CN115034512A - A process optimization method, system, device and computer-readable storage medium - Google Patents
A process optimization method, system, device and computer-readable storage medium Download PDFInfo
- Publication number
- CN115034512A CN115034512A CN202210787727.3A CN202210787727A CN115034512A CN 115034512 A CN115034512 A CN 115034512A CN 202210787727 A CN202210787727 A CN 202210787727A CN 115034512 A CN115034512 A CN 115034512A
- Authority
- CN
- China
- Prior art keywords
- flow
- data
- execution
- server
- kpi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 241
- 238000005457 optimization Methods 0.000 title claims abstract description 24
- 238000003860 storage Methods 0.000 title claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 213
- 238000004458 analytical method Methods 0.000 claims abstract description 24
- 238000007619 statistical method Methods 0.000 claims abstract description 5
- 230000000694 effects Effects 0.000 claims description 27
- 238000013500 data storage Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000005206 flow analysis Methods 0.000 claims 2
- 238000012545 processing Methods 0.000 abstract description 9
- 238000013480 data collection Methods 0.000 abstract description 8
- 208000018910 keratinopathic ichthyosis Diseases 0.000 description 16
- 238000004891 communication Methods 0.000 description 6
- 238000010835 comparative analysis Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010223 real-time analysis Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0633—Workflow analysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Educational Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明属于计算机工作流及业务流程管理技术领域,具体涉及一种业务流程优化方法、系统、设备及计算机可读存储介质。该方法包括:流程数据采集客户端从流程服务器处获取流程执行数据信息,并将该信息发送给消息中间件。流程管道程序从订阅的消息中间件流程队列获取流程执行数据,将流程执行数据保存到Elasticsearch服务器中。流程仓库主程序接收用户请求,获取流程数据,根据业务流程KPI指标对流程日志信息进行统计分析处理,将分析处理结果保存到Elasticsearch服务器中并在仪表盘界面展示相关数据。本发明通过搭建流程仓库,对流程服务器的流程数据和执行日志信息进行集中处理和存储,为流程优化提供强有力的流程执行效率数据支撑,有着广泛的应用前景。
The invention belongs to the technical field of computer workflow and business process management, and in particular relates to a business process optimization method, system, device and computer-readable storage medium. The method includes: a process data collection client obtains process execution data information from a process server, and sends the information to a message middleware. The process pipeline program obtains process execution data from the subscribed message middleware process queue, and saves the process execution data to the Elasticsearch server. The main program of the process warehouse receives user requests, obtains process data, performs statistical analysis and processing on process log information according to business process KPI indicators, saves the analysis and processing results to the Elasticsearch server, and displays relevant data on the dashboard interface. By building a process warehouse, the invention centrally processes and stores the process data and execution log information of the process server, provides strong process execution efficiency data support for process optimization, and has broad application prospects.
Description
技术领域technical field
本发明涉及计算机工作流及业务流程管理技术领域,具体涉及一种流程优化方法、装置、设备及计算机可读存储介质。The present invention relates to the technical field of computer workflow and business process management, in particular to a process optimization method, apparatus, device and computer-readable storage medium.
背景技术Background technique
随着流程再造等流程理论的研究,越来越多的企业IT系统通过引用工作流中间件来增加系统对业务流程的支撑。另一方面,随着开源软件的流行,开源工作流软件如Activiti、Camunda也被越来越多的企业采用。通常业务流程管理生命周期一般是指业务流程管理的四个基本阶段:流程建模、执行、分析和优化。With the research of process theory such as process reengineering, more and more enterprise IT systems increase the support for business processes by citing workflow middleware. On the other hand, with the popularity of open source software, open source workflow software such as Activiti and Camunda are also adopted by more and more enterprises. Usually the business process management life cycle generally refers to the four basic stages of business process management: process modeling, execution, analysis and optimization.
虽然Activiti、Camunda这类流程工具对流程建模和执行流程任务提供了工具支持,但没有提供分析和优化工具。对于流程分析师来说,由于没有对应的流程分析工具,需要根据运维系统中集中采集的流程日志信息来分析流程系统的运行系情况和流程执行的情况。由于日志集中处理系统只提供日志通用处理分析工具,且传统的日志分析工具无法解释日志信息中的BPMN模型等流程专业领域数据信息,所以对日志中流程数据的分析统计需要大量的开发和维护工作。目前还没有针对流程日志数据进行面向流程分析的解决方案,流程执行日志中的潜在有价值的流程执行数据仍未发掘使用,流程优化的潜力也未得到充分利用。Although process tools such as Activiti and Camunda provide tool support for process modeling and execution of process tasks, they do not provide analysis and optimization tools. For process analysts, since there is no corresponding process analysis tool, it is necessary to analyze the operation system and process execution of the process system according to the process log information collected in the operation and maintenance system. Since the log centralized processing system only provides log general processing and analysis tools, and traditional log analysis tools cannot interpret the BPMN model and other process professional data information in the log information, the analysis and statistics of the process data in the log requires a lot of development and maintenance work. . At present, there is no solution for process analysis of process log data, the potentially valuable process execution data in process execution logs has not been exploited, and the potential of process optimization has not been fully utilized.
发明内容SUMMARY OF THE INVENTION
针对现有日志数据分析无法提供面向流程分析的技术方案存在的不足之处,本发明提出了一种流程优化方法、装置、设备及计算机存储介质,通过搭建流程仓库,将流程执行数据、流程日志数据和流程KPI指标关联起来,并通过可视化流程图分析仪表盘将KPI的执行结果数据展示出来,使流程分析过程更加简洁、清晰明了。Aiming at the shortcomings that the existing log data analysis cannot provide a process analysis-oriented technical solution, the present invention proposes a process optimization method, device, equipment and computer storage medium. The data is associated with the process KPI indicators, and the KPI execution result data is displayed through the visual flowchart analysis dashboard, which makes the process analysis process more concise and clear.
为实现上述目的,本发明采用了以下技术方案:To achieve the above object, the present invention has adopted the following technical solutions:
根据本发明的第一方面,提供了一种流程优化方法。该方法包括:According to a first aspect of the present invention, a process optimization method is provided. The method includes:
流程数据采集客户端从流程服务器处获取流程执行数据信息,并将该数据信息通过消息中间件流程队列发送给消息中间件。The process data collection client obtains process execution data information from the process server, and sends the data information to the message middleware through the message middleware process queue.
流程管道程序从订阅的消息中间件流程队列获取流程服务器运行的流程执行数据,并将流程执行数据保存到流程存储单元中。The process pipeline program obtains the process execution data run by the process server from the subscribed message middleware process queue, and saves the process execution data in the process storage unit.
流程仓库主程序接收用户请求,调取流程的流程执行数据,并根据业务流程KPI指标对流程执行数据进行汇总、统计和分析处理,将统计分析结果保存到流程存储单元中,并在流程仓库仪表盘结合流程图以直观方式展示相关统计分析结果。所述流程执行数据包括流程日志信息等数据。所述流程数据存储单元为Elasticsearch服务器。所述流程仓库仪表盘,用于图形化展示流程KPI执行分析结果。The main program of the process warehouse receives user requests, retrieves the process execution data of the process, summarizes, counts and analyzes the process execution data according to the KPI indicators of the business process, saves the statistical analysis results in the process storage unit, and displays them in the process warehouse instrument. The disk combined with the flow chart displays the relevant statistical analysis results in an intuitive way. The process execution data includes process log information and other data. The process data storage unit is an Elasticsearch server. The process warehouse dashboard is used to graphically display process KPI execution analysis results.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述流程执行数据包括流程定义、流程实例、流程活动、流程任务、流程变量、流程事件及流程执行日志数据。The above aspects and any possible implementation manners further provide an implementation manner, wherein the process execution data includes process definitions, process instances, process activities, process tasks, process variables, process events, and process execution log data.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述消息中间件流程队列包括在在消息服务器中针对流程服务器数据传输设置的发布/订阅队列。According to the above aspect and any possible implementation manner, an implementation manner is further provided, wherein the message middleware process queue includes a publish/subscribe queue set in the message server for data transmission of the process server.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述消息中间件为Kafka或RabbitMQ的消息中间件。According to the above aspect and any possible implementation manner, an implementation manner is further provided, where the message middleware is the message middleware of Kafka or RabbitMQ.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述业务流程KPI指标包括流程指标、活动指标和任务指标;所述流程指标包括流程实例计数和流程实例执行时间;所述活动指标包括活动实例计数和活动实例执行时间;所述任务指标包括任务计数和任务执行时间。The above aspects and any possible implementations further provide an implementation, wherein the business process KPI indicators include process indicators, activity indicators and task indicators; the process indicators include process instance count and process instance execution time; The activity indicator includes activity instance count and activity instance execution time; the task indicator includes task count and task execution time.
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据业务流程KPI指标对流程执行数据进行汇总、统计和分析处理,包括:The above aspects and any possible implementation manners further provide an implementation manner in which the process execution data is aggregated, counted and analyzed according to the business process KPI indicators, including:
在流程实例图页面的流程图活动节点用数字或热力图方式直观展示流程KPI指标执行情况,支持对不同流程和活动之间的执行情况进行对比分析,对流程实例和活动的执行情况进行统计。The flow chart activity node on the flow instance graph page visually displays the execution of process KPI indicators in the form of numbers or heat maps, supports the comparative analysis of the execution of different processes and activities, and collects statistics on the execution of process instances and activities.
根据本发明的第二方面,提供了一种流程优化系统。该系统包括:According to a second aspect of the present invention, a process optimization system is provided. The system includes:
流程数据采集客户端、消息服务器、流程管道程序单元、流程数据存储单元、流程仓库主程序单元和流程分析仪表盘。Process data collection client, message server, process pipeline program unit, process data storage unit, process warehouse main program unit and process analysis dashboard.
所述流程数据采集客户端,用于从流程服务器处获取流程执行数据信息。The process data collection client is used for acquiring process execution data information from the process server.
所述消息服务器,用于利用消息中间件获取流程数据采集客户端采集的流程执行数据信息,并将该信息发送至流程管道程序单元。The message server is used to obtain the process execution data information collected by the process data collection client by using the message middleware, and send the information to the process pipeline program unit.
所述流程管道程序单元,用于以定时轮询的方式自动从消息中间件获取流程队列获取流程执行数据,并将数据保存到流程存储单元(Elasticsearch服务器)。The process pipeline program unit is used to automatically acquire process execution data from the process queue of the message middleware in the manner of regular polling, and save the data to the process storage unit (Elasticsearch server).
所述流程数据存储单元,用于存储流程执行数据。The process data storage unit is used for storing process execution data.
所述流程仓库主程序单元,根据流程KPI指标对流程执行数据进行汇总、分析处理。The main program unit of the process warehouse summarizes, analyzes and processes the process execution data according to the process KPI indicators.
所述流程分析仪表盘,用于图形化展示流程执行数据的汇总分析结果。The process analysis dashboard is used to graphically display the summary analysis results of the process execution data.
根据本发明的第三方面,提供了一种电子设备。该电子设备包括存储器和处理器,所述存储器上存储有计算机程序,所述处理器执行所述程序时实现如以上所述的方法。According to a third aspect of the present invention, an electronic device is provided. The electronic device includes a memory and a processor, the memory stores a computer program, and the processor implements the above-mentioned method when the processor executes the program.
根据本发明的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如根据本发明的第一方面和/或第二方面的方法。According to a fourth aspect of the present invention, there is provided a computer-readable storage medium having stored thereon a computer program which, when executed by a processor, implements a method according to the first and/or second aspect of the present invention .
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明通过搭建流程仓库,对流程服务器的数据和日志信息进行集中存储和处理,可为流程优化提供强有力的数据支撑,有着广泛的应用前景。(1) The present invention centrally stores and processes the data and log information of the process server by building a process warehouse, which can provide strong data support for process optimization and has broad application prospects.
(2)在本发明中,流程仓库支持云环境多实例流程服务器的集中统一分析,通过消息中间件将多个流程服务器程序的执行数据统一集中起来,通过流程管道程序存储到起流程存储单元(Elasticsearch服务器),基于流程实例KPI和活动实例KPI对流程数据进行分析统计,帮助用户找出流程执行的瓶颈,为流程的后续优化提供有力的数据支撑。本发明中的流程优化系统采用容器方式运行,对流程服务器程序和业务系统无侵入,支持与业务系统KPI的自由结合,可大大提升流程分析的效率,进一步发挥流程服务的作用和潜力。(2) In the present invention, the process warehouse supports the centralized and unified analysis of the multi-instance process server in the cloud environment, and the execution data of multiple process server programs is unified and centralized through the message middleware, and the process pipeline program is stored in the process storage unit ( Elasticsearch server), analyzes and counts process data based on process instance KPIs and activity instance KPIs, helps users identify bottlenecks in process execution, and provides strong data support for subsequent optimization of the process. The process optimization system in the present invention runs in a container mode, has no intrusion to process server programs and business systems, supports free combination with business system KPIs, greatly improves the efficiency of process analysis, and further exerts the role and potential of process services.
附图说明Description of drawings
图1是本发明中流程优化方法的方法流程图;Fig. 1 is the method flow chart of the process optimization method in the present invention;
图2是本发明中流程优化系统的方框图;Fig. 2 is the block diagram of the process optimization system in the present invention;
图3是能够实施本发明的实施例的示例性电子设备的方框图。3 is a block diagram of an exemplary electronic device capable of implementing embodiments of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的全部其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。In addition, the term "and/or" in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, There are three cases of B alone. In addition, the character "/" in this document generally indicates that the related objects are an "or" relationship.
如图1和图2所示,本发明提出了一种流程优化方法100和系统,通过搭建流程仓库,将流程执行的日志数据和流程的KPI指标关联起来,并通过可视化流程图展示仪表盘将KPI的执行数据展示出来。As shown in FIG. 1 and FIG. 2 , the present invention proposes a
在框110中,流程数据采集客户端采集流程数据。流程数据采集客户端通过REST服务接口方式或JDBC数据库连接的方式与流程服务器进行通讯,以定时轮询的方式从流程服务器处获取流程执行数据信息,并将收到的数据以json格式发送给后端的消息中间件。所述流程执行数据信息包括流程定义、流程实例、流程活动、流程任务、流程变量及流程事件数据。流程数据采集通讯支持采用REST/JDBC方式,灵活多样,可无侵入采集数据。In
在框120中,流程管道程序从事先设置的消息中间件流程订阅频道通道获取流程数据,消息中间件默认为Kafka、也支持RabbitMQ消息中间件,获取流程执行数据后将流程执行数据保存到后端的Elasticsearch服务器中,供后对流程分析检索使用。采用Kafka消息中间件进行消息通讯载体,支持集群方式,支持大规模流程数据的并发采集。数据存储采用Elasticsearch服务器,支持集群方式横向扩展,可不受传统数据库容量的限制,支持海量日志数据的存储与处理,同时支持数据的实时分析处理,支持第三方工具对数据展示与检索。In
在框130中,流程仓库主程序程序,负责接收用户的请求,获取流程数据,并将流程数据保存到后端的Elasticsearch服务器中,并依据指标对流程日志信息进行分析统计。In
默认的业务流程KPI指标包括:流程指标、活动指标和任务指标。所述流程指标包括:流程实例计数(总数,成功计数,失败计数),流程实例执行时间(包括最短,最长,平均)。所述活动指标包括:活动实例计数(总数,成功计数,失败计数),活动实例执行时间(包括最短,最长,平均)。所述任务指标包括:任务计数(总数,成功计数,失败计数),任务执行时间(包括最短,最长,平均)。The default business process KPI indicators include: process indicators, activity indicators, and task indicators. The process indicators include: process instance count (total, success count, failure count), and process instance execution time (including shortest, longest, and average). The activity indicators include: active instance count (total, successful count, failure count), and active instance execution time (including the shortest, longest, and average). The task indicators include: task count (total, successful count, failure count), task execution time (including shortest, longest, average).
最后,流程仪表盘程序,负责以在流程实例图页面的流程图的活动节点上以数字或热力图方式展示流程KPI指标执行情况,并提供不同流程和活动之间的执行情况对比分析,提供流程实例和活动的执行情况的统计。基于流程图的提供流程实时分析展示,让用户对流程的执行效率情况一目了然,同时支持数据下钻,方便了解问题具体内容;支持不同流程实例KPI指标对比分析,在流程仪表盘用流程图上以数字或热力图方式展示流程、活动、任务的执行信息(执行计数统计和执行时间统计等)。Finally, the process dashboard program is responsible for displaying the execution of process KPI indicators in the form of numbers or heat maps on the activity node of the flowchart on the process instance diagram page, and provides a comparative analysis of the execution between different processes and activities, and provides the process Statistics on the execution of instances and activities. Provide real-time analysis and display of the process based on the flow chart, so that users can see the execution efficiency of the process at a glance. At the same time, it supports data drill-down to facilitate the understanding of the specific content of the problem; it supports the comparative analysis of KPI indicators of different process instances. Display process, activity, and task execution information (execution count statistics and execution time statistics, etc.) in a digital or heat map manner.
图3示出了可以用来实施本发明的实施例的电子设备300的示意性框图。如图3所示,设备300包括CPU301,其可以根据存储在ROM302中的计算机程序指令或者从存储单元308加载到RAM303中的计算机程序指令,来执行各种适当的动作和处理。在RAM 303中,还可以存储设备300操作所需的各种程序和数据。CPU 301、ROM 302以及RAM 303通过总线304彼此相连。I/O接口305也连接至总线304。Figure 3 shows a schematic block diagram of an
设备300中的多个部件连接至I/O接口305,包括:输入单元306,例如键盘、鼠标等;输出单元307,例如各种类型的显示器、扬声器等;存储单元308,例如磁盘、光盘等;以及通信单元309,例如网卡、调制解调器、无线通信收发机等。通信单元309允许设备300通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Various components in the
处理单元301执行上文所描述的各个方法和处理,例如方法100。例如,在一些实施例中,方法100可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元308。在一些实施例中,计算机程序的部分或者全部可以经由ROM 302和/或通信单元309而被载入和/或安装到设备300上。当计算机程序加载到RAM 303并由CPU 301执行时,可以执行上文描述的方法100的一个或多个步骤。备选地,在其他实施例中,CPU 301可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行方法100。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑器件(CPLD)等等。The functions described herein above may be performed, at least in part, by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (ASSPs), Systems on Chips (SOCs), Complex Programmable Logic Device (CPLD) and so on.
用于实施本发明的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program code for implementing the methods of the present invention may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer or other programmable data processing apparatus, such that the program code, when executed by the processor or controller, performs the functions/functions specified in the flowcharts and/or block diagrams. Action is implemented. The program code may execute entirely on the machine, partly on the machine, partly on the machine and partly on a remote machine as a stand-alone software package or entirely on the remote machine or server.
在本发明的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、RAM、ROM、EPROM、光纤、CD-ROM、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with the instruction execution system, apparatus or device. The machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, RAM, ROM, EPROM, optical fibers, CD-ROMs, optical storage devices, magnetic storage devices, or the foregoing any suitable combination.
将本发明应用在智能制造升级项目中,该项目总计10万个流程实例,平均每个流程包含20个节点。通过流程仓库可在3秒钟内分别统计出每个流程任务节点、流程自动任务节点、人工任务节点的平均执行时间、最长执行时间、最短执行时间、人工任务的平均执行性时间等相关的流程执行信息。本发明还可以提供审批通过流程和审批不通过流程的汇总数据,这些数据中包括流程的平均执行时间和每个活动的平均执行时间。本发明大大提升了流程分析的效率,节省了数据处理的时间。The present invention is applied to an intelligent manufacturing upgrade project, which has a total of 100,000 process instances, and each process contains 20 nodes on average. Through the process warehouse, the average execution time, longest execution time, shortest execution time, average execution time of manual tasks, etc. Process execution information. The present invention can also provide the summary data of the approval process and the approval disapproval process, and these data include the average execution time of the process and the average execution time of each activity. The present invention greatly improves the efficiency of process analysis and saves time for data processing.
以上所述实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-mentioned embodiments are only to describe the preferred embodiments of the present invention, but not to limit the scope of the present invention. On the premise of not departing from the design spirit of the present invention, various modifications made by those of ordinary skill in the art to the technical solutions of the present invention and improvements, all should fall within the protection scope determined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210787727.3A CN115034512A (en) | 2022-07-04 | 2022-07-04 | A process optimization method, system, device and computer-readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210787727.3A CN115034512A (en) | 2022-07-04 | 2022-07-04 | A process optimization method, system, device and computer-readable storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115034512A true CN115034512A (en) | 2022-09-09 |
Family
ID=83128837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210787727.3A Pending CN115034512A (en) | 2022-07-04 | 2022-07-04 | A process optimization method, system, device and computer-readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115034512A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116010428A (en) * | 2023-02-24 | 2023-04-25 | 杭州比智科技有限公司 | Data blood margin analysis method and device |
CN116450703A (en) * | 2023-03-31 | 2023-07-18 | 阿里巴巴(中国)有限公司 | Data processing, statistics, node determination and modeling method and electronic equipment |
-
2022
- 2022-07-04 CN CN202210787727.3A patent/CN115034512A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116010428A (en) * | 2023-02-24 | 2023-04-25 | 杭州比智科技有限公司 | Data blood margin analysis method and device |
CN116450703A (en) * | 2023-03-31 | 2023-07-18 | 阿里巴巴(中国)有限公司 | Data processing, statistics, node determination and modeling method and electronic equipment |
CN116450703B (en) * | 2023-03-31 | 2024-03-01 | 阿里巴巴(中国)有限公司 | Data processing, statistics, node determination and modeling method and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112445863B (en) | Data real-time synchronization method and system | |
US9122786B2 (en) | Systems and/or methods for statistical online analysis of large and potentially heterogeneous data sets | |
US20180186183A1 (en) | Mechanism to chain continuous queries | |
US20140081925A1 (en) | Managing Incident Reports | |
CN115034512A (en) | A process optimization method, system, device and computer-readable storage medium | |
WO2021057198A1 (en) | Big data-based cross-domain service whole-process routing and penetration method and apparatus | |
CN112527620B (en) | Database performance analysis method and device, electronic equipment, medium and product | |
CN112052134A (en) | Method and device for monitoring service data | |
CN112416902A (en) | One-key inspection method for host and database | |
CN112000548A (en) | Big data component monitoring method and device and electronic equipment | |
CN103020280B (en) | A kind of method SQL query statement expanded by various dimensions KPI function | |
WO2023273461A1 (en) | Robot operating state monitoring system, and method | |
CN111209314A (en) | System for processing massive log data of power information system in real time | |
CN111752920A (en) | Method, system and storage medium for managing metadata | |
CN117806929A (en) | MySQL slow log acquisition and analysis method, system, equipment and storage medium | |
CN112448840A (en) | Communication data quality monitoring method, device, server and storage medium | |
CN116383207A (en) | A data label management method, device, electronic equipment and storage medium | |
CN117033410A (en) | Method and system for managing blood relationship of data | |
CN114625763A (en) | Information analysis method and device for database, electronic equipment and readable medium | |
CN110928938B (en) | Interface middleware system | |
CN116010380A (en) | Data warehouse automatic management method based on visual modeling | |
CN116049285A (en) | Real-time index calculation method, system, equipment and medium based on stream data | |
CN114785706A (en) | A data processing system and method for network traffic monitoring | |
AU2017269259A1 (en) | Data driven invocation of real time wind market forecasting analytics | |
CN110856208B (en) | Network type resource environment data acquisition communication platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |