CN115021826A - Intelligent coding and decoding computing system and method for optical computing communication - Google Patents
Intelligent coding and decoding computing system and method for optical computing communication Download PDFInfo
- Publication number
- CN115021826A CN115021826A CN202210475945.3A CN202210475945A CN115021826A CN 115021826 A CN115021826 A CN 115021826A CN 202210475945 A CN202210475945 A CN 202210475945A CN 115021826 A CN115021826 A CN 115021826A
- Authority
- CN
- China
- Prior art keywords
- optical
- communication
- signal
- computing
- decoding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/067—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
- G06N3/0675—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means using electro-optical, acousto-optical or opto-electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Neurology (AREA)
- Optical Communication System (AREA)
Abstract
本申请涉及电数字数据处理技术领域,特别涉及一种光计算通信智能编解码计算系统及方法,其中,系统包括:光计算编码模块,用于非监督地对输入的通信信息进行编码和加密,生成光通信信号;光纤通信模块,用于基于光纤发送光通信信号;以及光计算解码模块,用于接收光通信信号,并利用光学调制对光通信信号进行解码重建,还原出通信信息。由此,解决了相关技术中的光计算神经网络不适用于光通信的编码和解码功能,导致无法同时满足光通信的速度、质量和保密性需求的技术问题。
The present application relates to the technical field of electrical digital data processing, in particular to an optical computing communication intelligent encoding and decoding computing system and method, wherein the system includes: an optical computing encoding module for unsupervised encoding and encryption of input communication information, An optical communication signal is generated; an optical fiber communication module is used to send an optical communication signal based on the optical fiber; and an optical calculation decoding module is used to receive the optical communication signal, and use optical modulation to decode and reconstruct the optical communication signal to restore the communication information. Therefore, the technical problem that the optical computing neural network in the related art is not suitable for the encoding and decoding functions of optical communication, resulting in the inability to meet the speed, quality and confidentiality requirements of optical communication at the same time, is solved.
Description
技术领域technical field
本申请涉及电数字数据处理技术领域,特别涉及一种光计算通信智能编解码计算系统及方法。The present application relates to the technical field of electrical digital data processing, and in particular, to an intelligent encoding and decoding computing system and method for optical computing communication.
背景技术Background technique
通信是现代信息社会的重要组成部分。光纤通信以其低损耗、高速、高通量等优势,承担了现代信息通信超过95%的载量。目前光纤通信涉及的大量编码、解码和数字信号处理,均为将预处理好的电信号转为光信号再在光纤中传输,或将模拟光信号接收后转为电信号处理,因此光纤通信严重依赖于光电转换的精度和速度。Communication is an important part of the modern information society. Optical fiber communication, with its advantages of low loss, high speed and high throughput, undertakes more than 95% of the load of modern information communication. At present, a large number of encoding, decoding and digital signal processing involved in optical fiber communication are all converting preprocessed electrical signals into optical signals and then transmitting them in optical fibers, or converting analog optical signals into electrical signal processing after receiving them. Therefore, optical fiber communication is a serious problem. Depends on the precision and speed of photoelectric conversion.
因此,如果能将在电信号域中进行的复杂处理,通过光计算在光信号域完成,不仅能够节约大量光电转换器件的功耗和时间成本,还能够有效减少光电或电光转换带来的额外误差,提高通信信号的信噪比。Therefore, if the complex processing in the electrical signal domain can be completed in the optical signal domain through optical computing, not only the power consumption and time cost of a large number of photoelectric conversion devices can be saved, but also the extra cost caused by photoelectric or electro-optical conversion can be effectively reduced. error, and improve the signal-to-noise ratio of the communication signal.
相关技术通过光学衍射深度神经网络,实现了光信号域的复杂智能计算,包括全连接网络、卷积神经网络、蓄水池计算、脉冲神经网络等,能够实现图像分类、音频识别、显著性检测等多种任务。与此同时,光学衍射深度神经网络,往往能取得比同功能电子网络更快的处理速度和呈数量级降低的能耗。The related technology realizes complex intelligent computing in the optical signal domain through optical diffraction deep neural network, including fully connected network, convolutional neural network, reservoir computing, impulse neural network, etc., which can realize image classification, audio recognition, saliency detection and many other tasks. At the same time, optical diffraction deep neural networks can often achieve faster processing speeds and orders of magnitude lower energy consumption than equivalent electronic networks.
然而,相关技术中能够实现的光计算神经网络,并不适用于光通信的编码和解码功能。光通信对于编解码的要求较高,不仅要满足通信频率的速度,还需要满足高通量且具有一定加密性和抗噪声性能,防止通信过程中的窃听和误码,亟需改善。However, the optical computing neural network that can be implemented in the related art is not suitable for the encoding and decoding functions of optical communication. Optical communication has high requirements for encoding and decoding, not only to meet the speed of communication frequency, but also to meet high throughput and have certain encryption and anti-noise performance to prevent eavesdropping and bit errors in the communication process, and it is urgent to improve.
发明内容SUMMARY OF THE INVENTION
本申请提供一种光计算通信智能编解码计算系统及方法,以解决相关技术中的光计算神经网络不适用于光通信的编码和解码功能,导致无法同时满足光通信的速度、质量和保密性需求的技术问题。The present application provides an optical computing communication intelligent encoding and decoding computing system and method to solve the problem that the optical computing neural network in the related art is not suitable for the encoding and decoding functions of optical communication, resulting in the inability to meet the speed, quality and confidentiality of optical communication at the same time. technical issues required.
本申请第一方面实施例提供一种光计算通信智能编解码计算系统,包括:光计算编码模块,用于非监督地对输入的通信信息进行编码和加密,生成光通信信号;光纤通信模块,用于基于光纤发送所述光通信信号;以及光计算解码模块,用于接收所述光通信信号,并利用光学调制对所述光通信信号进行解码重建,还原出所述通信信息。An embodiment of the first aspect of the present application provides an optical computing communication intelligent encoding and decoding computing system, including: an optical computing encoding module, used for unsupervised encoding and encryption of input communication information to generate an optical communication signal; an optical fiber communication module, The optical communication signal is sent based on the optical fiber; and the optical calculation and decoding module is used for receiving the optical communication signal, and uses optical modulation to decode and reconstruct the optical communication signal to restore the communication information.
可选地,在本申请的一个实施例中,所述光计算编码模块包括:光源,用于将由所述通信信息组成的数字电信号转化为相干光信号;光学衍射相位调制层,将所述相干光信号压缩并调制为所述光通信信号。Optionally, in an embodiment of the present application, the optical calculation and encoding module includes: a light source, used to convert a digital electrical signal composed of the communication information into a coherent optical signal; an optical diffraction phase modulation layer, used to convert the The coherent optical signal is compressed and modulated into the optical communication signal.
可选地,在本申请的一个实施例中,所述光计算编码模块还用于基于所述光学衍射相位调制层,利用预先建立的非监督学习的变分自编码器神经网络将所述相干光信号压缩编码至预设低维空间,并通过正态分布约束信号在所述预设低维空间中的分布,得到压缩后的光通信信号。Optionally, in an embodiment of the present application, the optical computing and coding module is further configured to use a pre-established unsupervised learning variational autoencoder neural network based on the optical diffraction phase modulation layer to convert the coherent The optical signal is compressed and encoded into a preset low-dimensional space, and the distribution of the signal in the preset low-dimensional space is constrained by normal distribution to obtain a compressed optical communication signal.
可选地,在本申请的一个实施例中,所述光计算解码模块包括:光学相位衍射调制层,用于将所述光通信信号重建以恢复为所述数字电信号。Optionally, in an embodiment of the present application, the optical calculation and decoding module includes: an optical phase diffraction modulation layer for reconstructing the optical communication signal to restore the digital electrical signal.
可选地,在本申请的一个实施例中,所述光学相位衍射调制层由光刻加工或空间光调制器可编程控制,并通过机器学习方法优化所述光学相位衍射调制层的参数,直至满足优化条件。Optionally, in an embodiment of the present application, the optical phase diffraction modulation layer is programmable by lithography processing or spatial light modulator, and the parameters of the optical phase diffraction modulation layer are optimized by a machine learning method until meet the optimization conditions.
可选地,在本申请的一个实施例中,所述光学相位衍射调制层由多个衍射层堆叠得到,其中,每个衍射层利用相位调制和预设空间距离的菲涅尔传播进行仿真得到。Optionally, in an embodiment of the present application, the optical phase diffraction modulation layer is obtained by stacking a plurality of diffraction layers, wherein each diffraction layer is obtained by simulation using phase modulation and Fresnel propagation of a preset spatial distance. .
可选地,在本申请的一个实施例中,所述光纤通信模块包括:耦合镜阵列;光纤束,用于对所述耦合镜阵列耦合的光通信信号进行空分复用;准直镜阵列,用于将所述光纤束的出纤端的信号恢复为空间光,得到所述光通信信号。Optionally, in an embodiment of the present application, the optical fiber communication module includes: a coupling mirror array; an optical fiber bundle for performing space division multiplexing on optical communication signals coupled by the coupling mirror array; a collimating mirror array , which is used to restore the signal of the fiber exit end of the fiber bundle to space light to obtain the optical communication signal.
本申请第二方面实施例提供一种光计算通信智能编解码计算方法,包括:非监督地对输入的通信信息进行编码和加密,生成光通信信号;基于光纤发送所述光通信信号;接收所述光通信信号,并利用光学调制对所述光通信信号进行解码重建,还原出所述通信信息。An embodiment of the second aspect of the present application provides an intelligent encoding and decoding method for optical computing communication, including: unsupervised encoding and encryption of input communication information to generate an optical communication signal; sending the optical communication signal based on an optical fiber; The optical communication signal is decoded and reconstructed using optical modulation to restore the communication information.
本申请实施例可以通过光计算编码模块,执行基于机器学习非监督数据编解码功能,创建了一种在光信号域无需额外光电转换和数字信号处理即可实现的光纤通信信号编解码,并结合光计算解码模块,利用光学调制对光通信信号进行解码重建,能够显著提升光纤通信编解码的速度和能效,可以在编码的同时实现加密功能,且具有和多种目前已有编码方式融合进一步提升的潜力。由此,解决了相关技术中的光计算神经网络不适用于光通信的编码和解码功能,导致无法同时满足光通信的速度、质量和保密性需求的技术问题。The embodiments of the present application can perform the function of unsupervised data encoding and decoding based on machine learning through the optical computing encoding module, and create an optical fiber communication signal encoding and decoding function that can be realized without additional photoelectric conversion and digital signal processing in the optical signal domain. The optical computing decoding module uses optical modulation to decode and reconstruct the optical communication signal, which can significantly improve the speed and energy efficiency of optical fiber communication encoding and decoding, and can realize the encryption function at the same time of encoding. potential. Therefore, the technical problem that the optical computing neural network in the related art is not suitable for the encoding and decoding functions of optical communication, resulting in the inability to meet the speed, quality and confidentiality requirements of optical communication at the same time, is solved.
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the present application will be set forth, in part, in the following description, and in part will be apparent from the following description, or learned by practice of the present application.
附图说明Description of drawings
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1为根据本申请实施例提供的一种光计算通信智能编解码计算系统的结构示意图;1 is a schematic structural diagram of an optical computing communication intelligent encoding and decoding computing system provided according to an embodiment of the present application;
图2为根据本申请一个实施例的光计算通信智能编解码计算系统的原理示意图;2 is a schematic diagram of the principle of an optical computing communication intelligent encoding and decoding computing system according to an embodiment of the present application;
图3为根据本申请一个实施例的光计算通信智能编解码计算系统的流程图;3 is a flowchart of an optical computing communication intelligent encoding and decoding computing system according to an embodiment of the present application;
图4为根据本申请实施例提供的一种光计算通信智能编解码计算方法的流程图。FIG. 4 is a flowchart of an optical computing communication intelligent encoding and decoding computing method provided according to an embodiment of the present application.
具体实施方式Detailed ways
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。The following describes in detail the embodiments of the present application, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to be used to explain the present application, but should not be construed as a limitation to the present application.
下面参考附图描述本申请实施例的光计算通信智能编解码计算系统及方法。针对上述背景技术中心提到的相关技术中的光计算神经网络不适用于光通信的编码和解码功能,导致无法同时满足光通信的速度、质量和保密性需求的技术问题,本申请提供了一种光计算通信智能编解码计算系统,在该系统中,可以通过光计算编码模块,执行基于机器学习非监督数据编解码功能,创建了一种在光信号域无需额外光电转换和数字信号处理即可实现的光纤通信信号编解码,并结合光计算解码模块,利用光学调制对光通信信号进行解码重建,能够显著提升光纤通信编解码的速度和能效,可以在编码的同时实现加密功能,且具有和多种目前已有编码方式融合进一步提升的潜力。由此,解决了相关技术中的光计算神经网络不适用于光通信的编码和解码功能,导致无法同时满足光通信的速度、质量和保密性需求的技术问题。The following describes the optical computing communication intelligent encoding and decoding computing system and method according to the embodiments of the present application with reference to the accompanying drawings. In view of the technical problem that the optical computing neural network in the related art mentioned by the above-mentioned background technology center is not suitable for the encoding and decoding functions of optical communication, resulting in the inability to meet the requirements of speed, quality and confidentiality of optical communication at the same time, the present application provides a A kind of optical computing communication intelligent encoding and decoding computing system, in which the optical computing encoding module can perform unsupervised data encoding and decoding functions based on machine learning, creating an optical signal domain without additional photoelectric conversion and digital signal processing. The achievable encoding and decoding of optical fiber communication signals, combined with the optical calculation and decoding module, uses optical modulation to decode and reconstruct optical communication signals, which can significantly improve the speed and energy efficiency of optical fiber communication encoding and decoding. It has the potential to be further improved by integrating with a variety of existing coding methods. Therefore, the technical problem that the optical computing neural network in the related art is not suitable for the encoding and decoding functions of optical communication, resulting in the inability to meet the speed, quality and confidentiality requirements of optical communication at the same time, is solved.
具体而言,图1为本申请实施例所提供的一种光计算通信智能编解码计算系统的结构示意图。Specifically, FIG. 1 is a schematic structural diagram of an optical computing communication intelligent encoding and decoding computing system provided by an embodiment of the application.
如图1所示,该光计算通信智能编解码计算系统10包括:光计算编码模块100、光纤通信模块200和光计算解码模块300。As shown in FIG. 1 , the optical computing communication intelligent encoding and
具体地,光计算编码模块100,用于非监督地对输入的通信信息进行编码和加密,生成光通信信号。Specifically, the optical computing and
在实际执行过程中,本申请实施例的光计算编码模块100可以用于对输入的原始信号,通过预先训练的非监督神经网络进行光速或近光速的编码,并在低维空间中进行特征表示,生成光通信信号,以将输入信号压缩,从而提升光通信通量。In the actual execution process, the optical
可选地,在本申请的一个实施例中,光计算编码模块100包括:光源和光学衍射相位调制层。Optionally, in an embodiment of the present application, the optical calculation and
其中,光源,用于将由通信信息组成的数字电信号转化为相干光信号。Among them, the light source is used to convert digital electrical signals composed of communication information into coherent optical signals.
光学衍射相位调制层,将相干光信号压缩并调制为光通信信号。The optical diffraction phase modulation layer compresses and modulates the coherent optical signal into an optical communication signal.
可以理解的是,光源可以将需要传输的信号即由通信信息组成的数字电信号,转化为相干光信号。光学衍射相位调制层可以将原始光信号压缩为用于传输带加密信号,即光通信信号。It can be understood that the light source can convert the signal to be transmitted, that is, a digital electrical signal composed of communication information, into a coherent optical signal. The optical diffractive phase modulation layer can compress the original optical signal into an encrypted signal for transmission, that is, an optical communication signal.
可选地,在本申请的一个实施例中,光计算编码模块100还用于基于光学衍射相位调制层,利用预先建立的非监督学习的变分自编码器神经网络将相干光信号压缩编码至预设低维空间,并通过正态分布约束信号在预设低维空间中的分布,得到压缩后的光通信信号。Optionally, in an embodiment of the present application, the optical
具体地,光学衍射相位调制层可以在通过反向传播的与重建模块共同训练的过程中更新参数,达到将输入的图像信息非监督地编码压缩到低维空间中的目的,输出低维特征的光通信信号,其中,光纤传播过程中的噪声可以被作为神经网络的先验加入训练。Specifically, the optical diffraction phase modulation layer can update parameters in the process of co-training with the reconstruction module through backpropagation, so as to achieve the purpose of unsupervised encoding and compression of the input image information into a low-dimensional space, and output low-dimensional feature Optical communication signals, where noise during fiber propagation can be added as a prior for neural network training.
进一步地,光计算编码网络模型的建立可以如下:Further, the establishment of the optical computational coding network model can be as follows:
本申请实施例可以根据通信数据复杂度和光纤链路模型,建立非监督学习的变分自编码器神经网络,将输入的信号压缩编码到低维空间,并通过正态分布约束其在低维空间中的分布,使用如下KL散度作为损失函数的一部分:The embodiment of the present application can establish an unsupervised learning variational autoencoder neural network according to the complexity of the communication data and the optical fiber link model, compress and encode the input signal into a low-dimensional space, and constrain it in the low-dimensional space through a normal distribution The distribution in space, using the following KL divergence as part of the loss function:
D[Q(z)||P(z|X)]=Ez~Q[logQ(z)-logP(z|X)],D[Q(z)||P(z|X)]=E z~Q [logQ(z)-logP(z|X)],
其中,z为编码空间中的参数,X为原空间中的参数,Q为编码空间中的概率分布,P(z|X)为需要学习估计的数据分布,Q(z)为所估计的正态分布,D为所求散度,D[Q(z)||P(z|X)]为P(z|X)和Q(z)两个分布间的距离,Ez~Q为以关于变量z的分布Q的期望。Among them, z is the parameter in the coding space, X is the parameter in the original space, Q is the probability distribution in the coding space, P(z|X) is the data distribution to be learned and estimated, and Q(z) is the estimated positive state distribution, D is the required divergence, D[Q(z)||P(z|X)] is the distance between the two distributions P(z|X) and Q(z), E z~Q is the The expectation of the distribution Q with respect to the variable z.
由于光计算编码模块100的特殊性,对低维空间的取值有一定约束。因此本申请实施例可以在训练时对于学习到的高斯分布均值给予一定约束,同时,所学习高斯分布中的方差,可以理解为对光纤中的噪声幅度的建模,因此本申请实施例可以根据物理实际链路指定该方差训练。Due to the particularity of the optical
光纤通信模块200,用于基于光纤发送光通信信号。The optical
作为一种可能实现的方式,本申请实施例可以通过光纤通信模块200,将压缩后的光通信信号通过空分复用的方式,经由光纤束进行传输,实现光通信信号的传输。As a possible implementation manner, the embodiment of the present application can transmit the compressed optical communication signal through the optical fiber bundle in a spatial division multiplexing manner through the optical
可选地,在本申请的一个实施例中,光纤通信模块200包括:耦合镜阵列、光纤束和准直镜阵列。Optionally, in an embodiment of the present application, the optical
其中,光纤束,用于对耦合镜阵列耦合的光通信信号进行空分复用。The optical fiber bundle is used for space division multiplexing of optical communication signals coupled by the coupling mirror array.
准直镜阵列,用于将光纤束的出纤端的信号恢复为空间光,得到光通信信号。The collimating mirror array is used to restore the signal at the fiber exit end of the fiber bundle to space light to obtain the optical communication signal.
在实际执行过程中,耦合镜阵列可以用于将用于传输的加密信号,耦合进光纤束中实现空分复用,进而通过光纤束完成远距离、低损耗的光信号传输,并通过微透镜阵列将光纤束中传输出的信号转化为空间光,得到光通信信号。In the actual implementation process, the coupling mirror array can be used to couple the encrypted signal for transmission into the optical fiber bundle to realize space division multiplexing, and then complete the long-distance, low-loss optical signal transmission through the optical fiber bundle, and through the microlens The array converts the signal transmitted in the fiber bundle into space light to obtain an optical communication signal.
光计算解码模块300,用于接收光通信信号,并利用光学调制对光通信信号进行解码重建,还原出通信信息。The optical computing and
作为一种可能实现的方式,本申请实施例的光计算解码模块300,可以对光纤通信模块200输出的空间光信号进行解码,恢复重建为原信号,还原出原数据,用于探测或下一阶段传输。As a possible implementation method, the optical computing and
可选地,在本申请的一个实施例中,光计算解码模块300包括:光学相位衍射调制层。Optionally, in an embodiment of the present application, the optical calculation and
其中,光学相位衍射调制层,用于将光通信信号重建以恢复为数字电信号。Among them, the optical phase diffraction modulation layer is used to reconstruct the optical communication signal to restore it to a digital electrical signal.
具体地,本申请实施例的光学相位衍射调制层可以将接收到的压缩光信号重建恢复为原始信号,进而恢复后的原始信号,即数字电信号,可以由探测器检测或传入下级通信链路,便于光通信的正常使用。Specifically, the optical phase diffraction modulation layer of the embodiment of the present application can reconstruct and restore the received compressed optical signal to the original signal, and then the restored original signal, that is, the digital electrical signal, can be detected by the detector or transmitted to the lower-level communication chain It is convenient for the normal use of optical communication.
可选地,在本申请的一个实施例中,光学相位衍射调制层由多个衍射层堆叠得到,其中,每个衍射层利用相位调制和预设空间距离的菲涅尔传播进行仿真得到。Optionally, in an embodiment of the present application, the optical phase diffraction modulation layer is obtained by stacking a plurality of diffraction layers, wherein each diffraction layer is obtained by simulation using phase modulation and Fresnel propagation of a preset spatial distance.
进一步地,光学相位衍射调制层和光学衍射相位调制层均可以是多个衍射层堆叠组成,其中,光学相位衍射调制层的每个衍射层可以利用相位调制和一段空间距离的菲涅尔传播进行仿真。Further, both the optical phase diffraction modulation layer and the optical diffraction phase modulation layer can be composed of multiple diffraction layers stacked, wherein each diffraction layer of the optical phase diffraction modulation layer can be performed by using phase modulation and Fresnel propagation at a certain spatial distance. simulation.
需要注意的是,本申请实施例中,光在所有自由空间和均匀介质中的传播均可以用菲涅尔传播进行仿真,而在单模光纤中可以按基模传播进行仿真。It should be noted that, in the embodiments of the present application, the propagation of light in all free spaces and homogeneous media can be simulated by Fresnel propagation, while the propagation of light in a single-mode fiber can be simulated by fundamental mode propagation.
此外,预设空间距离可以由本领域技术人员根据实际情况进行设置,在此不做具体限制。In addition, the preset spatial distance can be set by those skilled in the art according to the actual situation, which is not specifically limited here.
可选地,在本申请的一个实施例中,光学相位衍射调制层由光刻加工或空间光调制器可编程控制,并通过机器学习方法优化光学相位衍射调制层的参数,直至满足优化条件。Optionally, in an embodiment of the present application, the optical phase diffraction modulation layer is programmable by lithography processing or spatial light modulator, and the parameters of the optical phase diffraction modulation layer are optimized by a machine learning method until the optimization conditions are satisfied.
具体地,本申请实施例可以利用反向梯度传播优化模型参数,根据上述仿真模型建立机器学习网络,以待处理的图像作为输入,以待输入图像作为损失函数计算的参考,构造合适的训练集、验证集、测试集,使用最小均方误差作为损失函数,使用误差反向传播算法迭代调整光计算编码模块100中的光学衍射相位调制层的参数,并通过调试压缩比、噪声建模幅度、光学衍射相位调制层和/或光学相位衍射调制层的衍射层规模等超参数,得到最佳的优化结果。Specifically, in this embodiment of the present application, the parameters of the model can be optimized by using reverse gradient propagation, a machine learning network can be established according to the above-mentioned simulation model, the image to be processed is used as the input, and the image to be input is used as the reference for calculating the loss function to construct a suitable training set. , validation set, test set, use the minimum mean square error as the loss function, use the error back propagation algorithm to iteratively adjust the parameters of the optical diffraction phase modulation layer in the optical
进一步地,本申请实施例可以根据仿真优化得到的各项参数,利用光刻技术制造或空间光调制器可编程控制光学衍射相位调制层和/或光学相位衍射调制层,并通过机器学习方式对光学衍射相位调制层和/或光学相位衍射调制层的衍射层的参数进行优化。Further, in the embodiment of the present application, according to various parameters obtained by simulation optimization, the optical diffraction phase modulation layer and/or the optical phase diffraction modulation layer can be manufactured by using lithography technology or the spatial light modulator can be programmed to control, and the optical diffraction phase modulation layer and/or the optical phase diffraction modulation layer can be controlled by means of machine learning. The parameters of the optical diffractive phase modulation layer and/or the diffractive layer of the optical phase diffractive modulation layer are optimized.
综上,本申请实施例可以基于现有的通用光纤通信链路,通过光速或近光速器件实现光信号域的信号编解码,光计算编码模块100和光计算解码模块300,在非监督情况下支持高速、大通量重建新数据,能够显著提高信道通量,在压缩降维的同时实现加密,使得通信链路获得更好传输效果。To sum up, the embodiments of the present application can implement signal encoding and decoding in the optical signal domain through light-speed or near-light-speed devices based on an existing general optical fiber communication link. The optical
下面结合图2和图3所示,以一个具体实施例对本申请的光计算通信智能编解码计算系统10的工作原理进行详细阐述。The working principle of the optical computing communication intelligent encoding and
如图2所示,光计算通信智能编解码计算系统10可以包括:光计算编码模块100、光源110、光学衍射相位调制层120、衍射层121、光纤通信模块200、耦合镜阵列210、光纤束220、准直镜阵列230、光计算解码模块300光学相位衍射调制层310、衍射层311、探测器320和下级传输系统330。As shown in FIG. 2, the optical computing communication intelligent
其中,光计算编码模块100可以用于对输入的原始信号,通过预先训练的非监督神经网络进行光速或近光速的编码,并在低维空间中进行特征表示,生成光通信信号,以将输入信号压缩,从而提升光通信通量。Among them, the optical
光计算编码模块100可以包括:光源110和光学衍射相位调制层120。The optical
其中,光源110可以将需要传输的信号即由通信信息组成的数字电信号,转化为相干光信号。The
光学衍射相位调制层120由多个衍射层121组成,可以将原始光信号压缩为用于传输带加密信号,即光通信信号,光学衍射相位调制层120可以在通过反向传播的与重建模块共同训练的过程中更新参数,达到将输入的图像信息非监督地编码压缩到低维空间中的目的,输出低维特征的光信号。The optical diffractive
光纤通信模块200可以将压缩后的光通信信号通过空分复用的方式,经由光纤束220进行传输,实现光通信信号的传输。The optical
光纤通信模块200可以包括:耦合镜阵列210、光纤束220和准直镜阵列230。在实际执行过程中,耦合镜阵列210可以用于将用于传输的加密信号,耦合进光纤束220中实现空分复用,进而通过光纤束220完成远距离、低损耗的光信号传输,并通过微透镜阵列230将光纤束220中传输出的信号转化为空间光,得到光通信信号。The fiber
光计算解码模块300可以对光纤通信模块200输出的空间光信号进行解码,恢复重建为原信号,还原出原数据,用于探测或下一阶段传输。The optical calculation and
光计算解码模块300可以包括:光学相位衍射调制层310、探测器320和下级传输系统330。具体地,本申请实施例的光学相位衍射调制层310由多个衍射层311组成,可以将接收到的压缩光信号重建恢复为原始信号,即数字电信号,进而恢复后的原始信号,可以由探测器320进行检测或由下级传输系统330传入下级通信链路,便于光通信的正常使用。The optical
如图3所示,本申请实施例可以包括以下步骤:As shown in FIG. 3 , this embodiment of the present application may include the following steps:
步骤S301:建立光计算编解码网络的数学模型。光计算编码模块100主要通过建立光计算编解码网络的数学模型,实现非监督地对输入的通信信息进行编码和加密,生成光通信信号。具体地,本申请实施例可以根据通信数据复杂度和光纤链路模型,建立非监督学习的变分自编码器神经网络,将输入的信号压缩编码到低维空间,并通过正态分布约束其在低维空间中的分布,使用如下KL散度作为损失函数的一部分:Step S301: Establish a mathematical model of the optical computing codec network. The optical
D[Q(z)||P(z|X)]=Ez~Q[logQ(z)-logP(z|X)],D[Q(z)||P(z|X)]=E z~Q [logQ(z)-logP(z|X)],
其中,z为编码空间中的参数,X为原空间中的参数,Q为编码空间中的概率分布,P(z|X)为需要学习估计的数据分布,Q(z)为所估计的正态分布,D为所求散度,D[Q(z)||P(z|X)]为P(z|X)和Q(z)两个分布间的距离,Ez~Q为以关于变量z的分布Q的期望。Among them, z is the parameter in the coding space, X is the parameter in the original space, Q is the probability distribution in the coding space, P(z|X) is the data distribution to be learned and estimated, and Q(z) is the estimated positive state distribution, D is the required divergence, D[Q(z)||P(z|X)] is the distance between the two distributions P(z|X) and Q(z), E z~Q is the The expectation of the distribution Q with respect to the variable z.
步骤S302:建立光计算编解码网络的物理仿真模型。在实际执行过程中,由于光计算编码模块100的特殊性,对低维空间的取值有一定约束。因此本申请实施例可以在训练时对于学习到的高斯分布均值给予一定约束,同时,所学习高斯分布中的方差,可以理解为对光纤中的噪声幅度的建模,因此本申请实施例可以根据物理实际链路指定该方差训练。Step S302: Establish a physical simulation model of the optical computing codec network. In the actual execution process, due to the particularity of the optical
在光计算解码模块300中,光学相位衍射调制层310是多个衍射层311的堆叠,每个衍射层311用相位调制和一段空间距离的菲涅尔传播进行仿真。In the optical
需要注意的是,在本申请实施例中,光在所有自由空间和均匀介质中的传播用菲涅尔传播进行仿真,在单模光纤中是按基模传播进行仿真。It should be noted that, in the embodiments of the present application, the propagation of light in all free spaces and homogeneous media is simulated by Fresnel propagation, and in a single-mode fiber, it is simulated by fundamental mode propagation.
步骤S303:构造选择合适的训练集、验证集、测试集。具体地,本申请实施例可以根据上述仿真模型建立机器学习网络,以待处理的图像作为输入,以待输入图像作为损失函数计算的参考,构造合适的训练集、验证集、测试集,并使用最小均方误差作为损失函数,使用误差反向传播算法迭代调整光计算编码模块100中的光学衍射相位调制层120的参数,并通过调试压缩比、噪声建模幅度、光学衍射相位调制层120的衍射层121和/或光学相位衍射调制层310的衍射层311的规模等超参数,得到最佳的优化结果。Step S303: Construct and select appropriate training sets, validation sets, and test sets. Specifically, in this embodiment of the present application, a machine learning network can be established according to the above-mentioned simulation model, an image to be processed is used as an input, and an image to be input is used as a reference for calculating the loss function to construct appropriate training sets, validation sets, and test sets, and use The minimum mean square error is used as the loss function, and the error back propagation algorithm is used to iteratively adjust the parameters of the optical diffraction
步骤S304:使用误差反向传播算法优化模型,确定光学衍射相位调制层120和/或光学相位衍射调制层310的物理参数。本申请实施例可以根据仿真优化得到的各项参数,使用光刻技术制造或空间光调制器可编程控制光学衍射相位调制层120的衍射层121和/或光学相位衍射调制层310的衍射层311。Step S304: Use the error back propagation algorithm to optimize the model to determine the physical parameters of the optical diffraction
步骤S305:制造系统模型,安装硬件系统,测试通信质量。本申请实施例可以选择合适的光源110、微透镜阵列230、光纤束220等,并根据仿真模型正确安装硬件系统,即可实现光计算通信智能编解码的功能。Step S305: Manufacture the system model, install the hardware system, and test the communication quality. In this embodiment of the present application, an appropriate
根据本申请实施例提出的光计算通信智能编解码计算系统,可以通过光计算编码模块,执行基于机器学习非监督数据编解码功能,创建了一种在光信号域无需额外光电转换和数字信号处理即可实现的光纤通信信号编解码,并结合光计算解码模块,利用光学调制对光通信信号进行解码重建,能够显著提升光纤通信编解码的速度和能效,可以在编码的同时实现加密功能,且具有和多种目前已有编码方式融合进一步提升的潜力。由此,解决了相关技术中的光计算神经网络不适用于光通信的编码和解码功能,导致无法同时满足光通信的速度、质量和保密性需求的技术问题。According to the optical computing communication intelligent encoding and decoding computing system proposed in the embodiment of the present application, the optical computing encoding module can perform the unsupervised data encoding and decoding function based on machine learning, creating an optical signal domain that does not require additional photoelectric conversion and digital signal processing. The optical fiber communication signal encoding and decoding can be realized, and combined with the optical calculation decoding module, the optical modulation is used to decode and reconstruct the optical communication signal, which can significantly improve the speed and energy efficiency of the optical fiber communication encoding and decoding, and can realize the encryption function at the same time of encoding, and It has the potential to be further improved by integrating with a variety of existing coding methods. Therefore, the technical problem that the optical computing neural network in the related art is not suitable for the encoding and decoding functions of optical communication, resulting in the inability to meet the speed, quality and confidentiality requirements of optical communication at the same time, is solved.
其次参照附图描述根据本申请实施例提出的光计算通信智能编解码计算方法。Next, the intelligent encoding and decoding computing method for optical computing communication proposed according to the embodiment of the present application will be described with reference to the accompanying drawings.
图4是本申请实施例的光计算通信智能编解码计算方法的流程图。FIG. 4 is a flowchart of an optical computing communication intelligent encoding and decoding computing method according to an embodiment of the present application.
如图4所示,该光计算通信智能编解码计算方法,利用上述的光计算通信智能编解码计算系统,其包括以下步骤:As shown in FIG. 4 , the optical computing and communication intelligent encoding and decoding computing method utilizes the above-mentioned optical computing and communication intelligent encoding and decoding computing system, which includes the following steps:
在步骤S401中,非监督地对输入的通信信息进行编码和加密,生成光通信信号。In step S401, the input communication information is encoded and encrypted unsupervised to generate an optical communication signal.
在步骤S402中,基于光纤发送光通信信号。In step S402, an optical communication signal is sent based on the optical fiber.
在步骤S403中,接收光通信信号,并利用光学调制对光通信信号进行解码重建,还原出通信信息。In step S403, the optical communication signal is received, and the optical communication signal is decoded and reconstructed by optical modulation to restore the communication information.
需要说明的是,前述对光计算通信智能编解码计算系统实施例的解释说明也适用于该实施例的光计算通信智能编解码计算方法,此处不再赘述。It should be noted that the foregoing explanations on the embodiment of the optical computing communication intelligent encoding and decoding computing system are also applicable to the optical computing communication intelligent encoding and decoding computing method of this embodiment, and are not repeated here.
根据本申请实施例提出的光计算通信智能编解码计算方法,可以通过光计算编码模块,执行基于机器学习非监督数据编解码功能,创建了一种在光信号域无需额外光电转换和数字信号处理即可实现的光纤通信信号编解码,并结合光计算解码模块,利用光学调制对光通信信号进行解码重建,能够显著提升光纤通信编解码的速度和能效,可以在编码的同时实现加密功能,且具有和多种目前已有编码方式融合进一步提升的潜力。由此,解决了相关技术中的光计算神经网络不适用于光通信的编码和解码功能,导致无法同时满足光通信的速度、质量和保密性需求的技术问题。According to the optical computing communication intelligent encoding and decoding calculation method proposed in the embodiment of the present application, the optical computing encoding module can perform the unsupervised data encoding and decoding function based on machine learning, and create an optical signal domain that does not require additional photoelectric conversion and digital signal processing. The optical fiber communication signal encoding and decoding can be realized, and combined with the optical calculation decoding module, the optical modulation is used to decode and reconstruct the optical communication signal, which can significantly improve the speed and energy efficiency of the optical fiber communication encoding and decoding, and can realize the encryption function at the same time of encoding, and It has the potential to be further improved by integrating with a variety of existing coding methods. Therefore, the technical problem that the optical computing neural network in the related art is not suitable for the encoding and decoding functions of optical communication, resulting in the inability to meet the speed, quality and confidentiality requirements of optical communication at the same time, is solved.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or N of the embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present application, "N" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210475945.3A CN115021826B (en) | 2022-04-29 | 2022-04-29 | Optical computing communication intelligent encoding and decoding computing system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210475945.3A CN115021826B (en) | 2022-04-29 | 2022-04-29 | Optical computing communication intelligent encoding and decoding computing system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115021826A true CN115021826A (en) | 2022-09-06 |
CN115021826B CN115021826B (en) | 2024-04-16 |
Family
ID=83067691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210475945.3A Active CN115021826B (en) | 2022-04-29 | 2022-04-29 | Optical computing communication intelligent encoding and decoding computing system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115021826B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119882928A (en) * | 2025-03-28 | 2025-04-25 | 清华大学 | Wafer-level intelligent optical computing chip system and architecture |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105572810A (en) * | 2014-10-31 | 2016-05-11 | 安华高科技通用Ip(新加坡)公司 | Conditioned launch of a single mode light source into a multimode optical fiber |
CN106506138A (en) * | 2016-11-11 | 2017-03-15 | 深圳大学 | Cross-layer encryption method and system for space optical communication system |
CN110334804A (en) * | 2019-06-20 | 2019-10-15 | 清华大学 | All-optical depth diffraction neural network system and method based on spatial partially coherent light |
CN111582468A (en) * | 2020-04-02 | 2020-08-25 | 清华大学 | Photoelectric hybrid intelligent data generation computing system and method |
CN113411136A (en) * | 2021-06-16 | 2021-09-17 | 广东工业大学 | Quadrature modulation secret optical communication device and method |
US20220014276A1 (en) * | 2020-07-10 | 2022-01-13 | Raytheon Company | Receiver and system for transporting and demodulating complex optical signals |
-
2022
- 2022-04-29 CN CN202210475945.3A patent/CN115021826B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105572810A (en) * | 2014-10-31 | 2016-05-11 | 安华高科技通用Ip(新加坡)公司 | Conditioned launch of a single mode light source into a multimode optical fiber |
CN106506138A (en) * | 2016-11-11 | 2017-03-15 | 深圳大学 | Cross-layer encryption method and system for space optical communication system |
CN110334804A (en) * | 2019-06-20 | 2019-10-15 | 清华大学 | All-optical depth diffraction neural network system and method based on spatial partially coherent light |
CN111582468A (en) * | 2020-04-02 | 2020-08-25 | 清华大学 | Photoelectric hybrid intelligent data generation computing system and method |
US20220014276A1 (en) * | 2020-07-10 | 2022-01-13 | Raytheon Company | Receiver and system for transporting and demodulating complex optical signals |
CN113411136A (en) * | 2021-06-16 | 2021-09-17 | 广东工业大学 | Quadrature modulation secret optical communication device and method |
Non-Patent Citations (1)
Title |
---|
徐琳: "光学加密技术与信息安全的融合与应用", 网络安全技术与应用, 15 December 2015 (2015-12-15) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119882928A (en) * | 2025-03-28 | 2025-04-25 | 清华大学 | Wafer-level intelligent optical computing chip system and architecture |
Also Published As
Publication number | Publication date |
---|---|
CN115021826B (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Horodecki et al. | Classical capacity of a noiseless quantum channel assisted by noisy entanglement | |
JP2021522725A (en) | Methods and equipment for identifying core-dependent losses in multi-core fiber transmission systems using core scrambling | |
CN112514287B (en) | Method and apparatus for determining core dependent losses in a multi-core optical fiber transmission system | |
CN112425096B (en) | Optical transmission system and method for core scrambling of multi-core optical fibers | |
CN114584214B (en) | A coded optical communication method and system based on composite vortex beam | |
CN114039670A (en) | A Nonlinear Impairment Compensation Method for Mode Division Multiplexing Communication System | |
CN115021826B (en) | Optical computing communication intelligent encoding and decoding computing system and method | |
CN102594492A (en) | Code block dividing method and device | |
CN111582468B (en) | Photoelectric hybrid intelligent data generation and calculation system and method | |
CN114513394A (en) | Attention machine drawing neural network-based signal modulation format identification method, system and device and storage medium | |
CN111835364B (en) | A low-complexity neural BP decoding method for polar codes | |
CN113228535B (en) | Apparatus and method for adaptive decoding and core scrambling in a multi-core optical fiber transmission system | |
Lee et al. | Integrating pre-trained language model with physical layer communications | |
CN116346217B (en) | Deep learning-based optical communication system channel construction method | |
CN111988090B (en) | Chip Mode Carrier Composite Correlation Optical Coding Method | |
CN114827289B (en) | Communication compression method, system, electronic device and storage medium | |
Khulbe et al. | Orbital angular momentum wave generation and multiplexing: Experiments and analysis using classical and quantum optics | |
CN102263558B (en) | Signal processing method and system | |
CN111130697B (en) | Method for reducing complexity of communication physical layer transmission system based on automatic encoder | |
CN114257988A (en) | Imperfect CSI-oriented resource allocation method and system in ultra-reliable car networking | |
CN115955279B (en) | A Modulation Method Based on Variable Autoencoder for Channel-Matched Non-Trellization Coding | |
CN119940442B (en) | Large-scale reconfigurable diffraction optical computing chip system and architecture | |
CN113541797B (en) | A method and system for adaptive probabilistic shaping of six-mode fiber | |
Shen et al. | Semantic Feature Division Multiple Access for Digital Semantic Multiple Access Channels | |
CN113660015B (en) | Online wireless channel acquisition optimization method under assistance of environment knowledge base |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |