat treatment comprises solid solution treatment and aging treatment, the temperature of the solid solution treatment is 1170 ℃, and the time is 4 hours; the aging treatment is divided into two stages, the temperature of the aging treatment in the first stage is 1195 ℃, the time is 8 hours, and air cooling is carried out; the temperature of the aging treatment of the second stage is 900 ℃, the time is 16h, and the air cooling is carried out; the nickel-based single crystal superalloy with multiple balanced properties is obtained.
Table 1 chemical composition of examples 1-12 (at.%)
Figure BDA0003669492580000071
The results of the invention using Thermo-Calc for the gamma 'volume fraction at 900 ℃, the gamma' dissolution temperature, the width of the temperature interval of the gamma single phase zone, the content of the harmful phase at 900 ℃ and the lattice mismatch at 900 ℃ for examples 1-12 are shown in table 2.
TABLE 2 Gamma volume fraction at 900 deg.C, Gamma' dissolution temperature, Width of temperature interval of Gamma monophasic region, content of detrimental phases at 900 deg.C, lattice mismatch at 900 deg.C for examples 1-12
Figure BDA0003669492580000072
Figure BDA0003669492580000081
The content of the harmful phase in the nickel-based single crystal superalloy in example 1 is 0.621 vol% at 900 ℃, and the XRD result shows that the harmful phase is not present in the alloy.
The density of the nickel-based single crystal superalloy is measured by a drainage method; carrying out creep life test on the sample after heat treatment and machining; and simultaneously calculating the casting resistance spot and the creep resistance index. Specific results are shown in table 3.
Table 3 density, cast-stain resistance, creep resistance indices for examples 1-12.
Figure BDA0003669492580000082
FIGS. 2-9 show the results of comparing the nickel-base single-crystal superalloy SA of example 5 of the present invention with 18 commercial nickel-base single-crystal superalloys, including AF-56, AM1, AM3, CMSX-6, DD402, DD403, DD404, DD407, DD408, DD426, DD499, MC-NG, PWA1480, Ren N4, RR2000, SC-16, SRR99 and CK 7.
In fig. 2, the gamma prime volume fraction of the nickel based single crystal superalloy is shown, and the gamma prime volume fraction of the nickel based single crystal superalloy SA of example 5 is lower than other superalloys but still meets the requirements, and the creep life is 118 h.
FIG. 3 shows the gamma prime solution temperature of the nickel-based single crystal superalloy, and although the gamma prime solution temperature of the nickel-based single crystal superalloy SA of example 5 is lower than that of the superalloys (AM1, AM3, CMSX-6, DD402, DD407, DD499, MC-NG, PWA1480, SC16), the MC-NG and PWA1480 are shown to have a higher gamma prime solution temperature, but higher than that of the other 9 superalloys, with a temperature capability of 1200 ℃.
Fig. 4 shows that the width of the γ single-phase region temperature interval of the nickel-based single-crystal superalloy is negative in MC-NG and PWA1480, whereas in DD403, DD426 and c k 7, although the width of the γ single-phase region temperature interval is larger than that of the nickel-based single-crystal superalloy SA of example 5, the dissolution temperature is lower than that of the present application, and the balance among the γ 'volume fraction, the γ' dissolution temperature and the γ single-phase region temperature interval width is lower than that of the nickel-based single-crystal superalloy SA of example 5.
FIG. 5 shows the harmful phase contents of the Ni-based single crystal superalloy, wherein MC-NG, PWA1480, DD426 and KK 7 have very high harmful phase contents, indicating that the balance of the volume fraction of gamma prime, the dissolution temperature of gamma prime, the width of the temperature interval of the gamma single phase region and the harmful phase contents is lower than that of the Ni-based single crystal superalloy SA of example 5.
Fig. 6 shows that the lattice mismatch of the nickel-based single crystal superalloy, MC-NG, DD426 and c k 7 are negative, and PWA1480 is positive, indicating that the balance of the properties in γ 'volume fraction, γ' dissolution temperature, γ single-phase zone temperature interval width, harmful phase content and lattice mismatch is lower than that of the nickel-based single crystal superalloy SA of example 5.
FIG. 7 shows that the density of the Ni-based single crystal superalloy, MC-NG and DD426, is higher than that of example 5, and the density of PWA1480 and C K7 is lower than that of the Ni-based single crystal superalloy SA of example 5, indicating that the balance of the properties in γ 'volume fraction, γ' dissolution temperature, γ single phase region temperature interval width, harmful phase content, lattice mismatch, and density is lower than that of the Ni-based single crystal superalloy SA of example 5.
Fig. 8 shows that MC-NG and PWA1480 have higher resistance to casting spots than the ni-based single crystal superalloy SA of example 5, and DD426 and c k 7 have lower resistance to casting spots than the ni-based single crystal superalloy SA of example 5, indicating that the balance of the properties in γ 'volume fraction, γ' dissolution temperature, γ single phase region temperature interval width, harmful phase content, lattice mismatch, density, and resistance to casting spots is lower than the ni-based single crystal superalloy SA of example 5.
Fig. 9 shows that the creep resistance of the nickel-based single crystal superalloy, MC-NG, is higher than that of the nickel-based single crystal superalloy SA of example 5, whereas the creep resistance index of the nickel-based single crystal superalloy SA of example 5 is higher than that of the other 17 superalloys, indicating that the balance of the properties of gamma prime volume fraction, gamma prime solution temperature, gamma prime temperature interval width, detrimental phase content, lattice mismatch, density, casting mottle resistance, and creep resistance is lower than that of the nickel-based single crystal superalloy SA of example 5.
Fig. 10 shows the Cr concentration and Al concentration of the ni-based single crystal superalloy, and only the ni-based single crystal superalloy SA and c k 7 of example 5, which meet the conditions of the Cr concentration and Al concentration of the present invention, show that the balance of the properties in γ 'volume fraction, γ' dissolution temperature, γ single phase zone temperature interval width, harmful phase content, lattice mismatch, density, casting spot resistance, creep resistance, and Cr concentration and Al concentration is lower than the ni-based single crystal superalloy SA of example 5.
Therefore, the balance performance of the nickel-based single crystal superalloy in the prior art on gamma 'volume fraction, gamma' dissolution temperature, gamma single phase zone temperature interval width, harmful phase content, lattice mismatch degree, density, casting spot resistance, creep resistance and Cr concentration and Al concentration is lower than that of the nickel-based single crystal superalloy in the prior art.
In the scheme, compared with various commercial nickel-based single crystal superalloys in the prior art, the nickel-based single crystal superalloy with balanced multiple properties provided by the invention can realize the balance of the multiple properties of the nickel-based single crystal superalloy.
The nickel-based single crystal superalloy with balanced multiple properties provided by the invention plays a role in selecting the content of components of Al element to form gamma' -precipitation and Al at the same time 2 O 3 The protective layer improves the corrosion resistance; cr enhances the solid solution strengthening effect and forms Cr 2 O 3 The corrosion resistance of the protective layer is improved; improving solid solution strengthening of Mo, W and V; nb and Ta improve the antiphase domain boundary energy and gamma' precipitation content of the high-temperature alloy so as to improve the mechanical property of the alloy; re promotes creep performance. The method does not contain cobalt element and ruthenium element selection in the fourth-generation nickel-based single crystal superalloy, has simple and easy operation of heat treatment mode and less energy consumption, and is beneficial to industrial large-scale production.
The selection of the nickel-based single crystal superalloy with balanced properties, which is provided by the invention, with the Cr content of up to 14 at.% is not available in the prior art, and the hot corrosion resistance is also superior to that of the prior art.
In the nickel-based single crystal superalloy with balanced multiple properties, the gamma 'volume fraction and the gamma' dissolution temperature are moderate, the width of a gamma single phase region is obviously superior to that of other commercial nickel-based single crystal superalloys, the density is obviously lower than that of other commercial nickel-based single crystal superalloys, the degree of mismatch of harmful phases and lattices is lower, and the casting spot resistance and the creep resistance are excellent.
In conclusion, the nickel-based single crystal superalloy with balanced multiple properties provided by the invention has the advantages of low component selection cost, simple and convenient heat treatment, low energy consumption, high resource utilization rate, good thermal corrosion resistance and other property balances, and is beneficial to industrial large-scale production.
While the foregoing is directed to the preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (8)

1. The nickel-based single crystal superalloy with balanced multiple properties is characterized by comprising the following chemical components in atomic percentage: al: 8.5-10.5 at.%, Cr: 14.0-17.0 at.%, Mo: 1.0-1.5 at.%, Nb: 1.0-1.5 at.%, Ta: 1.5-2.0 at.%, W: 0.5-1.0 at.%, Re: 0.5 to 1.0 at.%; v: 1.5-2.0 at.%, and the balance of Ni.
2. The multi-property-balanced nickel-based single crystal superalloy as in claim 1, wherein the nickel-based single crystal superalloy comprises the following chemical components in atomic percent: al: 9.0-10.0 at.%, Cr: 15.0-17.0 at.%, Mo: 1.0-1.5 at.%, Nb: 1.0-1.5 at.%, Ta: 1.5-2.0 at.%, W: 1.0 at.%, Re: 1.0 at.%; v: 2.0 at.%, the remainder being Ni.
3. The nickel-based single crystal superalloy with multiple property balances according to claim 1, wherein the volume fraction gamma 'of the nickel-based single crystal superalloy is 40.1-49.0 vol%, the dissolution temperature gamma' is 1210-1235 ℃, the existence interval of a gamma single phase region is 100-125 ℃, the volume fraction of a harmful phase is 0.17-1.02 vol%, the lattice mismatch is-0.0023-0.0002, and the density is 8.65-8.77 g/cm 3 The casting spot resistance index is 0.783 to 1.101, and the creep resistance index is 7.504 to 7.673.
4. The method for preparing the multi-property-balanced nickel-based single crystal superalloy according to claim 1, wherein the method comprises the following steps: weighing the raw materials according to the component ratio, smelting by adopting a vacuum induction arc furnace, casting into a master alloy with chemical components meeting the requirements, preparing to obtain a single crystal test rod, finally carrying out heat treatment on the single crystal test rod, and carrying out air cooling to obtain the nickel-based single crystal high-temperature alloy with balanced multiple properties.
5. The method for preparing the nickel-based single crystal superalloy with the balanced multiple properties according to claim 1, wherein pure Al and a nickel-based intermediate alloy are selected as raw materials in the method.
6. The method of preparing a multi-property-balanced nickel-base single crystal superalloy according to claim 1, wherein the heat treatment in the method is solution treatment and aging treatment.
7. The preparation method of the nickel-based single crystal superalloy with the balanced multiple properties according to claim 1, wherein the temperature of solution treatment in the preparation method is 1150-1200 ℃, and the time is 3-6 hours; the aging treatment is divided into two stages, the temperature of the aging treatment in the first stage is 1170-1230 ℃, the time is 6-8h, and air cooling is carried out; and air cooling the second stage at 880-920 ℃ for 12-18 h.
8. The method for preparing the multi-property-balanced nickel-based single crystal superalloy according to claim 1, wherein the temperature of solution treatment in the preparation method is 1170 ℃ and the time is 4 hours; the aging treatment is divided into two stages, the temperature of the aging treatment in the first stage is 1195 ℃, the time is 8 hours, and air cooling is carried out; and the temperature of the aging treatment of the second stage is 900 ℃, the time is 16h, and the air cooling is carried out.
CN202210599720.9A 2022-05-30 2022-05-30 Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof Active CN115044805B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210599720.9A CN115044805B (en) 2022-05-30 2022-05-30 Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210599720.9A CN115044805B (en) 2022-05-30 2022-05-30 Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof

Publications (2)

Publication Number Publication Date
CN115044805A true CN115044805A (en) 2022-09-13
CN115044805B CN115044805B (en) 2023-04-11

Family

ID=83159284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210599720.9A Active CN115044805B (en) 2022-05-30 2022-05-30 Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof

Country Status (1)

Country Link
CN (1) CN115044805B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1127948A2 (en) * 1995-10-13 2001-08-29 Cannon-Muskegon Corporation Hot corrosion resistant single crystal nickel-based superalloys
US20070284018A1 (en) * 2006-06-13 2007-12-13 Daido Tokushuko Kabushiki Kaisha Low thermal expansion Ni-base superalloy
CN101528959A (en) * 2006-10-17 2009-09-09 西门子公司 Nickel-base superalloys
JP2013216939A (en) * 2012-04-06 2013-10-24 Nippon Steel & Sumitomo Metal Corp Nickel-based heat-resistant alloy
CN108138264A (en) * 2015-07-31 2018-06-08 牛津大学创新有限公司 Nickel-base alloy
JP2019112687A (en) * 2017-12-25 2019-07-11 日本製鉄株式会社 Ni-BASED HEAT RESISTANT ALLOY
WO2020245575A1 (en) * 2019-06-07 2020-12-10 Alloyed Limited A nickel-based alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1127948A2 (en) * 1995-10-13 2001-08-29 Cannon-Muskegon Corporation Hot corrosion resistant single crystal nickel-based superalloys
US20070284018A1 (en) * 2006-06-13 2007-12-13 Daido Tokushuko Kabushiki Kaisha Low thermal expansion Ni-base superalloy
CN101528959A (en) * 2006-10-17 2009-09-09 西门子公司 Nickel-base superalloys
JP2013216939A (en) * 2012-04-06 2013-10-24 Nippon Steel & Sumitomo Metal Corp Nickel-based heat-resistant alloy
CN108138264A (en) * 2015-07-31 2018-06-08 牛津大学创新有限公司 Nickel-base alloy
JP2019112687A (en) * 2017-12-25 2019-07-11 日本製鉄株式会社 Ni-BASED HEAT RESISTANT ALLOY
WO2020245575A1 (en) * 2019-06-07 2020-12-10 Alloyed Limited A nickel-based alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SABIN SULZER ET AL.: "The Effects of Chemistry Variations in New Nickel-Based Superalloys for Industrial Gas Turbine Applications", 《METALLURGICAL AND MATERIALS TRANSACTIONS A》 *

Also Published As

Publication number Publication date
CN115044805B (en) 2023-04-11

Similar Documents

Publication Publication Date Title
CN108467972B (en) Nickel-based wrought superalloy with high temperature bearing capacity and preparation method thereof
Sato et al. A 5th generation SC superalloy with balanced high temperature properties and processability
Ross et al. René N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength
Xu et al. Progress in application of rare metals in superalloys
CN102803528B (en) Nickel-base single-crystal superalloy and turbine wing using same
US3526499A (en) Nickel base alloy having improved stress rupture properties
GB2554879B (en) Nickel alloy
EP0076360A2 (en) Single crystal nickel-base superalloy, article and method for making
CN109576534B (en) Gamma&#39; phase reinforced cobalt-based high-temperature alloy with low tungsten content and preparation process thereof
US3561955A (en) Stable nickel base alloy
CN111534720A (en) Twin crystal strengthened nickel-based high-temperature alloy and preparation method and application thereof
KR100725624B1 (en) Ni-based single crystal superalloys
CN113684396B (en) High-content square nanoparticle precipitation strengthened gamma&#39; -Ni3Al-based low-cost high-temperature alloy and preparation method thereof
Li et al. Effect of molybdenum on cyclic oxidation behavior of 4th generation nickel-based single crystal superalloys
CN115044805B (en) Nickel-based single crystal superalloy with balanced multiple properties and preparation method thereof
CN115747577B (en) Deformed superalloy for turbine disk and preparation method thereof
CN114164357A (en) Low-cost and low-density nickel-based single crystal superalloy
CN114164356A (en) High-strength nickel-based single crystal superalloy
CN108866387A (en) A kind of gas turbine high-strength corrosion and heat resistant nickel base superalloy and its preparation process and application
CN114231767B (en) Method for controlling sigma phase precipitation of hot corrosion resistant nickel-based superalloy
Jithin S et al. Comparative Analysis between 5 th and 6 th Generation Superalloys and Previous Generation Superalloys
CN115011844B (en) Rhenium-containing tungsten-free low-specific gravity nickel-based single crystal superalloy and heat treatment process thereof
EP0053948A1 (en) Nickel-chromium-cobalt base alloys and castings thereof
WO2013031916A1 (en) Ni-BASED SUPERALLOY
CN109536781B (en) High-purity low-inclusion nickel-based powder high-temperature alloy and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant