CN115025616A - Automatic control method for urea method SCR denitration technology of thermal power generating unit - Google Patents
Automatic control method for urea method SCR denitration technology of thermal power generating unit Download PDFInfo
- Publication number
- CN115025616A CN115025616A CN202210669400.6A CN202210669400A CN115025616A CN 115025616 A CN115025616 A CN 115025616A CN 202210669400 A CN202210669400 A CN 202210669400A CN 115025616 A CN115025616 A CN 115025616A
- Authority
- CN
- China
- Prior art keywords
- urea
- nitrogen oxide
- concentration
- nox
- urea flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004202 carbamide Substances 0.000 title claims abstract description 170
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 title claims abstract description 168
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000005516 engineering process Methods 0.000 title claims abstract description 36
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 588
- 230000009471 action Effects 0.000 claims abstract description 47
- 239000007921 spray Substances 0.000 claims abstract description 43
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 230000008859 change Effects 0.000 claims description 39
- 239000003245 coal Substances 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 28
- 239000001301 oxygen Substances 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 28
- 238000000197 pyrolysis Methods 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000009699 differential effect Effects 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 5
- 238000012935 Averaging Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 238000001311 chemical methods and process Methods 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 230000002411 adverse Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 6
- 230000033228 biological regulation Effects 0.000 claims 4
- 230000004069 differentiation Effects 0.000 claims 2
- 230000010354 integration Effects 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 21
- 229910021529 ammonia Inorganic materials 0.000 description 8
- 239000003546 flue gas Substances 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/346—Controlling the process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/90—Injecting reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
技术领域technical field
本发明涉及火电站自动控制技术领域,具体涉及一种火电机组尿素法SCR脱硝技术自动控制方法。The invention relates to the technical field of automatic control of thermal power plants, in particular to an automatic control method of urea method SCR denitration technology for thermal power units.
背景技术Background technique
我国能源消费主要以煤炭为主,大气污染排放物中的二氧化碳、氮氧化物、烟尘排放量等大部分都来自煤炭的燃烧,其中又以火电机组燃煤锅炉的烟气排放污染最为突出,其排放出的污染物对生态环境造成很大危害,对人体健康也有很大影响。随着经济的快速发展,政府也越来越意识到环境保护的必要性和紧迫性,而氮氧化物(NOX)作为空气污染的一大源头,主要指NO和NO2为主的这类环境污染物,由其直接或间接引发的酸雨、温室效应、臭氧层破坏、光化学烟雾等都是生态环境治理的重点问题。my country's energy consumption is mainly dominated by coal, and most of the carbon dioxide, nitrogen oxides, and soot emissions in air pollution emissions come from the combustion of coal. The discharged pollutants cause great harm to the ecological environment and have a great impact on human health. With the rapid development of the economy, the government has become more and more aware of the necessity and urgency of environmental protection, and nitrogen oxides (NO X ), as a major source of air pollution, mainly refers to the types of NO and NO 2 Environmental pollutants, directly or indirectly caused by acid rain, greenhouse effect, ozone layer destruction, photochemical smog, etc. are the key issues of ecological environment governance.
火电机组的烟气排放物中,超过90%的氮氧化物(NOX)是以NO的形式存在,SCR脱硝技术便是采用化学反应,使这部分烟气中的污染物被还原成无害的氮气(N2)和水(H20),使氮氧化物(NOX)的排放量降至国家标准以内,这在一定程度上减轻了环境的压力。这种脱硝技术最主要的优点是氮氧化物(NOX)转化率高,反应产物安全无害,目前已被广泛应用于各类型火电机组中。More than 90% of nitrogen oxides (NO x ) in the flue gas emissions of thermal power units are in the form of NO. SCR denitration technology uses chemical reactions to reduce the pollutants in this part of the flue gas to harmless ones. The nitrogen (N 2 ) and water (H 2 0) of nitrogen oxides (N 2 ) and water (
SCR脱硝技术所使用还原剂通常为:The reducing agent used in SCR denitration technology is usually:
1)液氨1) Liquid ammonia
液氨在常温下是无色气体,有刺激性气味。化学性质不稳定,有毒,且容易燃烧,极易燃烧、爆炸。当氨气泄漏后,会严重损害人体的身体健康。Liquid ammonia is a colorless gas with a pungent odor at room temperature. Chemically unstable, toxic, and easy to burn, easily combustible and explosive. When ammonia leaks, it will seriously damage the health of the human body.
2)氨水2) Ammonia water
氨水是约20%~30%的水溶液,相对比较安全,因为运输体积大的原因,运输成本高。氨水呈弱碱性和强防腐性,对人体有害,尤其当在空气中达到一定的浓度时,会发生爆炸。Ammonia water is an aqueous solution of about 20% to 30%, which is relatively safe. Because of the large transportation volume, the transportation cost is high. Ammonia is weakly alkaline and strong antiseptic, which is harmful to the human body, especially when it reaches a certain concentration in the air, it will explode.
3)尿素3) Urea
尿素作为一种新型环保还原剂,常温下为白色固体颗粒物或结晶体,工业应用中常常采用热解尿素制取氨蒸汽。与液氨和氨水相比,尿素最大的优势在于其安全性。As a new type of environmentally friendly reducing agent, urea is white solid particles or crystals at room temperature. In industrial applications, pyrolysis of urea is often used to produce ammonia vapor. Compared with liquid ammonia and ammonia water, the biggest advantage of urea is its safety.
不论采用哪种试剂作为还原剂,SCR脱硝技术的本质均是一个有一定反应过程的化学反应,该过程需要一定的反应时间才能完成对氮氧化物(NOX)排放量的降低,从自动控制的角度来讲,这种被控系统被称为大延迟、大惯性的控制系统,其特点是控制难度大、控制精度差。而尿素法脱硝技术较液氨法脱硝技术而言,又增加了对尿素热解为氨蒸汽的工艺工程,更进一步延长了还原氮氧化物(NOX)的反应时间,对于自动控制而言,控制起来将更加困难。No matter which reagent is used as the reducing agent, the essence of SCR denitration technology is a chemical reaction with a certain reaction process. This process requires a certain reaction time to complete the reduction of nitrogen oxides (NO X ) emissions. From the perspective of , this controlled system is called a control system with large delay and large inertia, which is characterized by difficult control and poor control accuracy. Compared with the liquid ammonia denitration technology, the urea denitrification technology adds the process engineering of pyrolysis of urea into ammonia vapor, and further prolongs the reaction time of reducing nitrogen oxides (NO x ). For automatic control, It will be more difficult to control.
当前,新建火电机组绝大多数均采用尿素法脱硝技术,老旧火电机组中,也有很大一部分机组出于安全考虑,将其所使用的液氨法脱硝技术改为尿素法脱硝技术。未来,尿素作为还原剂将在火电机组SCR脱硝技术中占比越来越大,对该类型机组的自动控制将也变得越来越重要。At present, the vast majority of newly built thermal power units use urea denitrification technology. Among the old thermal power units, a large number of units have changed their liquid ammonia denitration technology to urea denitration technology for safety reasons. In the future, urea as a reducing agent will occupy an increasing proportion in the SCR denitration technology of thermal power units, and the automatic control of this type of unit will also become more and more important.
发明内容SUMMARY OF THE INVENTION
为了解决上述尿素法SCR脱硝技术中存在的大延迟、大惯性特点,本发明的目的在于提出一种火电机组尿素法SCR脱硝技术自动控制方法,采用更为合理的控制策略,确保尿素法SCR脱硝技术的被控对象机组出口氮氧化物(NOX)稳定,满足机组经济、安全的运行指标。In order to solve the characteristics of large delay and large inertia in the above-mentioned urea method SCR denitration technology, the purpose of the present invention is to propose an automatic control method for the urea method SCR denitration technology for thermal power units, and adopt a more reasonable control strategy to ensure the urea method SCR denitration technology. The nitrogen oxides (NO X ) at the outlet of the controlled unit of the technology are stable and meet the economical and safe operation index of the unit.
为达到以上目的,本发明由如下技术方案实施:To achieve the above object, the present invention is implemented by the following technical solutions:
一种火电机组尿素法SCR脱硝技术自动控制方法,包括以下步骤:An automatic control method for urea method SCR denitration technology for thermal power units, comprising the following steps:
步骤一:比例积分微分控制PID串级控制,第一级PID控制是对出口氮氧化物NOX浓度平均值与出口氮氧化物NOX浓度设定值之间的偏差进行修正调整,其输出作为第二级PID尿素流量指令的一部分;其次,预测控制,根据锅炉内部煤量和风量以及氧量的变化趋势,预测出口氮氧化物(NOX)浓度的变化趋势,并得出该预测控制回路计算所需的尿素流量指令,最后再根据脱硝设备入口氮氧化物(NOX)浓度平均值的变化趋势,计算一路所需的尿素流量指令,这几部分尿素流量指令相加,得到最终所需的尿素流量指令,通过第二级PID与实际尿素流量进行修正调整,得到尿素喷枪的动作指令;Step 1: proportional integral derivative control PID cascade control, the first stage PID control is to correct and adjust the deviation between the average value of the outlet nitrogen oxide NOX concentration and the set value of the outlet nitrogen oxide NOX concentration, and its output is used as the second stage. It is a part of the urea flow command of PID level PID; secondly, predictive control, according to the change trend of coal volume, air volume and oxygen content inside the boiler, predicts the change trend of outlet nitrogen oxide (NOX) concentration, and obtains the prediction control loop calculation required Finally, according to the change trend of the average value of nitrogen oxide (NOX) concentration at the inlet of the denitration equipment, calculate the urea flow command required for one route, and add these parts of the urea flow command to obtain the final required urea flow command. , through the second-stage PID and the actual urea flow to correct and adjust, and obtain the action command of the urea spray gun;
步骤二:史密斯预测控制回路计算出一个尿素喷枪的动作指令,与第一部分PID串极的输出指令通过减法计算,得到最终的尿素喷枪的动作指令;Step 2: The Smith predictive control loop calculates the action command of a urea spray gun, and calculates by subtraction with the output command of the first part of the PID series pole to obtain the final action command of the urea spray gun;
步骤三:尿素流量调节喷枪开度指令18来对尿素流量调节喷枪4的开度进行控制,最终实现对整个尿素法SCR脱硝技术的自动控制。Step 3: The
和现有技术相比较,本发明具备如下优点:Compared with the prior art, the present invention has the following advantages:
针对尿素法SCR脱硝技术延迟大、惯性大的特点,尽可能找寻最优的预测点,来提前判断氮氧化物(NOX)浓度的变化趋势。In view of the characteristics of large delay and large inertia of urea method SCR denitrification technology, the optimal prediction point should be found as much as possible to judge the change trend of nitrogen oxide (NOX) concentration in advance.
创造性的将氧量对氮氧化物(NOX)浓度的影响分为快速性的粗调和准确性的细调,引入风煤比的变化量,提前快速预判氮氧化物(NOX)浓度的变化趋势,在此基础上,再引用锅炉氧量,最终准确判断氮氧化物(NOX)浓度的变化趋势,从工艺角度来对氮氧化物(NOX)浓度进行控制,确保从根本上解决问题。Creatively divide the effect of oxygen on nitrogen oxide (NOX) concentration into rapid coarse adjustment and accurate accuracy fine adjustment, introduce the change of air-to-coal ratio, and quickly predict the change trend of nitrogen oxide (NOX) concentration in advance , On this basis, the oxygen quantity of the boiler is quoted again to finally accurately judge the changing trend of nitrogen oxides (NOX) concentration, and control the nitrogen oxides (NOX) concentration from a technological point of view to ensure that the problem is fundamentally solved.
采用串级控制策略,考虑氮氧化物(NOX)浓度与其浓度设定值之间偏差的基础上,还兼顾尿素流量是否达到其流量设定值要求,确保各个回路都满足要求,最终实现对氮氧化物(NOX)浓度的精确控制。The cascade control strategy is adopted, considering the deviation between the concentration of nitrogen oxides (NOX) and its concentration setting value, and also taking into account whether the urea flow rate meets its flow rate setting value requirements, ensuring that each loop meets the requirements, and finally realizes the control of nitrogen oxides. Precise control of oxide (NOX) concentration.
结合尿素法SCR脱硝技术化学反应过程,构建与其相似的模型,采用史密斯预估控制算法,实现尿素流量调节喷枪的提前回调,避免了因大惯性而造成的扰动。Combined with the chemical reaction process of the urea method SCR denitration technology, a similar model is constructed, and the Smith prediction control algorithm is used to realize the early callback of the urea flow adjustment spray gun, avoiding the disturbance caused by the large inertia.
本策略控制下的氮氧化物(NOX)浓度,可实现尿素流量调节喷枪自动的全程投入,适应机组各种升降负荷工况,大大降低了运行人员的操作负担,为电厂智能运行提供更进一步的保障。The concentration of nitrogen oxides (NOX) under the control of this strategy can realize the automatic full input of the urea flow adjustment spray gun, adapt to various lifting and load conditions of the unit, greatly reduce the operating burden of the operators, and provide further support for the intelligent operation of the power plant. Assure.
附图说明Description of drawings
图1为本发明控制系统示意图。FIG. 1 is a schematic diagram of the control system of the present invention.
附图标记说明:Description of reference numbers:
1——自一次热风出口来的高温热风;2——尿素热解炉;1——High temperature hot air from the primary hot air outlet; 2——Urea pyrolysis furnace;
3——自尿素泵来的尿素溶液;4——尿素流量调节喷枪;3——The urea solution from the urea pump; 4——The urea flow adjustment spray gun;
5——尿素流量信号测点;6——自省煤器来的原烟气;5——Measuring point of urea flow signal; 6——Original flue gas from economizer;
7——A、B两侧反应器;8——烟气至空预器烟道;7—reactors on both sides of A and B; 8—flue gas to air preheater flue;
9——A、B两侧入口氮氧化物(NOX)浓度信号测点;9——Signal measurement points of nitrogen oxide (NO X ) concentration at the inlet on both sides of A and B;
10——A、B两侧出口氮氧化物(NOX)浓度信号测点;10——Measurement points of nitrogen oxide (NO X ) concentration signal at the outlet on both sides of A and B;
11——出口氮氧化物(NOX)浓度设定值;11——The set value of outlet nitrogen oxide (NO X ) concentration;
12——出口氮氧化物(NOX)浓度平均值;12—the average value of nitrogen oxide (NO X ) concentration at the outlet;
13——入口氮氧化物(NOX)浓度平均值;13—the average value of the inlet nitrogen oxides (NO X ) concentration;
14——总风量;15——总煤量;16——锅炉氧量;14 - total air volume; 15 - total coal volume; 16 - boiler oxygen volume;
17——进入热解炉的总尿素流量;17——Total urea flow into the pyrolysis furnace;
18——尿素流量调节喷枪开度指令;18 - urea flow adjustment spray gun opening command;
19——第一PID控制器;20——第一减法运算器;19—the first PID controller; 20—the first subtractor;
21——第一微分运算器;22——第一函数发生器;21—the first differential operator; 22—the first function generator;
23——第二微分运算器;24——第一加法运算器;23 - the second differential operator; 24 - the first addition operator;
25——除法运算器;26——第三微分运算器;25 - division operator; 26 - third differential operator;
27——第四微分运算器;28——第二加法运算器;27 - the fourth differential operator; 28 - the second adder;
29——第三加法运算器;30——第二PID控制器;29—the third adder; 30—the second PID controller;
31——第二减法运算器;32——纯滞后运算器;31—the second subtractor; 32—the pure lag operator;
33——惯性运算器;33 - inertia calculator;
具体实施方式Detailed ways
一种火电机组尿素法SCR脱硝技术自动控制系统,包括自一次热风出口来的高温热风1,自尿素泵来的尿素溶液3,尿素泵来的尿素溶液3通过4支水平布置的尿素流量调节喷枪4的分配,将需要的尿素送进尿素热解炉2内,尿素在尿素热解炉2内被一次热风出口来的高温热风1热解成氨蒸汽,从尿素热解炉2出来的氨蒸汽分两路分别进入A、B两侧反应器7,自省煤器来的原烟气6通过锅炉内两侧烟道分别进入A、B两侧反应器7,在A、B两侧反应器7内,氨蒸汽与原烟气中的NO混合,并在催化剂的作用下进行还原脱硝反应,最终经过脱硝后的满足国家标准的烟气经烟气至空预器烟道8送至空预器烟道;4支水平布置的尿素流量调节喷枪4来控制整个反应过程的尿素需求量,与尿素流量调节喷枪4相连的第一PID控制器19、第二加法运算器28、第二PID控制器30及第二减法运算器31,通过计算得出尿素流量调节喷枪开度指令18,来对尿素流量调节喷枪4的开度进行控制;在每支尿素流量调节喷枪4的出口各布置一个对应的尿素流量信号测点5,在A、B两侧反应器的入口处各布置一个A、B两侧入口氮氧化物(NOX)浓度信号测点9,在A、B两侧反应器的出口处各布置一个A、B两侧出口氮氧化物(NOX)浓度信号测点10。An automatic control system for urea method SCR denitration technology for thermal power units, including high-temperature hot air 1 from a primary hot air outlet,
所述第一PID控制器19与第二PID控制器30共同作用为一套串级控制回路,第一PID控制器19作为主调控制器,其输入信号包括两路,第一路是出口氮氧化物(NOX)浓度设定值11,该设定值的实现方式是运行人员根据需求直接设定;第二路是需要控制调节的出口氮氧化物(NOX)浓度平均值12,由A、B两侧出口氮氧化物(NOX)浓度信号测点10取平均值后计算得到;第一PID控制器19包括比例P、积分I作用,其输出为尿素流量指令的一部分,第一PID控制器19对出口氮氧化物(NOX)浓度的偏差进行小幅度调整,大幅度调整都由预测控制回路完成;预测控制回路包括四路,第一路是出口氮氧化物(NOX)浓度偏差值预测回路,控制思路为:出口氮氧化物(NOX)浓度平均值12与出口氮氧化物(NOX)浓度设定值11经第一减法运算器20计算得出出口氮氧化物(NOX)浓度偏差值,再通过第一微分运算器21计算,得到出口氮氧化物(NOX)浓度偏差值的变化量所对应的尿素流量指令;第二路是入口氮氧化物(NOX)浓度预测回路,该回路可理解为比例+微分(PD)环节,控制思路为:入口氮氧化物(NOX)浓度平均值13,由A、B两侧入口氮氧化物(NOX)浓度信号测点9取平均值后计算得到,将取平均值处理后的入口氮氧化物(NOX)浓度平均值13经第一函数发生器22计算,得到入口氮氧化物(NOX)浓度平均值所对应的尿素流量指令,该部分可理解为一个比例环节,另将入口氮氧化物(NOX)浓度平均值13经第二微分运算器23计算,得到入口氮氧化物(NOX)浓度平均值的微分所对应的尿素流量指令,该部分是一个微分环节,第一函数发生器22的输出值与第二微分运算器23的输出值经第一加法运算器24相加,得到入口氮氧化物(NOX)浓度平均值最终所对应的尿素流量指令;第三路是风煤比预测控制回路,控制思路为:引入总风量14信号与总煤量15信号,通过除法运算器25计算得出瞬时的风煤比数值,再经过第三微分运算器26计算,得到总风量14和总煤量15的变化量所对应的尿素流量指令;第四路是锅炉氧量预测控制回路,控制思路为:引入锅炉氧量16信号,经过第四微分运算器27计算,得到锅炉氧量16的变化量所对应的尿素流量指令;四路预测控制回路经第二加法运算器28,相加得到尿素流量预测控制回路指令,第一PID控制器19输出的尿素流量指令与尿素流量预测控制回路指令经过第三加法运算器29相加,得到最终的尿素流量指令;第二PID控制器30作为副调控制器,其输入信号包括两路,第一路是第三加法运算器29计算得出的尿素流量指令;第二路是进入热解炉的总尿素流量17,进入热解炉的总尿素流量17由布置于4支尿素流量调节喷枪出口处的尿素流量信号测点5相加得出;第二PID控制器30包括比例P、积分I作用,其输出为尿素流量调节喷枪开度指令。The
所述第二减法运算器31,其输入信号包括两路,第一路是经过串级控制回路计算得出的第二PID控制器30的输出;第二路是是一个史密斯预估算法控制回路,将尿素流量调节喷枪开度指令18通过纯滞后运算器32和惯性运算器33的延迟补偿计算,得到需要补偿的尿素流量调节喷枪开度补偿值,该两路信号经过第二减法运算器31的差值计算,得到最终控制输出的尿素流量调节喷枪开度指令18。The input signal of the second subtractor 31 includes two paths, the first path is the output of the
一种火电机组尿素法SCR脱硝技术自动控制系统的控制方法,控制方法由两部分组成,一部分为PID串级控制,对出口氮氧化物(NOX)浓度平均值与出口氮氧化物(NOX)浓度设定值之间的偏差进行修正调整,并根据火电机组锅炉内部及脱硝设备的反应特性,提取主要对出口氮氧化物(NOX)浓度变化产生影响参数,提前进行预测控制,克服尿素法脱硝技术控制惯性较大的难点,另一部分为史密斯预估算法控制,通过建立模型模拟出尿素还原脱硝反应的化学过程时间,控制系统提前进行回调,避免了因大惯性而造成的延迟扰动;其中,尿素流量调节喷枪4通过串级控制方式控制进入尿素热解炉2的尿素量来调节出口氮氧化物(NOX)浓度,串级控制方式主调为第一PID控制器19,副调为第二PID控制器30,对A、B两侧出口氮氧化物(NOX)浓度信号测点10取平均值后计算得到出口氮氧化物(NOX)浓度平均值12为第一PID控制器19的被控对象,设定值为出口氮氧化物(NOX)浓度设定值11,该设定值的实现方式是运行人员根据需求直接设定,第一PID控制器19的调节包括比例P作用、积分I作用,当出口氮氧化物(NOX)浓度平均值12升高时,出口氮氧化物(NOX)浓度平均值12与出口氮氧化物(NOX)浓度设定值11之间出现正偏差,使第一PID控制器19的比例P作用、积分I作用开始动作,发出增加第一PID控制器19输出的动作指令;同样,当出口氮氧化物(NOX)浓度平均值12降低时,出口氮氧化物(NOX)浓度平均值12与出口氮氧化物(NOX)浓度设定值11之间出现负偏差,使第一PID控制器19的比例P作用、积分I作用开始动作,发出减少第一PID控制器19输出的动作指令;预测控制回路共设计四路;第一路预测控制回路:微分控制规律有超前特性,对于脱硝控制这种大延迟、大惯性的被控对象,采用微分控制能有效缓解其滞后的特性,出口氮氧化物(NOX)浓度平均值12与出口氮氧化物(NOX)浓度设定值11经第一减法运算器20计算得出出口氮氧化物(NOX)浓度偏差值,再通过第一微分运算器21计算,得到出口氮氧化物(NOX)浓度偏差值的变化量所对应的尿素流量指令,当出口氮氧化物(NOX)浓度平均值12升高时,出口氮氧化物(NOX)浓度偏差值也会升高,第一微分运算器21的微分作用开始动作,发出增加第一微分运算器21输出的动作指令;同样,当出口氮氧化物(NOX)浓度平均值12降低时,出口氮氧化物(NOX)浓度偏差值也会降低,第一微分运算器21的微分作用开始动作,发出减少第一微分运算器21输出的动作指令;第二路预测控制回路:入口氮氧化物(NOX)浓度预测回路,对于脱硝系统,在氨蒸汽流量不变的前提下,入口氮氧化物(NOX)浓度的变化趋势与出口氮氧化物(NOX)浓度的变化趋势是完全一致的,入口浓度上涨,出口浓度在一定反应时间后也会上涨,同样,入口浓度降低,出口浓度在一定反应时间后也会降低,所以选取入口氮氧化物(NOX)浓度的变化,提前进行干预,使尿素流量提前达到需求值,以保证出口氮氧化物(NOX)浓度维持在其设定值附近;具体实现方式为,入口氮氧化物(NOX)浓度平均值13,由A、B两侧入口氮氧化物(NOX)浓度信号测点9取平均值后计算得到,将取平均值处理后的入口氮氧化物(NOX)浓度平均值13经第一函数发生器22计算,得到入口氮氧化物(NOX)浓度平均值所对应的尿素流量指令,第一函数发生器22具体设定参数如表1:A control method for an automatic control system of urea method SCR denitration technology for thermal power units, the control method is composed of two parts, one part is PID cascade control, the average value of outlet nitrogen oxide (NO X ) concentration and the outlet nitrogen oxide (NO X ) are controlled. ) The deviation between the concentration setting values is corrected and adjusted, and according to the reaction characteristics of the boiler of the thermal power unit and the denitration equipment, the parameters that mainly affect the change of the nitrogen oxide (NO x ) concentration at the outlet are extracted, and the prediction control is carried out in advance to overcome the urea concentration. The difficulty in controlling the inertia of the denitrification technology is large, and the other part is the Smith prediction algorithm control. The chemical process time of the urea reduction and denitrification reaction is simulated by establishing a model, and the control system is adjusted in advance to avoid the delay disturbance caused by the large inertia; Among them, the urea flow adjustment spray gun 4 controls the amount of urea entering the
表1:入口氮氧化物(NOX)浓度平均值对应尿素流量指令函数表Table 1: The average value of the inlet nitrogen oxide (NO X ) concentration corresponds to the urea flow command function table
第一函数发生器22设定的意义是可根据入口氮氧化物(NOX)浓度平均值13的变化,实时提供所需的尿素流量指令,提前维持出口氮氧化物(NOX)浓度平均值12的稳定;另再将入口氮氧化物(NOX)浓度平均值13经第二微分运算器23计算,得到入口氮氧化物(NOX)浓度平均值的微分所对应的尿素流量指令,当入口氮氧化物(NOX)浓度平均值13升高时,第二微分运算器23的微分作用开始动作,发出增加第二微分运算器23输出的动作指令;同样,当入口氮氧化物(NOX)浓度平均值13降低时,第二微分运算器23的微分作用开始动作,发出减少第二微分运算器23输出的动作指令;第一函数发生器22的输出值与第二微分运算器23的输出值经第一加法运算器24相加,得到入口氮氧化物(NOX)浓度平均值最终所对应的尿素流量指令;第三路预测控制回路:风煤比预测控制回路,氮氧化物(NOX)的产生主要因素是高温和富氧,考虑温度变化不大的情况下,富氧是产生氮氧化物(NOX)的最主要因素,氧量的多少取决于风量和煤量的相对比例,并且风量和煤量的变化会直接影响氮氧化物(NOX)的变化,所以这里选取进入锅炉炉膛的总风量14信号和总煤量15信号,可以实现对氮氧化物(NOX)变化最早的一个初步判断,总风量14信号与总煤量15信号,通过除法运算器25计算得出瞬时的风煤比数值,再经过第三微分运算器26计算,得到风煤比的变化量所对应的尿素流量指令,当除法运算器25计算得出瞬时的风煤比数值升高时,表示风量的变化量瞬时大于煤量的变化量,第三微分运算器26的微分作用开始动作,发出增加第三微分运算器26输出的动作指令;同样,当除法运算器25计算得出瞬时的风煤比数值降低时,表示风量的变化量瞬时小于煤量的变化量,第三微分运算器26的微分作用开始动作,发出减少第三微分运算器26输出的动作指令;第四路预测控制回路:上述风煤比预测控制主要是实现了快速性,属于氧量对氮氧化物(NOX)的一种粗调,所以在此基础上,考虑锅炉内部燃烧的复杂性,引入锅炉氧量信号,准确表征氮氧化物(NOX)的变化,实现调节的准确性,属于氧量对氮氧化物(NOX)的一种粗调;引入锅炉氧量16信号,经过第四微分运算器27计算,得到锅炉氧量16的变化量所对应的尿素流量指令,当锅炉氧量16升高时,第四微分运算器27的微分作用开始动作,发出增加第四微分运算器27输出的动作指令;同样,当锅炉氧量16降低时,第四微分运算器27的微分作用开始动作,发出减少第四微分运算器27输出的动作指令;四路预测控制回路经第二加法运算器28计算,得到尿素流量预测控制回路指令,第一PID控制器19输出的尿素流量指令与尿素流量预测控制回路指令经过第三加法运算器29计算,得到最终的尿素流量指令;第二PID控制器30作为副调控制器,其输入信号包括两路,第一路是第三加法运算器29计算得出的尿素流量指令;第二路是进入热解炉的总尿素流量17,第二PID控制器30包括比例P、积分I作用,其输出为尿素流量调节喷枪开度指令,当第三加法运算器29计算得出的尿素流量指令升高时,第三加法运算器29计算得出的尿素流量指令与进入热解炉的总尿素流量17之间出现正偏差,使第二PID控制器30的比例P作用、积分I作用开始动作,发出增加第二PID控制器30输出的动作指令;同样,当第三加法运算器29计算得出的尿素流量指令降低时,第三加法运算器29计算得出的尿素流量指令与进入热解炉的总尿素流量17之间出现负偏差,使第二PID控制器30的比例P作用、积分I作用开始动作,发出减少第二PID控制器30输出的动作指令;另一部分为史密斯预估控制,该策略专门针对尿素法脱硝技术这种大延迟、大惯性的被控对象,其中纯滞后运算器32模拟算法中的纯滞后环节,惯性运算器33模拟算法中的容量滞后环节,经过史密斯预估算法控制补偿后的回路,不会对系统产生不利影响,只是将原第二PID控制器30的输出信号进行时间上的时移,纯滞后运算器32的工作原理是将输入信号延迟输出,延迟时间为纯滞后运算器32内部设置的延迟时间,惯性运算器33的工作原理是将输入信号经过一定的过渡时间,使输出值等于输入值,过渡时间为惯性运算器33内部设置的惯性时间,通过纯滞后运算器32与惯性运算器33模拟出尿素还原脱硝反应的化学过程时间;当尿素流量调节喷枪开度指令18较上一时刻变化时,通过纯滞后运算器32和惯性运算器33的延迟补偿计算,得到需要补偿的尿素流量调节喷枪开度补偿值,随后与第二PID控制器30的输出值经第二减法运算器31计算,得到实时的尿素流量调节喷枪开度指令18,与没有史密斯预估算法控制回路相比,该系统可提前进行回调,避免了因大惯性而造成的扰动。The meaning of the setting of the first function generator 22 is to provide the required urea flow command in real time according to the change of the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210669400.6A CN115025616B (en) | 2022-06-14 | 2022-06-14 | Automatic control method for SCR denitration technology of thermal power generating unit by urea method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210669400.6A CN115025616B (en) | 2022-06-14 | 2022-06-14 | Automatic control method for SCR denitration technology of thermal power generating unit by urea method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115025616A true CN115025616A (en) | 2022-09-09 |
CN115025616B CN115025616B (en) | 2023-09-15 |
Family
ID=83125557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210669400.6A Active CN115025616B (en) | 2022-06-14 | 2022-06-14 | Automatic control method for SCR denitration technology of thermal power generating unit by urea method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115025616B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115591378A (en) * | 2022-12-12 | 2023-01-13 | 清华大学(Cn) | Feedforward compensation and disturbance suppression control system and method for SCR denitration of thermal power generating unit |
CN116603389A (en) * | 2023-07-07 | 2023-08-18 | 华能国际电力股份有限公司上安电厂 | Denitration automatic control process method in urea ammonia production mode |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62248003A (en) * | 1986-04-22 | 1987-10-29 | Ishikawajima Harima Heavy Ind Co Ltd | Control device for ammonia injection quantity to denitrating device |
CN105404145A (en) * | 2015-10-22 | 2016-03-16 | 西安西热控制技术有限公司 | Denitration novel cascade control method based on index prediction and time-lag pre-estimation compensation |
CN105797576A (en) * | 2016-04-15 | 2016-07-27 | 中国大唐集团科学技术研究院有限公司西北分公司 | Coal-fired unit denitration ammonia spraying control method |
CN114326387A (en) * | 2021-12-07 | 2022-04-12 | 江苏方天电力技术有限公司 | A kind of denitration control device and control method of thermal power unit |
-
2022
- 2022-06-14 CN CN202210669400.6A patent/CN115025616B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62248003A (en) * | 1986-04-22 | 1987-10-29 | Ishikawajima Harima Heavy Ind Co Ltd | Control device for ammonia injection quantity to denitrating device |
CN105404145A (en) * | 2015-10-22 | 2016-03-16 | 西安西热控制技术有限公司 | Denitration novel cascade control method based on index prediction and time-lag pre-estimation compensation |
CN105797576A (en) * | 2016-04-15 | 2016-07-27 | 中国大唐集团科学技术研究院有限公司西北分公司 | Coal-fired unit denitration ammonia spraying control method |
CN114326387A (en) * | 2021-12-07 | 2022-04-12 | 江苏方天电力技术有限公司 | A kind of denitration control device and control method of thermal power unit |
Non-Patent Citations (1)
Title |
---|
王钧为等: "基于惯性滞后补偿的脱硝系统先进控制方法研究", 《工业控制计算机》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115591378A (en) * | 2022-12-12 | 2023-01-13 | 清华大学(Cn) | Feedforward compensation and disturbance suppression control system and method for SCR denitration of thermal power generating unit |
CN116603389A (en) * | 2023-07-07 | 2023-08-18 | 华能国际电力股份有限公司上安电厂 | Denitration automatic control process method in urea ammonia production mode |
Also Published As
Publication number | Publication date |
---|---|
CN115025616B (en) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105797576B (en) | Denitration ammonia injection control method for coal-fired unit | |
CN101713536B (en) | A control method for a circulating fluidized bed boiler combustion system | |
CN115025616B (en) | Automatic control method for SCR denitration technology of thermal power generating unit by urea method | |
CN101876449B (en) | Method of controlling oxygen air-flowing environment in heating furnace | |
CN106681381A (en) | SCR denitration system ammonia spraying quantity optimal control system and method based on intelligent feedforward signals | |
CN107561941A (en) | A kind of full working scope qualified discharge control method of fired power generating unit denitrating system | |
CN113433911B (en) | Accurate control system and method for ammonia spraying of denitration device based on accurate concentration prediction | |
CN104678761B (en) | Total air volume advanced control-based denitration control method and system for thermal power unit | |
CN107544288A (en) | A kind of denitration optimal control method and system | |
CN111459109A (en) | An industrial boiler SNCR denitration control system and control method | |
Yang et al. | Research of coupling technologies on NOx reduction in a municipal solid waste incinerator | |
CN115145152A (en) | A method for synergistic optimal control of boiler combustion and denitration process | |
CN107940501B (en) | Air and flue system controls optimization method after the transformation of fired power generating unit desulphurization denitration | |
CN208097812U (en) | A kind of equipment for denitrifying flue gas | |
CN111408243A (en) | A kind of thermal power unit wet desulfurization pH value control system and method | |
CN102269973B (en) | Fuzzy prediction and compensation control method of tower top temperature for sintering flue gas desulfurization process | |
CN105314653A (en) | Control system and control method for urea hydrolysis reactor | |
CN112452128A (en) | Control method for automatically adjusting nitrogen oxide set value at outlet of variable denitration SCR (Selective catalytic reduction) | |
CN109833773A (en) | A kind of NO_x Reduction by Effective ammonia flow accuracy control method | |
CN112556442A (en) | Furnace kiln and dynamic control method for asymmetric characteristics of flue gas pipe network thereof | |
CN114838351B (en) | Automatic control method for desulfurization in circulating fluidized bed boiler | |
CN115657466A (en) | Boiler system of intelligent control ammonia input volume | |
CN115183570A (en) | Mineral powder vertical mill system and automatic control method | |
CN105446137A (en) | Thermal power generating unit ammonia spraying automatic control method and thermal power generating unit ammonia spraying automatic control system capable of eliminating large hysteresis quality | |
CN114397813A (en) | Power generation boiler combustion continuous sliding film control method based on slow time-varying disturbance observer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |