CN115033908A - Retrieval method for fine-grained dense state data of oil and gas exploration based on cloud storage - Google Patents
Retrieval method for fine-grained dense state data of oil and gas exploration based on cloud storage Download PDFInfo
- Publication number
- CN115033908A CN115033908A CN202210962115.3A CN202210962115A CN115033908A CN 115033908 A CN115033908 A CN 115033908A CN 202210962115 A CN202210962115 A CN 202210962115A CN 115033908 A CN115033908 A CN 115033908A
- Authority
- CN
- China
- Prior art keywords
- data
- exploration
- secret
- center
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000013475 authorization Methods 0.000 claims abstract description 12
- 238000004220 aggregation Methods 0.000 claims abstract 3
- 230000002776 aggregation Effects 0.000 claims abstract 3
- 238000011161 development Methods 0.000 claims description 101
- 125000004122 cyclic group Chemical group 0.000 claims description 19
- 238000012360 testing method Methods 0.000 claims description 17
- 238000007619 statistical method Methods 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 238000007405 data analysis Methods 0.000 claims description 3
- 201000004569 Blindness Diseases 0.000 claims 2
- 238000004321 preservation Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 51
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
- G06F21/6227—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database where protection concerns the structure of data, e.g. records, types, queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/602—Providing cryptographic facilities or services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
- G06F21/6272—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database by registering files or documents with a third party
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Storage Device Security (AREA)
Abstract
Description
技术领域technical field
本发明属于油气勘探开发系统中大数据分析及安全处理领域,尤其涉及一种基于云存储的油气勘探细粒度密态数据的检索方法。The invention belongs to the field of big data analysis and security processing in an oil and gas exploration and development system, and in particular relates to a retrieval method for fine-grained dense state data of oil and gas exploration based on cloud storage.
背景技术Background technique
石油与天然气作为国家重要的能源矿产和战略物资,其安全是国家战略安全的重要基石。油气勘探工作作为油气工业的前端环节,包括资源寻找、开发方案的设计和实施等工作,对维持资源探明储量的稳定、保障石油工业的持续发展有着重要意义。研发机构能够对油气勘探数据的整合与分析得到一个全局的勘探模型,从而降低各个油气勘探机构在同一项目上的重复投入研发。Oil and natural gas are important national energy minerals and strategic materials, and their security is an important cornerstone of national strategic security. As the front-end link of the oil and gas industry, oil and gas exploration work, including the search for resources, the design and implementation of development plans, etc., is of great significance to maintaining the stability of proven resources and ensuring the sustainable development of the oil industry. R&D institutions can integrate and analyze oil and gas exploration data to obtain a global exploration model, thereby reducing the repeated investment in research and development of the same project by various oil and gas exploration institutions.
由于各个油气勘探现场的数据通常是机密数据,这些数据往往包含了油气勘探发现场地,机器投入,甚至油气运输路径。所以,这些战略数据的机密性通常是需要得到保障的。因此,各个勘探机构希望只能由自己访问到细粒度数据,并且只给相关数据分析中心授予数据使用权,以达到数据可用不可见的目的。也只有这样,作为数据拥有者才愿意贡献出自己的数据以获得更优的全局模型。Since the data of various oil and gas exploration sites are usually confidential data, these data often include oil and gas exploration and discovery sites, machine inputs, and even oil and gas transportation routes. Therefore, the confidentiality of these strategic data usually needs to be guaranteed. Therefore, various exploration agencies hope that they can only access fine-grained data by themselves, and only grant data use rights to the relevant data analysis centers, so as to achieve the purpose of invisible data availability. Only in this way, as data owners, are willing to contribute their own data to obtain a better global model.
此外,由于各个机构的数据存储服务通常都是外包到云服务器的,在这种模式下的数据是脱离了数据拥有者的掌控的。所以用户会采取上传加密数据的方式保证数据没有被泄露,但是这就不利于数据的授权过程。In addition, since the data storage services of various institutions are usually outsourced to cloud servers, the data in this mode is out of the control of the data owner. Therefore, users will upload encrypted data to ensure that the data is not leaked, but this is not conducive to the data authorization process.
所以,在数据存储外包的背景下,以保障这些多源异构勘探数据的机密性为基准,一个能够保留数据拥有者对自己数据的访问权限并能够实现分享数据使用权的共享方案俨然成为了大数据时代下新型智慧油气勘探开发的重要基石。Therefore, in the context of data storage outsourcing, based on ensuring the confidentiality of these multi-source heterogeneous exploration data, a sharing scheme that can retain the data owner's access rights to their own data and share the right to use the data has become a An important cornerstone of new smart oil and gas exploration and development in the era of big data.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的一项或多项不足,提供一种基于云存储的油气勘探细粒度密态数据的检索方法。The purpose of the present invention is to overcome one or more deficiencies of the prior art, and to provide a retrieval method for fine-grained dense state data of oil and gas exploration based on cloud storage.
本发明的目的是通过以下技术方案来实现的:The purpose of this invention is to realize through the following technical solutions:
基于云存储的油气勘探细粒度密态数据的检索方法,应用于油气勘探细粒度密态数据检索系统,所述油气勘探细粒度密态数据检索系统包括云服务器、勘探开发场区数据管理者、数据分析中心和可信中心,所述云服务器分别与勘探开发场区数据管理者、数据分析中心和可信中心通信连接,所述可信中心分别与勘探开发场区数据管理者和数据分析中心通信连接,所述勘探开发场区数据管理者拥有多个时间周期和多种类型的原始油气勘探细粒度数据,所述检索方法包括:A method for retrieving fine-grained dense state data for oil and gas exploration based on cloud storage is applied to a fine-grained dense state data retrieval system for oil and gas exploration. The oil and gas exploration fine-grained dense state data retrieval system includes a cloud server, an exploration and development site data manager, A data analysis center and a trusted center, the cloud servers are respectively connected to the exploration and development site data manager, the data analysis center, and the trusted center, and the trusted center is respectively connected to the exploration and development site data manager and the data analysis center Communication connection, the exploration and development site data manager has multiple time periods and multiple types of raw oil and gas exploration fine-grained data, and the retrieval method includes:
S1、原始油气勘探细粒度数据的加密和上传:勘探开发场区数据管理者获取可信中心经安全信道发送的容错参数,并使用该容错参数对自己的原始油气勘探细粒度数据进行加密,生成对应的密态数据,并将密态数据上传至云服务器;S1. Encryption and upload of original fine-grained data of oil and gas exploration: The data manager of the exploration and development field obtains the fault-tolerant parameters sent by the trusted center through the secure channel, and uses the fault-tolerant parameters to encrypt the original fine-grained data of oil and gas exploration to generate corresponding encrypted data, and upload the encrypted data to the cloud server;
S2、密态数据检索的授权:勘探开发场区数据管理者获取可信中心经安全信道发送的大素数,并根据所述大素数对可信中心所公开的盲化的第一公开参数进行去盲化,去盲化后生成用于授权检索的第一秘密参数,然后根据第一秘密参数制定多个不同的授权访问策略值,并将各个授权访问策略值作为一个第一多项式的根后恢复出该第一多项式,根据恢复出的第一多项式生成安全索引,将生成的安全索引上传至云服务器,其中所述授权访问策略值中包括密态数据的类型信息和所处的时间周期信息,不同授权访问策略值所包含的密态数据的类型信息和/或所处的时间周期信息不同;S2. Authorization of secret state data retrieval: The data manager of the exploration and development site obtains the large prime number sent by the trusted center through the secure channel, and de-selects the blinded first public parameter disclosed by the trusted center according to the large prime number. Blinding, after deblinding, the first secret parameter for authorized retrieval is generated, and then multiple different authorized access policy values are formulated according to the first secret parameter, and each authorized access policy value is used as the root of a first polynomial After recovering the first polynomial, generate a security index according to the recovered first polynomial, and upload the generated security index to the cloud server, wherein the authorized access policy value includes the type information of the encrypted data and all The time period information at the location, the type information and/or the time period information of the encrypted data contained in different authorized access policy values are different;
S3、密态数据的检索:数据分析中心获取可信中心经安全信道发送的第一秘密参数,并根据第一秘密参数重构授权访问策略值,并将该授权访问策略值发送给云服务器,其中重构的授权访问策略值为勘探开发场区数据管理者制定的授权访问策略值中的一个或多个;S3. Retrieval of confidential data: the data analysis center obtains the first secret parameter sent by the trusted center through the secure channel, reconstructs the authorized access policy value according to the first secret parameter, and sends the authorized access policy value to the cloud server, The reconstructed authorized access policy value is one or more of the authorized access policy values formulated by the data manager of the exploration and development site;
S4、云服务器聚合密态数据:云服务器根据所述安全索引和数据分析中心发送的授权访问策略值进行密态数据检索,并将检索到的密态数据进行聚合,然后返回聚合密态数据至数据分析中心;S4. Cloud server aggregates encrypted data: the cloud server retrieves encrypted data according to the security index and the authorized access policy value sent by the data analysis center, aggregates the retrieved encrypted data, and then returns the aggregated encrypted data to data analysis center;
S5、聚合密态数据的盲化、解密和统计分析:数据分析中心获取可信中心分配的用于盲化密文的第二秘密参数和用于解密密文的解密私钥,并根据第二秘密参数对聚合密态数据进行盲化,然后根据解密私钥对盲化后的聚合密态数据进行解密,得到原始油气勘探细粒度数据的聚合值,然后在隐私保护状态下根据原始油气勘探细粒度数据的聚合值进行统计分析。S5. Blinding, decryption and statistical analysis of aggregated ciphertext data: the data analysis center obtains the second secret parameter for blinding the ciphertext and the decryption private key for decrypting the ciphertext assigned by the trusted center, and according to the second The secret parameter blinds the aggregated dense state data, and then decrypts the blinded aggregated dense state data according to the decryption private key to obtain the aggregated value of the original fine-grained data of oil and gas exploration. Aggregate values of granularity data for statistical analysis.
优选地,所述S1之前还包括如下步骤:Preferably, before the S1, the following steps are also included:
系统初始化:可信中心设置该方法中涉及的安全密码组件,以及基于门限秘密共享方法的第二多项式、第一秘密参数、第二秘密参数和第三秘密参数,所述安全密码组件包括同态加密公开参数、解密私钥、乘法循环群、该乘法循环群的生成元和哈希函数。System initialization: the trusted center sets the security cryptographic components involved in the method, and the second polynomial, the first secret parameter, the second secret parameter and the third secret parameter based on the threshold secret sharing method, the security cryptographic components include Homomorphic encryption public parameters, decryption private key, multiplicative cyclic group, generator of the multiplicative cyclic group, and hash function.
优选地,所述勘探开发场区数据管理者获取可信中心经安全信道发送的容错参数前,勘探开发场区数据管理者向可信中心发送注册请求,可信中心记录勘探开发场区数据管理者的注册信息,并生成所述容错参数和所述大素数;Preferably, before the exploration and development site data manager obtains the fault tolerance parameters sent by the trusted center via the secure channel, the exploration and development site data manager sends a registration request to the trusted center, and the trusted center records the exploration and development site data management registration information of the user, and generate the fault tolerance parameter and the large prime number;
所述数据分析中心获取可信中心经安全信道发送的第一秘密参数前,数据分析中心向可信中心发送注册请求,可信中心根据该注册请求向数据分析中心发送第一秘密参数、第二秘密参数和解密私钥。Before the data analysis center obtains the first secret parameter sent by the trusted center through the secure channel, the data analysis center sends a registration request to the trusted center, and the trusted center sends the first secret parameter, the second secret parameter to the data analysis center according to the registration request. Secret parameters and decryption private key.
优选地,所述系统初始化具体包括如下子步骤:Preferably, the system initialization specifically includes the following sub-steps:
可信中心选择第一大素数和第二大素数,计算模数、解密私钥、同态加密公开参数一和同态加密公开参数二,其中为循环群的一个生成元;The trusted center chooses the first prime number and the second largest prime number , calculate the modulus , decrypt the private key , Homomorphic encryption public parameter 1 And homomorphic encryption public parameter two ,in cyclic group a generator of ;
可信中心选取一个p阶乘法循环群G和该乘法循环群G的一个生成元g;The trusted center selects a p-order multiplication cyclic group G and a generator g of the multiplication cyclic group G;
可信中心设置一个哈希函数H,其中,表示任意长度的比特串,表示p-1阶乘法循环群;The trusted center sets a hash function H, where , represents a bit string of arbitrary length, represents the p-1 order multiplication cyclic group;
可信中心选取第三秘密参数和次第二多项式,其中是变量,分别是从有限域中选取的第二多项式的系数;The trusted center selects the third secret parameter and second degree polynomial ,in is the variable, respectively from the finite field The coefficients of the second polynomial selected in ;
可信中心公布第一参数集合,并将第二参数集合进行安全保存。The trusted center publishes the first parameter set , and set the second parameter for safe storage.
优选地,所述勘探开发场区数据管理者向可信中心发送注册请求,可信中心记录勘探开发场区数据管理者的注册信息,并生成所述容错参数和所述大素数,具体包括如下子步骤:Preferably, the exploration and development site data manager sends a registration request to a trusted center, and the trusted center records the registration information of the exploration and development site data manager, and generates the fault-tolerant parameter and the large prime number, which specifically include the following Substeps:
勘探开发场区数据管理者选择自己的私钥,并计算自己的公钥,然后将自己的公钥和自己的身份发送给可信中心进行注册;The data manager of the exploration and development site chooses his own private key , and calculate your own public key , then put your own public key and own identity Send it to the trusted center for registration;
可信中心经安全通道发送一个大素数和容错参数给勘探开发场区数据管理者,其中;The trusted center sends a large prime number via the secure channel and fault tolerance parameters To data managers of exploration and development sites, including ;
可信中心经安全通道向云服务器发送,且可信中心记录勘探开发场区数据管理者的注册信息,其中,为向可信中心发起注册请求的勘探开发场区数据管理者的总数量;The trusted center sends the message to the cloud server through the secure channel , and the trusted center records the registration information of the data manager of the exploration and development site ,in , The total number of data managers for exploration and development sites that have initiated registration requests to the Trusted Center;
所述数据分析中心向可信中心发送注册请求,可信中心根据该注册请求向数据分析中心发送第一秘密参数、第二秘密参数和解密私钥,具体包括如下子步骤:The data analysis center sends a registration request to the trusted center, and the trusted center sends the first secret parameter, the second secret parameter and the decryption private key to the data analysis center according to the registration request, which specifically includes the following sub-steps:
数据分析中心向可信中心发送包含自己身份的注册请求;The data analysis center sends information containing its own identity to the trusted center registration request;
可信中心选择用于授权检索的第一秘密参数,第一秘密参数小于每一个大素数The trusted center selects the first secret parameter for authorized retrieval , the first secret parameter less than every large prime number
,然后根据中国剩余定理计算盲化的第一公开参数,其中,表示与勘探开发场区数据管理者身份中的下标i不同的下标序号; , and then calculate the blinded first public parameter according to the Chinese remainder theorem ,in , Representation and identity of the data manager of the exploration and development site The subscript i in the subscript number is different;
可信中心选取第一随机数,第一随机数满足等式,并计算第二秘密参数;The trusted center selects the first random number , the first random number satisfy the equation , and compute the second secret parameter ;
可信中心经安全信道向数据分析中心发送,并公布。The trusted center sends the data to the data analysis center via the secure channel , and published .
优选地,所述S1具体包括如下子步骤:Preferably, the S1 specifically includes the following sub-steps:
勘探开发场区数据管理者获取可信中心经安全信道发送的容错参数;The data manager of the exploration and development site obtains the fault-tolerant parameters sent by the trusted center through the secure channel ;
勘探开发场区数据管理者对自己时间周期t内的第j种原始油气勘探细粒度数据进行加密,生成自己时间周期t内的第j种原始油气勘探细粒度数据的密态数据,其中密态数据分量一,密态数据分量二,为勘探开发场区数据管理者选取的第二随机数;The fine-grained data of the jth original oil and gas exploration in the time period t of the exploration and development site data manager Perform encryption to generate the jth original oil and gas exploration fine-grained data within its own time period t encrypted data , where the dense-state data component is a , dense state data component two , The second random number selected for the data manager of the exploration and development site;
勘探开发场区数据管理者将密态数据上传至云服务器。Exploration and development site data managers will Upload to cloud server.
优选地,所述S2具体包括如下子步骤:Preferably, the S2 specifically includes the following sub-steps:
勘探开发场区数据管理者获取可信中心经安全信道发送的大素数,并对盲化的第一公开参数进行去盲化,去盲化后生成第一秘密参数,其中;The data manager of the exploration and development site obtains the large prime numbers sent by the trusted center through the secure channel , and deblind the blinded first public parameter, and generate the first secret parameter after deblinding ,in ;
勘探开发场区数据管理者制定多个授权访问策略值,并将各个授权访问策略值组合成检索策略集合,其中表示勘探开发场区数据管理者自己的第j种原始油气勘探细粒度数据,t表示原始油气勘探细粒度数据所处的时间周期,检索策略集合中包括个授权访问策略值,分别为,为级联符号;Exploration and development site data managers formulate multiple authorized access policy values , and combine each authorized access policy value into a retrieval policy set ,in Represents the jth original fine-grained data of oil and gas exploration of the data manager of the exploration and development site, t represents the time period in which the original fine-grained data of oil and gas exploration is located, and the retrieval strategy set included authorized access policy values, which are , is a cascading symbol;
勘探开发场区数据管理者构建次第一多项式,其中是变量,从有限域中随机选取,是次第一多项式的系数;Construction of Data Managers in Exploration and Development Sites first degree polynomial ,in is the variable, from a finite field randomly selected from Yes coefficients of the first degree polynomial;
勘探开发场区数据管理者构建安全索引,是安全索引分量一,是安全索引分量二,是安全索引分量三,其中;Exploration and development site data managers build security indexes , is the security index component one, is the security index component two, is the security index component three, where ;
勘探开发场区数据管理者将安全索引上传至云服务器。The data manager of the exploration and development site uploads the security index to the cloud server.
优选地,所述S3具体包括如下子步骤:Preferably, the S3 specifically includes the following sub-steps:
数据分析中心获取可信中心经安全信道发送的第一秘密参数,并重构授权访问策略值The data analysis center obtains the first secret parameter sent by the trusted center via the secure channel , and reconstruct the authorized access policy value
,将该授权访问策略值发送给云服务器。 , and send the authorized access policy value to the cloud server.
优选地,所述S4具体包括如下子步骤:Preferably, the S4 specifically includes the following sub-steps:
云服务器根据数据分析中心发送的授权访问策略值构建向量一;The cloud server is based on the authorized access policy value sent by the data analysis center build vector one ;
云服务器根据安全索引构建向量二;The cloud server constructs vector two according to the security index ;
云服务器进行密态数据检索测试,确定满足测试方程的密态数据,其中采用的测试方程为;The cloud server performs the retrieval test of dense state data, and determines the dense state data that satisfies the test equation. The test equation used is: ;
云服务器计算拉格朗日插值系数,其中为与勘探开发场区数据管理者身份中的下标i不同的下标序号;Cloud server calculates Lagrangian interpolation coefficients ,in Data manager identity for exploration and development sites The subscript i in the subscript number is different;
云服务器对所有满足测试方程的密态数据进行聚合,生成聚合密态数据,并将聚合密态数据返回给数据分析中心,其中I表示成功上传自己的密态数据至云服务器的勘探开发场区数据管理者的下标集合,且,表示下标集合的大小。The cloud server aggregates all the dense state data that satisfy the test equation to generate aggregated dense state data , and return the aggregated dense state data to the data analysis center, where I represents the subscript set of the data manager of the exploration and development site that successfully uploaded its own dense state data to the cloud server, and , Indicates the size of the subscript collection.
优选地,所述S5具体包括如下子步骤:Preferably, the S5 specifically includes the following sub-steps:
数据分析中心获取可信中心分配的第二秘密参数和解密私钥;The data analysis center obtains the second secret parameter assigned by the trusted center and decrypt the private key ;
数据分析中心将聚合密态数据乘上第二秘密参数,获得盲化后的聚合密态数据The data analysis center multiplies the aggregated secret state data by the second secret parameter , to obtain blinded aggregated dense state data
,然后对盲化后的聚合密态数据进行解密,得到时间周期t内第j种原始油气勘探细粒度数据的聚合值,其中是在乘法循环群中的逆元; , and then decrypt the blinded aggregated dense state data to obtain the aggregated value of the jth original fine-grained oil and gas exploration data in time period t ,in Yes Cyclic group in multiplication The inverse element in ;
数据分析中心在隐私保护状态下根据时间周期t内第j种原始油气勘探细粒度数据的聚合值进行统计分析。The data analysis center performs statistical analysis according to the aggregated value of the jth original fine-grained data of oil and gas exploration in the time period t in the state of privacy protection.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)、由于油气勘探细粒度数据与勘探机构的隐私密切相关,攻击者可能会从中推断出一些关键信息,本实施例实现的方法通过数据拥有者(勘探开发场区数据管理者)对拥有的原始油气勘探细粒度数据进行加密,且加密时使用自己的公钥以及可信中心向其分配的容错参数,使得存储在云服务器的数据为密态数据,通过可信中心作为可信的第三方,数据拥有者授权密态数据检索权限给在可信中心注册了的数据分析中心,数据分析中心检索到的是原始油气勘探细粒度数据的聚合值,数据分析中心可使用油气勘探细粒度数据的聚合值进行统计分析,但并不知道数据拥有者的身份;(1) Since the fine-grained data of oil and gas exploration is closely related to the privacy of the exploration organization, the attacker may infer some key information from it. The original fine-grained data of oil and gas exploration is encrypted, and its own public key and the fault-tolerant parameters assigned to it by the trusted center are used for encryption, so that the data stored in the cloud server is encrypted data, and the trusted center is used as a trusted third-party data. The three parties, the data owner authorizes the confidential data retrieval authority to the data analysis center registered in the trusted center. The data analysis center retrieves the aggregate value of the original oil and gas exploration fine-grained data, and the data analysis center can use the oil and gas exploration fine-grained data. Statistical analysis of the aggregated value of the data, but does not know the identity of the data owner;
综上所述,本实施例中实现的方法保证了油气勘探细粒度数据的机密性不受各种攻击者的影响,也保证了数据共享时数据拥有者身份和数据使用者身份的双向隐私保护。To sum up, the method implemented in this embodiment ensures that the confidentiality of the fine-grained data of oil and gas exploration is not affected by various attackers, and also ensures the bidirectional privacy protection of the identity of the data owner and the identity of the data user during data sharing. .
(2)、数据分析中心在从云服务器检索到聚合密态数据后,需先进行第一阶段的盲化,然后再进行第二阶段的解密,盲化时使用可信中心分配的第二秘密参数,解密使用可信中心分配的解密私钥,即使解密私钥被泄漏,攻击者无法获取到盲化后的聚合密态数据,也就无法通过解密私钥对聚合密态数据进行解密,从而也不会导致油气勘探细粒度数据信息的泄露。(2) After retrieving the aggregated secret data from the cloud server, the data analysis center needs to perform the first stage of blinding, and then the second stage of decryption, and use the second secret allocated by the trusted center for blinding. Parameter, decryption uses the decryption private key assigned by the trusted center. Even if the decryption private key is leaked, the attacker cannot obtain the blinded aggregated encrypted state data, and cannot decrypt the aggregated encrypted state data by decrypting the private key. It will not lead to the leakage of fine-grained data and information of oil and gas exploration.
(3)、在实际应用场景中,本实施例实现的方法能够使得数据分析中心和勘探开发场区数据管理者都可以检索不同时间周期的密态聚合数据,用于监测和评估勘探状况。(3) In a practical application scenario, the method implemented in this embodiment enables both the data analysis center and the data manager of the exploration and development site to retrieve dense aggregated data of different time periods for monitoring and evaluating the exploration status.
(4)、勘探开发场区数据管理者通过构建所有可能的授权访问策略值,勘探开发场区数据管理者可以授权数据分析中心灵活检索不同时间周期的聚合密态数据,只有提供出正确的授权访问策略值,方能通过云服务器的数据检索测试,除此之外任何实体都无法通过云服务器的数据检索测试。(4) By constructing all possible authorized access policy values, the data manager of the exploration and development site can authorize the data analysis center to flexibly retrieve aggregated dense state data of different time periods. Only by providing the correct authorization Only the access policy value can pass the data retrieval test of the cloud server, and any other entity cannot pass the data retrieval test of the cloud server.
(5)、在传输信道堵塞或人为破坏的情况下,本实施例实现的方法也能够在密态数据检索和聚合过程中实现容错功能。(5) In the case that the transmission channel is blocked or damaged, the method implemented in this embodiment can also implement a fault-tolerant function in the process of retrieving and aggregating data in a dense state.
附图说明Description of drawings
图1为油气勘探细粒度密态数据检索系统的架构图。Figure 1 is the architecture diagram of the fine-grained dense state data retrieval system for oil and gas exploration.
具体实施方式Detailed ways
下面将结合实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the embodiments. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
本实施例提供了一种基于云存储的油气勘探细粒度密态数据的检索方法,应用于油气勘探细粒度密态数据检索系统。如图1示出了油气勘探细粒度密态数据检索系统的架构图。油气勘探细粒度密态数据检索系统包括云服务器、勘探开发场区数据管理者、数据分析中心和可信中心,云服务器分别与勘探开发场区数据管理者、数据分析中心和可信中心通信连接,可信中心分别与勘探开发场区数据管理者和数据分析中心通信连接,勘探开发场区数据管理者作为数据拥有者,拥有多个时间周期和多种类型的原始油气勘探细粒度数据,原始油气勘探细粒度数据来源于勘探开发场区数据管理者所在的各个勘探开发现场,勘探开发现场包括勘探开发现场1、勘探开发现场2和勘探开发现场3等。This embodiment provides a method for retrieving fine-grained dense state data of oil and gas exploration based on cloud storage, which is applied to a system for retrieving fine-grained dense state data of oil and gas exploration. Figure 1 shows the architecture diagram of the fine-grained dense state data retrieval system for oil and gas exploration. The oil and gas exploration fine-grained and dense data retrieval system includes a cloud server, an exploration and development site data manager, a data analysis center and a trusted center. The cloud server is respectively connected to the exploration and development site data manager, data analysis center and trusted center. , the trusted center communicates with the exploration and development site data manager and the data analysis center respectively. As the data owner, the exploration and development site data manager has multiple time periods and multiple types of raw oil and gas exploration fine-grained data. The fine-grained data of oil and gas exploration comes from each exploration and development site where the data manager of the exploration and development site is located. The exploration and development site includes exploration and development site 1, exploration and development site 2, and exploration and development site 3.
基于云存储的油气勘探细粒度密态数据的检索方法具体包括:The retrieval method of fine-grained dense state data of oil and gas exploration based on cloud storage includes:
S1、原始油气勘探细粒度数据的加密和上传:勘探开发场区数据管理者获取可信中心经安全信道发送的容错参数,并使用该容错参数对自己的原始油气勘探细粒度数据进行加密,生成对应的密态数据,并将密态数据上传至云服务器。S1. Encryption and upload of original fine-grained data of oil and gas exploration: The data manager of the exploration and development field obtains the fault-tolerant parameters sent by the trusted center through the secure channel, and uses the fault-tolerant parameters to encrypt the original fine-grained data of oil and gas exploration to generate corresponding encrypted data, and upload the encrypted data to the cloud server.
S2、密态数据检索的授权:勘探开发场区数据管理者获取可信中心经安全信道发送的大素数,并根据大素数对可信中心所公开的盲化的第一公开参数进行去盲化,去盲化后生成用于授权检索的第一秘密参数,然后根据第一秘密参数制定多个授权访问策略值,并将各个授权访问策略值作为一个第一多项式的根后恢复出该第一多项式,根据恢复出的第一多项式生成安全索引,将生成的安全索引上传至云服务器,其中各个授权访问策略值包含的油气勘探细粒度数据所处的时间周期和/或油气勘探细粒度数据类型不同。S2. Authorization of secret state data retrieval: The data manager of the exploration and development site obtains the large prime number sent by the trusted center through the secure channel, and deblinds the blinded first public parameter disclosed by the trusted center according to the large prime number , after deblinding, a first secret parameter for authorized retrieval is generated, and then a plurality of authorized access policy values are formulated according to the first secret parameter, and each authorized access policy value is taken as the root of a first polynomial to recover the The first polynomial, generating a security index according to the recovered first polynomial, and uploading the generated security index to the cloud server, wherein the time period and/or the time period and/or the fine-grained data of oil and gas exploration included in each authorized access policy value There are different types of fine-grained data for oil and gas exploration.
S3、密态数据的检索:数据分析中心获取可信中心经安全信道发送的第一秘密参数,并根据第一秘密参数重构授权访问策略值,并将该授权访问策略值发送给云服务器,其中重构的授权访问策略值为勘探开发场区数据管理者制定的授权访问策略值中的一个或多个。S3. Retrieval of confidential data: the data analysis center obtains the first secret parameter sent by the trusted center through the secure channel, reconstructs the authorized access policy value according to the first secret parameter, and sends the authorized access policy value to the cloud server, The reconstructed authorized access policy value is one or more of the authorized access policy values formulated by the data manager of the exploration and development site.
S4、云服务器聚合密态数据:云服务器根据数据分析中心发送的授权访问策略值和安全索引进行密态数据检索测试,并将通过检索测试的密态数据进行聚合后返回聚合密态数据至数据分析中心。S4. Cloud server aggregates secret state data: The cloud server performs a secret state data retrieval test according to the authorized access policy value and security index sent by the data analysis center, and aggregates the secret state data that has passed the retrieval test and returns the aggregated secret state data to the data Analysis Center.
S5、聚合密态数据的盲化、解密和统计分析:数据分析中心获取可信中心分配的用于盲化密文的第二秘密参数和用于解密密文的解密私钥,并根据第二秘密参数对聚合密态数据进行盲化,然后根据解密私钥对盲化后的聚合密态数据进行解密,得到原始油气勘探细粒度数据的聚合值,然后在隐私保护状态下根据原始油气勘探细粒度数据的聚合值进行统计分析。S5. Blinding, decryption and statistical analysis of aggregated ciphertext data: the data analysis center obtains the second secret parameter for blinding the ciphertext and the decryption private key for decrypting the ciphertext assigned by the trusted center, and according to the second The secret parameter blinds the aggregated dense state data, and then decrypts the blinded aggregated dense state data according to the decryption private key to obtain the aggregated value of the original fine-grained data of oil and gas exploration. Aggregate values of granularity data for statistical analysis.
进一步地,S1之前还包括如下步骤:Further, before S1, the following steps are also included:
系统初始化:可信中心设置该方法中涉及的安全密码组件,以及基于门限秘密共享方法生成的用于勘探开发场区数据管理者注册和数据分析中心注册的第二多项式、第一秘密参数、第二秘密参数和第三秘密参数,安全密码组件包括同态加密公开参数、解密私钥、乘法循环群、该乘法循环群的生成元和哈希函数。System initialization: the trusted center sets the security cryptographic components involved in the method, as well as the second polynomial and the first secret parameters generated based on the threshold secret sharing method for the registration of the data manager of the exploration and development site and the registration of the data analysis center , a second secret parameter and a third secret parameter, the secure cryptographic component includes a homomorphic encryption public parameter, a decryption private key, a multiplication cyclic group, a generator of the multiplication cyclic group, and a hash function.
进一步地,勘探开发场区数据管理者获取可信中心经安全信道发送的容错参数前,勘探开发场区数据管理者向可信中心发送注册请求,可信中心记录勘探开发场区数据管理者的注册信息,并生成容错参数和大素数。数据分析中心获取可信中心经安全信道发送的第一秘密参数前,数据分析中心向可信中心发送注册请求,可信中心根据该注册请求向数据分析中心发送第一秘密参数、第二秘密参数和解密私钥。Further, before the data manager of the exploration and development site obtains the fault-tolerant parameters sent by the trusted center through the secure channel, the data manager of the exploration and development site sends a registration request to the trusted center, and the trusted center records the data of the data manager of the exploration and development site. Register information, and generate fault-tolerant parameters and large primes. Before the data analysis center obtains the first secret parameter sent by the trusted center through the secure channel, the data analysis center sends a registration request to the trusted center, and the trusted center sends the first secret parameter and the second secret parameter to the data analysis center according to the registration request. and decrypt the private key.
进一步地,系统初始化具体包括如下子步骤:Further, the system initialization specifically includes the following sub-steps:
S001、可信中心选择第一大素数和第二大素数,计算模数、解密私钥、同态加密公开参数一和同态加密公开参数二,其中为循环群的一个生成元。S001. The trusted center selects the first prime number and the second largest prime number , calculate the modulus , decrypt the private key , Homomorphic encryption public parameter 1 And homomorphic encryption public parameter two ,in cyclic group a generator of .
S002、可信中心选取一个p阶乘法循环群G和该乘法循环群G的一个生成元g。S002, the trusted center selects a p-order multiplication cyclic group G and a generator g of the multiplication cyclic group G.
S003、可信中心设置一个哈希函数H,其中,表示任意长度的比特串,表示p-1阶乘法循环群。S003, the trusted center sets a hash function H, wherein , represents a bit string of arbitrary length, Represents a multiplicative cyclic group of order p-1.
S004、可信中心选取第三秘密参数和次第二多项式,其中是变量,分别是从有限域中选取的第二多项式的系数。S004, the trusted center selects the third secret parameter and second degree polynomial ,in is the variable, respectively from the finite field The coefficients of the second polynomial chosen in .
S005、可信中心公布第一参数集合,并将第二参数集合进行安全保存。S005, the trusted center publishes the first parameter set , and set the second parameter for safe storage.
进一步地,勘探开发场区数据管理者向可信中心发送注册请求,可信中心记录勘探开发场区数据管理者的注册信息,并生成容错参数和大素数,具体包括如下子步骤:Further, the exploration and development site data manager sends a registration request to the trusted center, and the trusted center records the registration information of the exploration and development site data manager, and generates fault-tolerant parameters and large prime numbers, which specifically include the following sub-steps:
SS01、勘探开发场区数据管理者选择自己的私钥,并计算自己的公钥,然后将自己的公钥和自己的身份发送给可信中心进行注册。SS01. The data manager of the exploration and development site chooses his own private key , and calculate your own public key , then put your own public key and own identity Send to trusted center for registration.
SS02、可信中心经安全通道发送一个大素数和容错参数给勘探开发场区数据管理者,其中。SS02, the trusted center sends a large prime number through the secure channel and fault tolerance parameters To data managers of exploration and development sites, including .
SS03、可信中心经安全通道向云服务器发送,且可信中心记录勘探开发场区数据管理者的注册信息,其中,为向可信中心发起注册请求的勘探开发场区数据管理者的总数量。SS03, the trusted center sends the message to the cloud server through the secure channel , and the trusted center records the registration information of the data manager of the exploration and development site ,in , The total number of E&P site data managers who initiated registration requests to the Trusted Center.
进一步地,数据分析中心向可信中心发送注册请求,可信中心根据该注册请求向数据分析中心发送第一秘密参数、第二秘密参数和解密私钥,具体包括如下子步骤:Further, the data analysis center sends a registration request to the trusted center, and the trusted center sends the first secret parameter, the second secret parameter and the decryption private key to the data analysis center according to the registration request, which specifically includes the following sub-steps:
SSS01、数据分析中心向可信中心发送包含自己身份的注册请求。SSS01, the data analysis center sends a message containing its own identity to the trusted center registration request.
SSS02、可信中心选择用于授权检索的第一秘密参数,第一秘密参数小于每一个大SSS02, the trusted center selects the first secret parameter for authorized retrieval , the first secret parameter less than each big
素数,然后根据中国剩余定理计算盲化的第一公开参数,其中,表示与勘探开发场区数据管理者身份中的下标i不同的下标序号。Prime number , and then calculate the blinded first public parameter according to the Chinese remainder theorem ,in , Representation and identity of the data manager of the exploration and development site The subscript i in the subscript number is different.
SSS03、可信中心选取第一随机数,第一随机数满足等式,并计算第二秘密参数。SSS03, the trusted center selects the first random number , the first random number satisfy the equation , and compute the second secret parameter .
SSS04、可信中心经安全信道向数据分析中心发送,并公布。SSS04, the trusted center sends to the data analysis center through a secure channel , and published .
进一步地,S1具体包括如下子步骤:Further, S1 specifically includes the following sub-steps:
S11、 勘探开发场区数据管理者获取可信中心经安全信道发送的容错参数。S11. The data manager of the exploration and development site obtains the fault-tolerant parameters sent by the trusted center through the secure channel .
S12、勘探开发场区数据管理者对自己时间周期t内的第j种原始油气勘探细粒度数据进行加密,生成自己时间周期t内的第j种原始油气勘探细粒度数据的密态数据,其中密态数据分量一,密态数据分量二,为勘探开发场区数据管理者选取的第二随机数。S12. Exploration and development site data manager Fine-grained data for the jth original oil and gas exploration in its own time period t Perform encryption to generate the jth original oil and gas exploration fine-grained data within its own time period t encrypted data , where the dense-state data component is a , dense state data component two , Data managers for exploration and development sites The second random number chosen.
S13、勘探开发场区数据管理者将密态数据上传至云服务器。S13. Exploration and development site data manager encrypted data Upload to cloud server.
进一步地,S2具体包括如下子步骤:Further, S2 specifically includes the following sub-steps:
S21、勘探开发场区数据管理者获取可信中心经安全信道发送的大素数,并对盲化的第一公开参数进行去盲化,去盲化后生成第一秘密参数,其中。S21. Exploration and development site data manager Get the large prime number sent by the trusted center over the secure channel , and deblind the blinded first public parameter, and generate the first secret parameter after deblinding ,in .
S22、勘探开发场区数据管理者制定多个授权访问策略值,并将各个授权访问策略值组合成检索策略集合,其中表示勘探开发场区数据管理者自己的第j种原始油气勘探细粒度数据,t表示原始油气勘探细粒度数据所处的时间周期,检索策略集合中包括个授权访问策略值,分别为,为级联符号。S22. Exploration and development site data manager Develop multiple authorized access policy values , and combine each authorized access policy value into a retrieval policy set ,in Represents the jth original fine-grained data of oil and gas exploration of the data manager of the exploration and development site, t represents the time period in which the original fine-grained data of oil and gas exploration is located, and the retrieval strategy set included authorized access policy values, which are , is a cascading symbol.
S23、勘探开发场区数据管理者构建次第一多项式,其中是变量,从有限域中选取,是次第一多项式的系数。S23. Exploration and development site data manager Construct first degree polynomial ,in is the variable, from a finite field choose from, Yes coefficients of the first degree polynomial.
S24、 勘探开发场区数据管理者构建安全索引,是安全索引分量一,是安全索引分量二,是安全索引分量三,其中。S24. Exploration and development site data manager Build a secure index , is the security index component one, is the security index component two, is the security index component three, where .
S25、勘探开发场区数据管理者将安全索引上传至云服务器。S25. Exploration and development site data manager Upload the secure index to the cloud server.
进一步地,S3具体包括如下子步骤:Further, S3 specifically includes the following substeps:
S31、数据分析中心获取可信中心经安全信道发送的第一秘密参数,并重构授权访问S31. The data analysis center obtains the first secret parameter sent by the trusted center through the secure channel , and refactor authorized access
策略值,将该授权访问策略值发送给云服务器。policy value , and send the authorized access policy value to the cloud server.
优选地,S4具体包括如下子步骤:Preferably, S4 specifically includes the following sub-steps:
S41、云服务器根据数据分析中心发送的授权访问策略值构建向量一。S41. The cloud server sends the authorized access policy value according to the data analysis center build vector one .
S42、云服务器根据安全索引构建向量二。S42, the cloud server constructs the second vector according to the security index .
S43、云服务器进行密态数据检索测试,确定满足测试方程的密态数据,其中采用的测试方程为。S43. The cloud server performs a data retrieval test in a dense state, and determines the dense state data that satisfies the test equation, where the test equation used is: .
S44、云服务器计算拉格朗日插值系数,其中为与勘探开发场区数据管理者身份中的下标i不同的下标序号。S44, the cloud server calculates the Lagrangian interpolation coefficient ,in Data manager identity for exploration and development sites The subscript i in the subscript number is different.
S45、云服务器对所有满足测试方程的密态数据进行聚合,生成聚合密态数据,并将聚合密态数据返回给数据分析中心,其中I表示成功上传自己的密态数据至云服务器的勘探开发场区数据管理者的下标集合,且,表示下标集合的大小。S45, the cloud server aggregates all the dense state data satisfying the test equation, and generates aggregated dense state data , and return the aggregated dense state data to the data analysis center, where I represents the subscript set of the data manager of the exploration and development site that successfully uploaded its own dense state data to the cloud server, and , Indicates the size of the subscript collection.
进一步地,S5具体包括如下子步骤:Further, S5 specifically includes the following substeps:
S51、数据分析中心获取可信中心分配的第二秘密参数和解密私钥。S51. The data analysis center obtains the second secret parameter assigned by the trusted center and decrypt the private key .
S52、数据分析中心将聚合密态数据乘上第二秘密参数,获得盲化后的聚合密态数据,然后对盲化后的聚合密态数据进行解密,得到时间周期t内的第j种原始油气勘探细粒度数据的聚合值,其中是在乘法循环群中的逆元。S52. The data analysis center multiplies the aggregated secret state data by the second secret parameter , to obtain blinded aggregated dense state data , and then decrypt the blinded aggregated dense state data to obtain the aggregated value of the jth original fine-grained oil and gas exploration data in time period t ,in Yes Cyclic group in multiplication inverse of .
S53、数据分析中心在隐私保护状态下根据时间周期t内的第j种原始油气勘探细粒度数据的聚合值进行统计分析。统计分析包括对该种类型的油气勘探细粒度数据的平均状态值进行评估等。S53, the data analysis center performs statistical analysis according to the aggregated value of the jth original fine-grained oil and gas exploration data in the time period t in the privacy protection state. Statistical analysis includes evaluating the average state value of this type of oil and gas exploration fine-grained data.
对于勘探开发场区数据管理者,因为有 ,其中和 ,根据中国剩余定理可以得到:For exploration and development site data managers , because there are ,in and , according to the Chinese remainder theorem, we can get:
。 .
因此,每个勘探开发场区数据管理者可以计算相同的值 。这些勘探开发场区数据管理者可以根据时间周期t的第j种类型油气勘探细粒度数据检索需求计算出相同的授权访问策略值,这样数据分析中心就可以通过提交相同的授权访问策略值 对云服务器中的聚合密态数据进行检索。Therefore, each exploration and development site data manager The same value can be calculated . These exploration and development site data managers can calculate the same authorized access policy value according to the retrieval requirements of the jth type of oil and gas exploration fine-grained data in the time period t , so that the data analysis center can access the policy value by submitting the same authorization Retrieve the aggregated dense state data in the cloud server.
一旦从数据分析中心接收到授权访问策略值 ,云服务器根据用于油气勘探密态数据检索的安全索引,构建向量一,构建向量二,测试方程的正确性推导如下:Once the authorized access policy value is received from the data analysis center , the cloud server constructs a vector , constructing vector two , the correctness of the test equation is derived as follows:
由于 是每一个次函数的根,我们可以得到 。because is each the roots of the secondary function, we can get .
云服务器产生聚合密态数据 ,推导如下:Cloud server generates aggregated dense state data , which is derived as follows:
然后,数据分析中心利用第二秘密参数计算盲化的聚合密态数据, 推导如下: Then, the data analysis center utilizes the second secret parameter Computationally blinded aggregated dense state data , which is derived as follows:
其中,k表述是的倍数。Among them, k represents Yes multiples of .
最后,数据分析中心使用解密私钥 ,解密方程,推导如下:Finally, the data analysis center uses the decryption private key , decrypt the equation , which is derived as follows:
。 .
以上仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The above are only preferred embodiments of the present invention, and it should be understood that the present invention is not limited to the form disclosed herein, should not be regarded as an exclusion of other embodiments, but can be used in various other combinations, modifications and environments, and can be used in Within the scope of the concepts described herein, modifications can be made through the above teachings or skill or knowledge in the relevant field. However, modifications and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all fall within the protection scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210962115.3A CN115033908B (en) | 2022-08-11 | 2022-08-11 | Cloud storage-based oil and gas exploration fine-grained dense-state data retrieval method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210962115.3A CN115033908B (en) | 2022-08-11 | 2022-08-11 | Cloud storage-based oil and gas exploration fine-grained dense-state data retrieval method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115033908A true CN115033908A (en) | 2022-09-09 |
CN115033908B CN115033908B (en) | 2022-10-21 |
Family
ID=83130320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210962115.3A Active CN115033908B (en) | 2022-08-11 | 2022-08-11 | Cloud storage-based oil and gas exploration fine-grained dense-state data retrieval method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115033908B (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108768951A (en) * | 2018-05-03 | 2018-11-06 | 上海海事大学 | The data encryption of protection file privacy and search method under a kind of cloud environment |
CN108769020A (en) * | 2018-05-29 | 2018-11-06 | 东北大学 | A kind of the identity attribute proof system and method for secret protection |
US20180373834A1 (en) * | 2017-06-27 | 2018-12-27 | Hyunghoon Cho | Secure genome crowdsourcing for large-scale association studies |
WO2019158209A1 (en) * | 2018-02-16 | 2019-08-22 | Ecole polytechnique fédérale de Lausanne (EPFL) | Methods and systems for secure data exchange |
US20200128022A1 (en) * | 2018-10-19 | 2020-04-23 | Digital Asset (Switzerland) GmbH | Privacy preserving validation and commit architecture |
CN111294366A (en) * | 2020-05-13 | 2020-06-16 | 西南石油大学 | Statistical analysis method for aggregation of encrypted data for resisting secret key leakage in smart power grid |
CN111931249A (en) * | 2020-09-22 | 2020-11-13 | 西南石油大学 | Medical secret data statistical analysis method supporting transmission fault-tolerant mechanism |
CN111930688A (en) * | 2020-09-23 | 2020-11-13 | 西南石油大学 | Method and device for searchable secret state data for multi-keyword query in cloud server |
CN113194078A (en) * | 2021-04-22 | 2021-07-30 | 西安电子科技大学 | Cloud-supported privacy protection sequencing multi-keyword search encryption method |
CN113204741A (en) * | 2021-04-12 | 2021-08-03 | 中国电力科学研究院有限公司 | Method and system suitable for intelligent power consumption data aggregation |
CN113382016A (en) * | 2021-06-28 | 2021-09-10 | 暨南大学 | Fault-tolerant safe lightweight data aggregation method under intelligent power grid environment |
CN114143094A (en) * | 2021-12-02 | 2022-03-04 | 兰州理工大学 | Multi-authorization attribute-based verifiable encryption method based on blockchain |
CN114491578A (en) * | 2021-12-24 | 2022-05-13 | 电子科技大学 | A Secure Data Aggregation Method for Privacy Computing |
US20220215948A1 (en) * | 2021-01-07 | 2022-07-07 | Abiomed, Inc. | Network-based medical apparatus control and data management systems |
-
2022
- 2022-08-11 CN CN202210962115.3A patent/CN115033908B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180373834A1 (en) * | 2017-06-27 | 2018-12-27 | Hyunghoon Cho | Secure genome crowdsourcing for large-scale association studies |
WO2019158209A1 (en) * | 2018-02-16 | 2019-08-22 | Ecole polytechnique fédérale de Lausanne (EPFL) | Methods and systems for secure data exchange |
CN108768951A (en) * | 2018-05-03 | 2018-11-06 | 上海海事大学 | The data encryption of protection file privacy and search method under a kind of cloud environment |
CN108769020A (en) * | 2018-05-29 | 2018-11-06 | 东北大学 | A kind of the identity attribute proof system and method for secret protection |
US20200128022A1 (en) * | 2018-10-19 | 2020-04-23 | Digital Asset (Switzerland) GmbH | Privacy preserving validation and commit architecture |
CN111294366A (en) * | 2020-05-13 | 2020-06-16 | 西南石油大学 | Statistical analysis method for aggregation of encrypted data for resisting secret key leakage in smart power grid |
CN111931249A (en) * | 2020-09-22 | 2020-11-13 | 西南石油大学 | Medical secret data statistical analysis method supporting transmission fault-tolerant mechanism |
CN111930688A (en) * | 2020-09-23 | 2020-11-13 | 西南石油大学 | Method and device for searchable secret state data for multi-keyword query in cloud server |
US20220215948A1 (en) * | 2021-01-07 | 2022-07-07 | Abiomed, Inc. | Network-based medical apparatus control and data management systems |
CN113204741A (en) * | 2021-04-12 | 2021-08-03 | 中国电力科学研究院有限公司 | Method and system suitable for intelligent power consumption data aggregation |
CN113194078A (en) * | 2021-04-22 | 2021-07-30 | 西安电子科技大学 | Cloud-supported privacy protection sequencing multi-keyword search encryption method |
CN113382016A (en) * | 2021-06-28 | 2021-09-10 | 暨南大学 | Fault-tolerant safe lightweight data aggregation method under intelligent power grid environment |
CN114143094A (en) * | 2021-12-02 | 2022-03-04 | 兰州理工大学 | Multi-authorization attribute-based verifiable encryption method based on blockchain |
CN114491578A (en) * | 2021-12-24 | 2022-05-13 | 电子科技大学 | A Secure Data Aggregation Method for Privacy Computing |
Non-Patent Citations (14)
Title |
---|
KRZYSZTOF GRINING 等: "On practical privacy-preserving fault-tolerant data aggregation", 《INTERNATIONAL JOURNAL OF INFORMATION SECURITY》 * |
RUN XIE 等: "Lattice-based searchable public-key encryption scheme for secure cloud storage", 《INTERNATIONAL JOURNAL OF WEB AND GRID SERVICES》 * |
WEI ZHANG 等: "Inference Attack-Resistant E-Healthcare Cloud System with Fine-Grained Access Control", 《IEEE TRANSACTIONS ON SERVICES COMPUTIN》 * |
XIAOJUN ZHANG 等: "Efficient light-weight private auditing scheme for cloud-based wireless body area networks", 《INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS》 * |
XIAOJUN ZHANG 等: "Lightweight Multidimensional Encrypted Data Aggregation Scheme With Fault Tolerance for Fog-Assisted Smart Grids", 《IEEE SYSTEMS JOURNA》 * |
YINBIN MIAO 等: "Multi-Authority Attribute-Based Keyword Search over Encrypted Cloud Data", 《IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING》 * |
ZHANG XIAOJUN 等: "Designated Cloud Server Public Key Encryption with Keyword Search from Lattice in the Standard Model", 《CHINESE JOURNALOF ELECTRONICS》 * |
周俊 等: "边缘计算隐私保护研究进展", 《计算机研究与发展》 * |
岳玮: "云环境下支持密文搜索的健康数据安全共享研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
张晓均 等: "可验证的云存储医疗加密数据统计分析方案", 《计算机工程》 * |
张金丹: "面向安全云存储的密码协议研究", 《中国优秀博士学位论文全文数据库 信息科技辑》 * |
曹来成 等: "属性盲化的模糊可搜索加密云存储方案", 《北京理工大学学报》 * |
郝嘉禄: "云计算数据安全及访问控制关键技术研究", 《中国优秀博士学位论文全文数据库 信息科技辑》 * |
骆琴: "云数据共享的搜索与验证方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Also Published As
Publication number | Publication date |
---|---|
CN115033908B (en) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11425171B2 (en) | Method and system for cryptographic attribute-based access control supporting dynamic rules | |
WO2018113563A1 (en) | Database query method and system having access control function | |
CN104038341B (en) | A kind of cross-system of identity-based acts on behalf of re-encryption method | |
CN104168108B (en) | It is a kind of to reveal the traceable attribute base mixed encryption method of key | |
CN112989375B (en) | A Hierarchical Optimization Encryption Lossless Privacy Protection Method | |
CN106059763B (en) | Attribute-based multi-organization hierarchical ciphertext policy weight encryption method in cloud environment | |
CN104320393B (en) | The controllable efficient attribute base proxy re-encryption method of re-encryption | |
CN104038349A (en) | Effective and verifiable public key searching encryption method based on KP-ABE | |
CN108989026A (en) | A kind of voidable method of user property under publish/subscribe environment | |
CN106375346A (en) | A data protection method based on conditional broadcast agent re-encryption in cloud environment | |
Xu et al. | Enabling authorized encrypted search for multi-authority medical databases | |
CN111953483B (en) | A Criterion-Based Access Control Method for Multiple Authorities | |
Xu et al. | Enabling comparable search over encrypted data for IoT with privacy-preserving | |
Sandhia et al. | Secure sharing of data in cloud using MA-CPABE with elliptic curve cryptography | |
Deng et al. | Tracing and revoking leaked credentials: accountability in leaking sensitive outsourced data | |
CN117240452A (en) | A blockchain-based secure sharing method for plateau data | |
Cai et al. | Vizard: A metadata-hiding data analytic system with end-to-end policy controls | |
CN115033908B (en) | Cloud storage-based oil and gas exploration fine-grained dense-state data retrieval method | |
Roy et al. | Mh-abe: multi-authority and hierarchical attribute based encryption scheme for secure electronic health record sharing | |
CN117155675A (en) | A fine-grained access control method that supports data security classification in a dual-cloud environment | |
Lyu et al. | Towards Personal Data Sharing Autonomy: A Task-driven Data Capsule Sharing System | |
Tang et al. | Enabling Authorized Fine-Grained Data Retrieval over Aggregated Encrypted Medical Data in Cloud-Assisted E-health Systems | |
Chuang et al. | An Efficient GDPR-Compliant Data Management for IoHT Applications | |
Devassy | Research Project Questions | |
CN111970296A (en) | Efficient file hierarchical attribute-based encryption method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |