CN115018627A - A credit risk assessment method and device, storage medium and electronic equipment - Google Patents
A credit risk assessment method and device, storage medium and electronic equipment Download PDFInfo
- Publication number
- CN115018627A CN115018627A CN202210606396.9A CN202210606396A CN115018627A CN 115018627 A CN115018627 A CN 115018627A CN 202210606396 A CN202210606396 A CN 202210606396A CN 115018627 A CN115018627 A CN 115018627A
- Authority
- CN
- China
- Prior art keywords
- credit
- risk evaluation
- credit risk
- feature
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000012502 risk assessment Methods 0.000 title claims description 20
- 238000013210 evaluation model Methods 0.000 claims abstract description 105
- 238000011156 evaluation Methods 0.000 claims abstract description 103
- 238000000605 extraction Methods 0.000 claims abstract description 83
- 230000004044 response Effects 0.000 claims abstract description 10
- 230000006399 behavior Effects 0.000 claims description 172
- 238000012549 training Methods 0.000 claims description 62
- 230000004927 fusion Effects 0.000 claims description 32
- 230000007246 mechanism Effects 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 19
- 238000013527 convolutional neural network Methods 0.000 claims description 9
- 230000006870 function Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
本发明提供了一种信用风险评价方法及装置、存储介质及电子设备,可应用于金融领域或其他领域,该方法包括:响应于信用风险评价指令,确定所述信用风险评价指令对应的用户;获取所述用户的信用行为数据;通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征;通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征;通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。能够提高信用风险的评价准确性和评价效率。
The present invention provides a credit risk evaluation method and device, a storage medium and an electronic device, which can be applied to the financial field or other fields. The method includes: in response to a credit risk evaluation instruction, determining a user corresponding to the credit risk evaluation instruction; Obtain the credit behavior data of the user; perform feature extraction on the credit behavior data of the user through the first feature extraction module in the pre-built credit risk evaluation model to obtain the first credit behavior feature of the credit behavior data; The second feature extraction module in the credit risk evaluation model performs feature extraction on the credit behavior data of the user to obtain the second credit behavior feature of the credit behavior data; through the output module in the credit risk evaluation model based on The first credit behavior characteristic and the second credit behavior characteristic are used to obtain the credit risk evaluation result of the user. It can improve the evaluation accuracy and evaluation efficiency of credit risk.
Description
技术领域technical field
本发明涉及数据处理技术领域,特别涉及一种信用风险评价方法及装置、存储介质及电子设备。The invention relates to the technical field of data processing, and in particular, to a credit risk evaluation method and device, a storage medium and an electronic device.
背景技术Background technique
当前随着经济社会的发展,银行的互联网金融产品高速发展。银行在互联网上提供信贷服务的同时,需要对信贷客户的信息进行信用风险评价,以此来降低客户的违约风险。At present, with the development of economy and society, the Internet financial products of banks are developing rapidly. When banks provide credit services on the Internet, they need to conduct credit risk evaluations on the information of credit customers, so as to reduce the default risk of customers.
现有的信用风险评价方式是通过专家设计申请者的特征进行评估,评估主观性强,无法做到经验批量复制,且模型开发工作量较大,导致信用风险评价准确性、评价效率较低。The existing credit risk evaluation method is based on the characteristics of the applicants designed by experts. The evaluation is highly subjective, and it is impossible to replicate the experience in batches, and the model development workload is large, resulting in low credit risk evaluation accuracy and evaluation efficiency.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种信用风险评价方法,能够提高信用风险的评价准确性和评价效率。The technical problem to be solved by the present invention is to provide a credit risk evaluation method, which can improve the evaluation accuracy and evaluation efficiency of credit risk.
本发明还提供了一种信用风险评价装置,用以保证上述方法在实际中的实现及应用。The present invention also provides a credit risk evaluation device to ensure the realization and application of the above method in practice.
一种信用风险评价方法,包括:A credit risk assessment method, including:
响应于信用风险评价指令,确定所述信用风险评价指令对应的用户;In response to the credit risk evaluation instruction, determining the user corresponding to the credit risk evaluation instruction;
获取所述用户的信用行为数据;Obtain the credit behavior data of the user;
通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征;Perform feature extraction on the credit behavior data of the user by using the first feature extraction module in the pre-built credit risk evaluation model to obtain the first credit behavior feature of the credit behavior data;
通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征;Perform feature extraction on the user's credit behavior data by the second feature extraction module in the credit risk evaluation model, to obtain the second credit behavior feature of the credit behavior data;
通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。The credit risk evaluation result of the user is obtained based on the first credit behavior characteristic and the second credit behavior characteristic through the output module in the credit risk evaluation model.
上述的方法,可选的,所述通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果,包括:In the above-mentioned method, optionally, the obtaining the credit risk evaluation result of the user based on the first credit behavior feature and the second credit behavior feature through the output module in the credit risk evaluation model includes:
通过所述信用风险评价模型中的输出模块的特征融合层对所述第一信用行为特征和第二信用行为特征进行特征融合,获得融合特征;Perform feature fusion on the first credit behavior feature and the second credit behavior feature through the feature fusion layer of the output module in the credit risk evaluation model to obtain a fusion feature;
通过所述信用风险评价模型中的输出模块的输出层基于所述融合特征,确定所述用户与每个预设的候选标签之间的概率值;将各个所述概率值中数值最大的目标概率值所属的候选标签作为所述用户的信用风险评价结果。Through the output layer of the output module in the credit risk evaluation model, the probability value between the user and each preset candidate tag is determined based on the fusion feature; the target probability with the largest value in each of the probability values is determined The candidate label to which the value belongs is used as the credit risk evaluation result of the user.
上述的方法,可选的,构建所述信用风险评价模型的过程,包括:The above method, optionally, the process of constructing the credit risk evaluation model includes:
获取训练数据集以及初始信用风险评价模型;所述训练数据集包括多个训练样本,每个所述训练样本包括一个历史用户的已标注样本标签的历史信用行为数据;所述标本标签表征所述历史用户的信用风险评价结果;Obtain a training data set and an initial credit risk evaluation model; the training data set includes a plurality of training samples, and each of the training samples includes historical credit behavior data of a historical user with a sample label; the sample label represents the Credit risk evaluation results of historical users;
利用所述训练数据集中的各个训练样本训练所述初始信用风险评价模型,直到所述初始信用风险评价模型满足预设的训练条件;Use each training sample in the training data set to train the initial credit risk evaluation model until the initial credit risk evaluation model satisfies preset training conditions;
将满足所述训练条件的初始信用风险评价模型确定为信用风险评价模型。An initial credit risk evaluation model that satisfies the training conditions is determined as a credit risk evaluation model.
上述的方法,可选的,通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征,包括:In the above method, optionally, the first feature extraction module in the pre-built credit risk evaluation model performs feature extraction on the credit behavior data of the user, and obtains the first credit behavior feature of the credit behavior data, including:
通过所述信用风险评价模型的第一特征提取模块中的卷积神经网络,对所述信用行为数据进行特征提取,获得第一信用行为初始特征;Through the convolutional neural network in the first feature extraction module of the credit risk evaluation model, feature extraction is performed on the credit behavior data to obtain the initial characteristics of the first credit behavior;
通过所述信用风险评价模型的第一特征提取模块中的多头注意力机制层,对所述第一信用行为初始特征进行处理,获得所述信用行为数据的第一信用行为特征。Through the multi-head attention mechanism layer in the first feature extraction module of the credit risk evaluation model, the initial feature of the first credit behavior is processed to obtain the first credit behavior feature of the credit behavior data.
上述的方法,可选的,所述获得所述用户的信用风险评价结果之后,还包括:The above method, optionally, after obtaining the credit risk evaluation result of the user, further comprising:
在所述用户的信用风险评价结果满足预设的信用风险告警条件的情况下,输出针对所述用户的信用风险告警信息。In the case that the credit risk evaluation result of the user satisfies the preset credit risk warning condition, output the credit risk warning information for the user.
一种信用风险评价装置,包括:A credit risk assessment device, comprising:
确定单元,用于响应于信用风险评价指令,确定所述信用风险评价指令对应的用户;a determining unit, configured to, in response to the credit risk evaluation instruction, determine the user corresponding to the credit risk evaluation instruction;
获取单元,用于获取所述用户的信用行为数据;an obtaining unit, used to obtain the credit behavior data of the user;
第一特征提取单元,用于通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征;a first feature extraction unit, configured to perform feature extraction on the credit behavior data of the user through the first feature extraction module in the pre-built credit risk evaluation model, to obtain the first credit behavior feature of the credit behavior data;
第二特征提取单元,通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征;a second feature extraction unit, which performs feature extraction on the credit behavior data of the user through the second feature extraction module in the credit risk evaluation model to obtain the second credit behavior feature of the credit behavior data;
输出单元,用于通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。An output unit, configured to obtain a credit risk evaluation result of the user based on the first credit behavior feature and the second credit behavior feature through an output module in the credit risk evaluation model.
上述的装置,可选的,所述输出单元,包括:The above-mentioned device, optionally, the output unit includes:
特征融合子单元,用于通过所述信用风险评价模型中的输出模块的特征融合层对所述第一信用行为特征和第二信用行为特征进行特征融合,获得融合特征;a feature fusion subunit, configured to perform feature fusion on the first credit behavior feature and the second credit behavior feature through the feature fusion layer of the output module in the credit risk evaluation model to obtain a fusion feature;
输出子单元,用于通过所述信用风险评价模型中的输出模块的输出层基于所述融合特征,确定所述用户与每个预设的候选标签之间的概率值;将各个所述概率值中数值最大的目标概率值所属的候选标签作为所述用户的信用风险评价结果。The output subunit is used to determine the probability value between the user and each preset candidate tag based on the fusion feature through the output layer of the output module in the credit risk evaluation model; each of the probability values The candidate tag to which the target probability value with the largest median value belongs is used as the credit risk evaluation result of the user.
上述的装置,可选的,还包括:模型训练单元;所述模型训练单元,用于:The above-mentioned device, optionally, further includes: a model training unit; the model training unit is used for:
获取训练数据集以及初始信用风险评价模型;所述训练数据集包括多个训练样本,每个所述训练样本包括一个历史用户的已标注样本标签的历史信用行为数据;所述标本标签表征所述历史用户的信用风险评价结果;Obtain a training data set and an initial credit risk evaluation model; the training data set includes a plurality of training samples, and each of the training samples includes historical credit behavior data of a historical user with a sample label; the sample label represents the Credit risk evaluation results of historical users;
利用所述训练数据集中的各个训练样本依次训练所述初始信用风险评价模型,直到所述初始信用风险评价模型满足预设的训练条件;Use each training sample in the training data set to sequentially train the initial credit risk evaluation model until the initial credit risk evaluation model satisfies preset training conditions;
将满足所述训练条件的初始信用风险评价模型确定为信用风险评价模型。An initial credit risk evaluation model that satisfies the training conditions is determined as a credit risk evaluation model.
上述的装置,可选的,所述第一特征提取单元,被配置为:In the above device, optionally, the first feature extraction unit is configured as:
通过所述信用风险评价模型的第一特征提取模块中的卷积神经网络,对所述信用行为数据进行特征提取,获得第一信用行为初始特征;Through the convolutional neural network in the first feature extraction module of the credit risk evaluation model, feature extraction is performed on the credit behavior data to obtain the initial characteristics of the first credit behavior;
通过所述信用风险评价模型的第一特征提取模块中的多头注意力机制层,对所述第一信用行为初始特征进行处理,获得所述信用行为数据的第一信用行为特征。Through the multi-head attention mechanism layer in the first feature extraction module of the credit risk evaluation model, the initial feature of the first credit behavior is processed to obtain the first credit behavior feature of the credit behavior data.
上述的装置,可选的,所述信用风险评价装置,还包括:告警单元;For the above device, optionally, the credit risk assessment device further includes: an alarm unit;
所述告警单元,用于在所述用户的信用风险评价结果满足预设的信用风险告警条件的情况下,输出针对所述用户的信用风险告警信息。The alarming unit is configured to output credit risk alarm information for the user when the user's credit risk evaluation result satisfies a preset credit risk alarm condition.
一种存储介质,所述存储介质包括存储指令,其中,在所述指令运行时控制所述存储介质所在的设备执行如上述的信用风险评价方法。A storage medium, the storage medium comprising a storage instruction, wherein when the instruction is executed, a device where the storage medium is located is controlled to execute the above-mentioned credit risk assessment method.
一种电子设备,包括存储器,以及一个或者一个以上的指令,其中一个或一个以上指令存储于存储器中,且经配置以由一个或者一个以上处理器执行如上述的信用风险评价方法。An electronic device includes a memory, and one or more instructions, wherein the one or more instructions are stored in the memory and configured to perform, by one or more processors, a credit risk assessment method as described above.
与现有技术相比,本发明包括以下优点:Compared with the prior art, the present invention includes the following advantages:
本发明提供了一种信用风险评价方法及装置、存储介质及电子设备,该方法包括:响应于信用风险评价指令,确定所述信用风险评价指令对应的用户;获取所述用户的信用行为数据;通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征;通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征;通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。应用本能发明实施例提供的方法,通过提取出信用行为数据的不同层次的特征来进行用户的信用风险评价,能够提高信用风险的评价准确性和评价效率。The present invention provides a credit risk evaluation method and device, a storage medium and an electronic device. The method includes: in response to a credit risk evaluation instruction, determining a user corresponding to the credit risk evaluation instruction; acquiring credit behavior data of the user; The first feature extraction module in the pre-built credit risk evaluation model performs feature extraction on the credit behavior data of the user to obtain the first credit behavior feature of the credit behavior data; through the first feature extraction module in the credit risk evaluation model The second feature extraction module performs feature extraction on the credit behavior data of the user, and obtains the second credit behavior feature of the credit behavior data; the output module in the credit risk evaluation model is based on the first credit behavior feature and all the The second credit behavior characteristic is obtained, and the credit risk evaluation result of the user is obtained. By applying the method provided by the embodiments of the present invention, the user's credit risk evaluation can be performed by extracting features of different levels of credit behavior data, which can improve the evaluation accuracy and evaluation efficiency of credit risk.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without creative work.
图1为本发明提供的一种信用风险评价方法的方法流程图;Fig. 1 is a method flow chart of a credit risk assessment method provided by the present invention;
图2为本发明提供的一种获得所述用户的信用风险评价结果的过程的流程图;2 is a flowchart of a process for obtaining the credit risk evaluation result of the user provided by the present invention;
图3为本发明提供的一种构建信用风险评价模型的过程的流程图;3 is a flowchart of a process for constructing a credit risk evaluation model provided by the present invention;
图4为本发明提供的一种获得信用行为数据的第一信用行为特征的过程的示例图;4 is an exemplary diagram of a process for obtaining a first credit behavior feature of credit behavior data provided by the present invention;
图5为本发明提供的一种信用风险评价模型的结构示意图;5 is a schematic structural diagram of a credit risk evaluation model provided by the present invention;
图6为本发明提供的一种信用风险评价装置的结构示意图;6 is a schematic structural diagram of a credit risk assessment device provided by the present invention;
图7为本发明提供的一种电子设备的结构示意图。FIG. 7 is a schematic structural diagram of an electronic device provided by the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。In this application, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also no Other elements expressly listed, or which are also inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
本发明实施例提供了一种信用风险评价方法,该方法可以应用于电子设备,所述方法的方法流程图如图1所示,具体包括:An embodiment of the present invention provides a credit risk evaluation method, which can be applied to electronic equipment. The method flowchart of the method is shown in FIG. 1 , and specifically includes:
S101:响应于信用风险评价指令,确定所述信用风险评价指令对应的用户。S101: In response to a credit risk evaluation instruction, determine a user corresponding to the credit risk evaluation instruction.
在本实施例中,信用风险评价指令可以是在需要为用户进行信用风险评价时触发的指令,例如,可以是在为用户办理贷款业务、信用租聘业务等情况下触发的指令,也可以是在用户满足预设的信用评估条件下自动触发的指令。In this embodiment, the credit risk evaluation instruction may be an instruction triggered when a credit risk evaluation needs to be performed for the user, for example, it may be an instruction triggered in the case of handling a loan business, a credit leasing business, etc. for the user, or an instruction triggered by An instruction that is automatically triggered when the user meets the preset credit evaluation conditions.
S102:获取所述用户的信用行为数据。S102: Acquire the credit behavior data of the user.
在本实施例中,可以基于用户的标识在预设的数据库中获取用户的新用户行为数据,也可以从信用风险评价指令的指令信息中获取到用户的信用行为数据。In this embodiment, the user's new user behavior data may be acquired in a preset database based on the user's identifier, or the user's credit behavior data may be acquired from the instruction information of the credit risk evaluation instruction.
可选的,信用行为数据可以包括用户的履约行为信息、交易行为信息以及其他影响信用的用户行为信息。Optionally, the credit behavior data may include the user's performance behavior information, transaction behavior information, and other user behavior information that affects credit.
S103:通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征。S103: Perform feature extraction on the credit behavior data of the user by using a first feature extraction module in a pre-built credit risk evaluation model to obtain a first credit behavior feature of the credit behavior data.
在本实施例中,第一特征提取模块可以提取出对用户的信用风险评价而言的重要的局部特征,该局部特征即为第一信用行为特征,可以通过对信用行为数据的全局特征进行加权处理得到。In this embodiment, the first feature extraction module can extract important local features for the user's credit risk evaluation, the local features are the first credit behavior features, and the global features of the credit behavior data can be weighted processed.
S104:通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征。S104: Perform feature extraction on the credit behavior data of the user by using the second feature extraction module in the credit risk evaluation model to obtain a second credit behavior feature of the credit behavior data.
在本实施例中,第二信用行为特征可以是信用行为数据的全局特征。In this embodiment, the second credit behavior feature may be a global feature of the credit behavior data.
S105:通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。S105: Obtain a credit risk evaluation result of the user based on the first credit behavior feature and the second credit behavior feature through the output module in the credit risk evaluation model.
在本实施例中,输出模块可以对第一信用行为特征和第二信用行为特征进行融合,获得融合特征,根据融合特征获得用户的信用风险评价结果。In this embodiment, the output module may fuse the first credit behavior feature and the second credit behavior feature to obtain the fused feature, and obtain the user's credit risk evaluation result according to the fused feature.
可选的,信用风险评价结果可以是信用风险分级,或者是信用风险评分。Optionally, the credit risk evaluation result may be a credit risk rating, or a credit risk score.
本发明实施例提供了一种信用风险评价方法,包括:响应于信用风险评价指令,确定所述信用风险评价指令对应的用户;获取所述用户的信用行为数据;通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征;通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征;通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。应用本发明实施例提供的方法,通过提取出信用行为数据的不同层次的特征来进行用户的信用风险评价,能够提高信用风险的评价准确性和评价效率。An embodiment of the present invention provides a credit risk evaluation method, including: in response to a credit risk evaluation instruction, determining a user corresponding to the credit risk evaluation instruction; acquiring credit behavior data of the user; and using a pre-built credit risk evaluation model The first feature extraction module in the credit behavior data of the user performs feature extraction to obtain the first credit behavior feature of the credit behavior data; through the second feature extraction module in the credit risk evaluation model, the user is Perform feature extraction on the credit behavior data, and obtain the second credit behavior feature of the credit behavior data; through the output module in the credit risk evaluation model, based on the first credit behavior feature and the second credit behavior feature, obtain The credit risk evaluation result of the user. By applying the method provided by the embodiment of the present invention, the user's credit risk evaluation can be performed by extracting features of different levels of credit behavior data, which can improve the evaluation accuracy and evaluation efficiency of credit risk.
在本发明提供的一实施例中,基于上述的实施过程,可选的,所述通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果,如图2所示,包括:In an embodiment provided by the present invention, based on the above implementation process, optionally, the output module in the credit risk evaluation model is based on the first credit behavior feature and the second credit behavior feature, Obtain the credit risk evaluation result of the user, as shown in Figure 2, including:
S201:通过所述信用风险评价模型中的输出模块的特征融合层对所述第一信用行为特征和第二信用行为特征进行特征融合,获得融合特征。S201: Perform feature fusion on the first credit behavior feature and the second credit behavior feature through a feature fusion layer of an output module in the credit risk evaluation model to obtain a fusion feature.
在本实施例中,可以将第一信用行为特征和第二信用行为特征进行拼接,得到融合特征,拼接方式可以是将第一信用行为特征拼接在第二信用行为特征之后,可以是将第二信用行为特征拼接在第一信用行为特征之后,通过将第一信用行为特征和第二信用行为特征进行融合后,得到融合特征,能够得到对信用评估有重要影响的特征的同时还减小了全局信息的损失。In this embodiment, the first credit behavior feature and the second credit behavior feature can be spliced to obtain a fusion feature. The splicing method can be splicing the first credit behavior feature after the second credit behavior feature, or the second The credit behavior feature is spliced after the first credit behavior feature. By fusing the first credit behavior feature and the second credit behavior feature, the fusion feature is obtained, and the features that have an important impact on the credit evaluation can be obtained, and the overall situation is reduced. loss of information.
S202:通过所述信用风险评价模型中的输出模块的输出层基于所述融合特征,确定所述用户与每个预设的候选标签之间的概率值;将各个所述概率值中数值最大的目标概率值所属的候选标签作为所述用户的信用风险评价结果。S202: Determine the probability value between the user and each preset candidate tag based on the fusion feature through the output layer of the output module in the credit risk evaluation model; determine the probability value with the largest value among the probability values The candidate label to which the target probability value belongs is used as the credit risk evaluation result of the user.
在本实施例中,候选标签可以表征用户的风险分级,不同的候选标签表征的用户的风险分级不同,输出层可以根据融合特征确定出用户属于每个候选标签之间的概率值,根据用户属于每个候选标签的概率值确定出用户的信用风险评价结果,具体可以是将概率值最大的候选标签作为用户的信用风险评价结果。In this embodiment, the candidate tags can represent the user's risk classification, and different candidate tags represent users with different risk classifications. The output layer can determine the probability value between each candidate tag according to the fusion feature. The probability value of each candidate tag determines the user's credit risk evaluation result, and specifically, the candidate tag with the largest probability value may be used as the user's credit risk evaluation result.
在本发明提供的一实施例中,基于上述的实施过程,可选的,构建所述信用风险评价模型的过程,如图3所示,包括:In an embodiment provided by the present invention, based on the above-mentioned implementation process, optionally, the process of constructing the credit risk evaluation model, as shown in FIG. 3 , includes:
S301:获取训练数据集以及初始信用风险评价模型;所述训练数据集包括多个训练样本,每个所述训练样本包括一个历史用户的历史信用行为数据以及样本标签;所述标本标签表征所述历史用户的信用风险评价结果。S301: Obtain a training data set and an initial credit risk evaluation model; the training data set includes a plurality of training samples, each of which includes historical credit behavior data of a historical user and a sample label; the sample label represents the Credit risk evaluation results of historical users.
在本实施例中,样本标签也即上述的候选标签,可以标签用户历史用户的信用风险评价结果。In this embodiment, the sample tag, that is, the above-mentioned candidate tag, can tag the credit risk evaluation result of the user's historical user.
S302:利用所述训练数据集中的各个训练样本训练所述初始信用风险评价模型,直到所述初始信用风险评价模型满足预设的训练条件。S302: Use each training sample in the training data set to train the initial credit risk evaluation model until the initial credit risk evaluation model satisfies preset training conditions.
在本实施例中,可以为初始信用风险评价模型的第一特征提取模块设置残差模块,通过训练数据中的训练样本训练设置有残差模块的初始信用风险评价模型,具体可以将每一训练样本输入到初始信用风险评价模型中,获得初始信用风险评价模型输出的所述训练样本对应的评价结果;将该评价结果以及训练样本的样本标签计算出损失函数值;根据损失函数值调整初始信用风险评价模型的网络参数。In this embodiment, a residual module can be set for the first feature extraction module of the initial credit risk evaluation model, and the initial credit risk evaluation model with residual modules can be trained by training samples in the training data. Input the sample into the initial credit risk evaluation model to obtain the evaluation result corresponding to the training sample output by the initial credit risk evaluation model; calculate the loss function value from the evaluation result and the sample label of the training sample; adjust the initial credit risk according to the loss function value Network parameters for risk assessment models.
可选的,训练条件可以是初始信用风险评价模型的训练次数大于预设的训练次数阈值,也可以是初始信用风险评价模型的预测准确率大于预设的准确率阈值,还可以是初始信用风险评价模型的损失函数收敛。Optionally, the training condition may be that the number of training times of the initial credit risk evaluation model is greater than the preset number of training thresholds, or that the prediction accuracy of the initial credit risk evaluation model is greater than the preset accuracy threshold, or the initial credit risk Evaluate the convergence of the loss function of the model.
S303:将满足所述训练条件的初始信用风险评价模型确定为信用风险评价模型。S303: Determine the initial credit risk evaluation model that satisfies the training condition as a credit risk evaluation model.
其中,可以将满足训练条件的不携带残差模块的初始信用风险评价模型确定为信用风险评价模型。Wherein, the initial credit risk evaluation model without the residual module that satisfies the training conditions can be determined as the credit risk evaluation model.
在本发明提供的一实施例中,基于上述的实施过程,可选的,通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征,如图4所示,包括:In an embodiment provided by the present invention, based on the above implementation process, optionally, the first feature extraction module in a pre-built credit risk evaluation model performs feature extraction on the credit behavior data of the user, and obtains the The first credit behavior feature of the credit behavior data, as shown in Figure 4, includes:
S401:通过所述信用风险评价模型的第一特征提取模块中的卷积神经网络,对所述信用行为数据进行特征提取,获得第一信用行为初始特征。S401: Perform feature extraction on the credit behavior data through a convolutional neural network in a first feature extraction module of the credit risk evaluation model to obtain initial features of a first credit behavior.
在本实施例中,第一特征提取模块中的卷积神经网络中包含多个卷积层,通过各卷积层对信用行为数据进行处理,获得第一信用行为初始特征。In this embodiment, the convolutional neural network in the first feature extraction module includes a plurality of convolutional layers, and each convolutional layer processes the credit behavior data to obtain the initial characteristics of the first credit behavior.
S402:通过所述信用风险评价模型的第一特征提取模块中的多头注意力机制层,对所述第一信用行为初始特征进行处理,获得所述信用行为数据的第一信用行为特征。S402: Process the initial features of the first credit behavior through the multi-head attention mechanism layer in the first feature extraction module of the credit risk evaluation model to obtain the first credit behavior feature of the credit behavior data.
在本实施例中,多头注意力机制层包括多个并行的注意力机制层,通过多头注意力机制层对第一信用行为初始特征进行处理,获得第一信用行为特征。In this embodiment, the multi-head attention mechanism layer includes a plurality of parallel attention mechanism layers, and the first credit behavior feature is obtained by processing the initial feature of the first credit behavior through the multi-head attention mechanism layer.
在本发明提供的一实施例中,基于上述的实施过程,可选的,所述获得所述用户的信用风险评价结果之后,还包括:In an embodiment provided by the present invention, based on the above-mentioned implementation process, optionally, after obtaining the credit risk evaluation result of the user, the method further includes:
在所述用户的信用风险评价结果满足预设的信用风险告警条件的情况下,输出针对所述用户的信用风险告警信息。In the case that the credit risk evaluation result of the user satisfies the preset credit risk warning condition, output the credit risk warning information for the user.
在本实施例中,信用风险评价结果可以为信用风险评分或信用风险分级;在信用风险评价结果为信用风险评分的情况下,若信用风险评分大于预设的风险阈值,则确定用户的风险评价结果满足信用风险告警条件;在信用风险评价结果为信用风险分级的情况下,若信用风险分级大于预设的告警分级,则确定用户的风险评价结果满足信用风险告警条件。In this embodiment, the credit risk evaluation result may be a credit risk score or a credit risk classification; if the credit risk evaluation result is a credit risk score, if the credit risk score is greater than a preset risk threshold, the user's risk evaluation is determined The result satisfies the credit risk warning condition; when the credit risk evaluation result is the credit risk classification, if the credit risk classification is greater than the preset alarm classification, it is determined that the user's risk evaluation result satisfies the credit risk warning condition.
参见图5,为本发明实施例提供的一种信用风险评价模型的结构示意图,包括信用风险评价模型包括第一特征提取模块、第二特征提取模块和输出模块,第一特征提取模块可以包括卷积神经网络和多头注意力机制层;第二特征提取模块可以包括具有至少一个卷积层的卷积神经网络;输出模块可以包括特征融合层和输出层,特征融合层和输出层之间还可以包括中间层。Referring to FIG. 5, it is a schematic structural diagram of a credit risk evaluation model provided by an embodiment of the present invention, including that the credit risk evaluation model includes a first feature extraction module, a second feature extraction module, and an output module, and the first feature extraction module may include a volume The second feature extraction module can include a convolutional neural network with at least one convolutional layer; the output module can include a feature fusion layer and an output layer, and the feature fusion layer and the output layer can also be Including the middle layer.
在本实施例中的多头注意力机制层可以将注意力放在应用场景的重点上,而忽略一些不重要的因素。它可以看成是一个组合函数,通过计算注意力的概率分布,来突出某个关键输入对输出的影响。The multi-head attention mechanism layer in this embodiment can focus on the focus of the application scenario, while ignoring some unimportant factors. It can be regarded as a combination function, by calculating the probability distribution of attention, to highlight the impact of a key input on the output.
注意力机制可以描述为将一个查询和一组相应的键值对映射到输出,其中查询为Q,键为K,值为V,输出为output,这几个要素都是向量。一般来说,键K和值V是相等的。他们之间的关系可用下式表示:The attention mechanism can be described as mapping a query and a set of corresponding key-value pairs to the output, where the query is Q, the key is K, the value is V, and the output is output. These elements are all vectors. In general, key K and value V are equal. The relationship between them can be expressed by the following formula:
其中,dk是K的维度,将影响点积的大小。softmax是可用于归一化权重的激活函数,其中Z是一个K维向量,Zj代表这K维向量中的一个元素。通过softmax,我们可以将向量中的元素标准化为0到1之间,并让这些元素的总和是1。where d k is the dimension of K that will affect the size of the dot product. softmax is an activation function that can be used to normalize weights, where Z is a K-dimensional vector and Z j represents an element in this K-dimensional vector. With softmax, we can normalize the elements in the vector to be between 0 and 1, and let the sum of these elements be 1.
具体的,键和值是卷积神经网络提取的信用行为数据中的所有特征,查询对应注意力模块需要学习的权重矩阵。输出是值(信用行为数据的特征)的一个加权和,其中分配给每个值的权重是通过查询与相应键的兼容性函数来计算的。通过注意力机制,可以让深度学习模型更加专注于对降水量预测任务而言更重要的信息。Specifically, the key and value are all the features in the credit behavior data extracted by the convolutional neural network, and the query corresponds to the weight matrix that the attention module needs to learn. The output is a weighted sum of values (features of the credit behavior data), where the weight assigned to each value is computed by querying the compatibility function with the corresponding key. Through the attention mechanism, the deep learning model can be more focused on the information that is more important for the precipitation prediction task.
多头注意力机制是由几个并行的注意力机制层组成,这些并行的注意力机制具有不同的训练参数,每个头在注意力操作之前执行线性变换,以将三个输入投影到较低的维度。每个注意力机制的操作是独立执行的,然后通过串联每个头的输出获得最终的结果。具体来说,多头注意力层的输入是向量的三个序列:Q,K和V。对于第i个头,注意力机制的公式如下:The multi-head attention mechanism is composed of several parallel attention mechanism layers with different training parameters, and each head performs a linear transformation before the attention operation to project the three inputs to a lower dimension . The operation of each attention mechanism is performed independently, and then the final result is obtained by concatenating the outputs of each head. Specifically, the input to the multi-head attention layer is three sequences of vectors: Q, K, and V. For the ith head, the formula of the attention mechanism is as follows:
在这里,是用来将三个输入映射到具有较低纬度dp的子空间的权重矩阵,这三个矩阵的参数是需要模型去学习的。然后多头注意机制的输出是将以上每个头的结果进行综合,多头注意力机制的公式如下:it's here, is the weight matrix used to map the three inputs to the subspace with lower latitude dp , and the parameters of these three matrices need to be learned by the model. Then the output of the multi-head attention mechanism is to synthesize the results of each of the above heads. The formula of the multi-head attention mechanism is as follows:
Multihead(Q,K,V)=Concat(head1,head2,...,headh)WO Multihead(Q,K,V)=Concat(head 1 ,head 2 ,...,head h )W O
在这里,h是头的个数,也是一个需要模型去学习的权重矩阵。Here, h is the number of heads, It is also a weight matrix that the model needs to learn.
多头注意力的优势在于它可以学习不同子空间中的相关信息。但是,由于重要特征的突出,一些次要的特征有可能会丢失,进而导致全局信息的不完整。The advantage of multi-head attention is that it can learn relevant information in different subspaces. However, due to the prominence of important features, some secondary features may be lost, resulting in incomplete global information.
由于简单的堆叠网络的深度并不能增加网络的学习表达效果,这是因为随着网络深度的增加,会导致梯度发散和信息的丢失。因此,通过引入残差模块,能够解决了随着网络深度增加带来的梯度消失的问题。此外,残差连接避免了丢失全局特征以确保原始信息的完整性。因此,在本实施例中,将多头注意力机制与残差连接相结合以避免注意力机制带来的信息丢失,改进后的公式如下:Since the depth of a simple stacked network cannot increase the learning expression effect of the network, this is because as the depth of the network increases, it will lead to gradient divergence and loss of information. Therefore, by introducing the residual module, the problem of gradient disappearance with the increase of network depth can be solved. Furthermore, residual connections avoid losing global features to ensure the integrity of the original information. Therefore, in this embodiment, the multi-head attention mechanism is combined with the residual connection to avoid information loss caused by the attention mechanism. The improved formula is as follows:
REAT(f,X)=X+f(X)REAT(f,X)=X+f(X)
其中,f(X)=MultiHead(X,X,X)。在信用风险评价模型中,X是卷积神经网络提取的信用行为数据的特征。where f(X)=MultiHead(X,X,X). In the credit risk evaluation model, X is the feature of the credit behavior data extracted by the convolutional neural network.
在本实施例中采用的多头注意力机制是自多头注意力机制,其中,键K,值V和查询Q都是相同的张量序列X。通过这种方式,特征矩阵中的每个行向量是所有列向量的点积,本发明实施例提供的第一特征提取模块可以提取更为全面的特征,即融合全局的特征和局部的特征。The multi-head attention mechanism adopted in this embodiment is a self-multi-head attention mechanism, in which the key K, the value V and the query Q are all the same tensor sequence X. In this way, each row vector in the feature matrix is the dot product of all column vectors, and the first feature extraction module provided by the embodiment of the present invention can extract more comprehensive features, that is, fuse global features and local features.
信用评价模型的目标是通过深层网络提取个人信用的高级特征,以实现风险评估预测。为了更好地捕获个人信用的特征,模型中包括两个通道:第一特征提取模块和第二特征提取模块。其中,第一特征提取模块用于针对个人信用行为进行高级语义的提取,而第二特征提取模块负责从已经得到的非语义特征中获取更深层的特征表达,在第一特征提取模块的通道中利用了自多头注意力和残差连接,在特别关注对信用评估有重要影响的因素的同时还减小了全局信息的损失。最后,将这两个通道提取的特征进行拼接,再送入全连接层,以获得信用评估输出。The goal of the credit evaluation model is to extract the high-level features of personal credit through deep networks to achieve risk evaluation and prediction. In order to better capture the characteristics of personal credit, the model includes two channels: the first feature extraction module and the second feature extraction module. Among them, the first feature extraction module is used to extract high-level semantics for personal credit behavior, and the second feature extraction module is responsible for obtaining deeper feature expressions from the non-semantic features that have been obtained. In the channel of the first feature extraction module Taking advantage of self-multi-head attention and residual connections, the loss of global information is reduced while paying special attention to the factors that have an important impact on credit evaluation. Finally, the features extracted from these two channels are spliced and sent to the fully connected layer to obtain the credit evaluation output.
与图1所述的方法相对应,本发明实施例还提供了一种信用风险评价装置,用于对图1中方法的具体实现,本发明实施例提供的信用风险评价装置可以应用于电子设备中,其结构示意图如图6所示,具体包括:Corresponding to the method described in FIG. 1 , an embodiment of the present invention further provides a credit risk assessment apparatus for implementing the method in FIG. 1 . The credit risk assessment apparatus provided by the embodiment of the present invention can be applied to electronic equipment. , the schematic diagram of its structure is shown in Figure 6, which specifically includes:
确定单元601,用于响应于信用风险评价指令,确定所述信用风险评价指令对应的用户;A
获取单元602,用于获取所述用户的信用行为数据;an obtaining
第一特征提取单元603,用于通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征;The first
第二特征提取单元604,通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征;The second
输出单元605,用于通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。The
应用本发明实施例提供的装置,通过提取出信用行为数据的不同层次的特征来进行用户的信用风险评价,能够提高信用风险的评价准确性和评价效率。By applying the device provided by the embodiment of the present invention, the user's credit risk evaluation can be performed by extracting features of different levels of credit behavior data, which can improve the evaluation accuracy and evaluation efficiency of credit risk.
在本发明提供的一实施例中,基于上述的方案,可选的,所述输出单元605,包括:In an embodiment provided by the present invention, based on the above solution, optionally, the
特征融合子单元,用于通过所述信用风险评价模型中的输出模块的特征融合层对所述第一信用行为特征和第二信用行为特征进行特征融合,获得融合特征;a feature fusion subunit, configured to perform feature fusion on the first credit behavior feature and the second credit behavior feature through the feature fusion layer of the output module in the credit risk evaluation model to obtain a fusion feature;
输出子单元,用于通过所述信用风险评价模型中的输出模块的输出层基于所述融合特征,确定所述用户与每个预设的候选标签之间的概率值;将各个所述概率值中数值最大的目标概率值所属的候选标签作为所述用户的信用风险评价结果。The output subunit is used to determine the probability value between the user and each preset candidate tag based on the fusion feature through the output layer of the output module in the credit risk evaluation model; each of the probability values The candidate tag to which the target probability value with the largest median value belongs is used as the credit risk evaluation result of the user.
在本发明提供的一实施例中,基于上述的方案,可选的,还包括:模型训练单元;所述模型训练单元,用于:In an embodiment provided by the present invention, based on the above solution, optionally, it further includes: a model training unit; the model training unit is used for:
获取训练数据集以及初始信用风险评价模型;所述训练数据集包括多个训练样本,每个所述训练样本包括一个历史用户的已标注样本标签的历史信用行为数据;所述标本标签表征所述历史用户的信用风险评价结果;Obtain a training data set and an initial credit risk evaluation model; the training data set includes a plurality of training samples, and each of the training samples includes historical credit behavior data of a historical user with a sample label; the sample label represents the Credit risk evaluation results of historical users;
利用所述训练数据集中的各个训练样本依次训练所述初始信用风险评价模型,直到所述初始信用风险评价模型满足预设的训练条件;Use each training sample in the training data set to sequentially train the initial credit risk evaluation model until the initial credit risk evaluation model satisfies preset training conditions;
将满足所述训练条件的初始信用风险评价模型确定为信用风险评价模型。An initial credit risk evaluation model that satisfies the training conditions is determined as a credit risk evaluation model.
在本发明提供的一实施例中,基于上述的方案,可选的,所述第一特征提取单元603,被配置为:In an embodiment provided by the present invention, based on the above solution, optionally, the first
通过所述信用风险评价模型的第一特征提取模块中的卷积神经网络,对所述信用行为数据进行特征提取,获得第一信用行为初始特征;Through the convolutional neural network in the first feature extraction module of the credit risk evaluation model, feature extraction is performed on the credit behavior data to obtain the initial characteristics of the first credit behavior;
通过所述信用风险评价模型的第一特征提取模块中的多头注意力机制层,对所述第一信用行为初始特征进行处理,获得所述信用行为数据的第一信用行为特征。Through the multi-head attention mechanism layer in the first feature extraction module of the credit risk evaluation model, the initial feature of the first credit behavior is processed to obtain the first credit behavior feature of the credit behavior data.
在本发明提供的一实施例中,基于上述的方案,可选的,所述信用风险评价装置,还包括:告警单元;In an embodiment provided by the present invention, based on the above solution, optionally, the credit risk assessment apparatus further includes: an alarm unit;
所述告警单元,用于在所述用户的信用风险评价结果满足预设的信用风险告警条件的情况下,输出针对所述用户的信用风险告警信息。The alarming unit is configured to output credit risk alarm information for the user when the user's credit risk evaluation result satisfies a preset credit risk alarm condition.
上述本发明实施例公开的信用风险评价装置中的各个单元和模块具体的原理和执行过程,与上述本发明实施例公开的信用风险评价方法相同,可参见上述本发明实施例提供的信用风险评价方法中相应的部分,这里不再进行赘述。The specific principles and execution processes of each unit and module in the credit risk assessment apparatus disclosed in the above embodiments of the present invention are the same as the credit risk assessment methods disclosed in the above embodiments of the present invention. For reference, please refer to the credit risk assessment provided by the above embodiments of the present invention The corresponding part in the method will not be repeated here.
本发明实施例还提供了一种存储介质,所述存储介质包括存储的指令,其中,在所述指令运行时控制所述存储介质所在的设备执行上述信用风险评价方法。An embodiment of the present invention further provides a storage medium, where the storage medium includes stored instructions, wherein when the instructions are executed, a device where the storage medium is located is controlled to execute the above credit risk assessment method.
本发明实施例还提供了一种电子设备,其结构示意图如图7所示,具体包括存储器701,以及一个或者一个以上的指令702,其中一个或者一个以上指令702存储于存储器701中,且经配置以由一个或者一个以上处理器703执行所述一个或者一个以上指令702进行以下操作:An embodiment of the present invention further provides an electronic device, the schematic structural diagram of which is shown in FIG. 7 , and specifically includes a
响应于信用风险评价指令,确定所述信用风险评价指令对应的用户;In response to the credit risk evaluation instruction, determining the user corresponding to the credit risk evaluation instruction;
获取所述用户的信用行为数据;Obtain the credit behavior data of the user;
通过预先构建的信用风险评价模型中的第一特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第一信用行为特征;Perform feature extraction on the credit behavior data of the user by using the first feature extraction module in the pre-built credit risk evaluation model to obtain the first credit behavior feature of the credit behavior data;
通过所述信用风险评价模型中的第二特征提取模块对所述用户的信用行为数据进行特征提取,获得所述信用行为数据的第二信用行为特征;Perform feature extraction on the user's credit behavior data by the second feature extraction module in the credit risk evaluation model, to obtain the second credit behavior feature of the credit behavior data;
通过所述信用风险评价模型中的输出模块基于所述第一信用行为特征和所述第二信用行为特征,获得所述用户的信用风险评价结果。The credit risk evaluation result of the user is obtained based on the first credit behavior characteristic and the second credit behavior characteristic through the output module in the credit risk evaluation model.
需要说明的是,本发明提供的一种信用风险评价方法及装置、存储介质及电子设备可用于人工智能领域、区块链领域、分布式领域、云计算领域、大数据领域、物联网领域、移动互联领域、网络安全领域、芯片领域、虚拟现实领域、增强现实领域、全息技术领域、量子计算领域、量子通信领域、量子测量领域、数字孪生领域或金融领域。上述仅为示例,并不对本发明提供的一种信用风险评价方法及装置、存储介质及电子设备的应用领域进行限定。It should be noted that a credit risk evaluation method and device, storage medium and electronic equipment provided by the present invention can be used in the field of artificial intelligence, blockchain, distributed, cloud computing, big data, Internet of Things, Mobile internet, network security, chip, virtual reality, augmented reality, holographic technology, quantum computing, quantum communication, quantum measurement, digital twin or finance. The above is only an example, and does not limit the application field of a credit risk evaluation method and device, storage medium and electronic device provided by the present invention.
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。It should be noted that the various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments. For the same and similar parts among the various embodiments, refer to each other Can. As for the apparatus type embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and for the relevant part, please refer to the partial description of the method embodiment.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本发明时可以把各单元的功能在同一个或多个软件和/或硬件中实现。For the convenience of description, when describing the above device, the functions are divided into various units and described respectively. Of course, when implementing the present invention, the functions of each unit may be implemented in one or more software and/or hardware.
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the present invention can be implemented by means of software plus a necessary general hardware platform. Based on this understanding, the technical solutions of the present invention can be embodied in the form of software products in essence or the parts that make contributions to the prior art. The computer software products can be stored in storage media, such as ROM/RAM, magnetic disks, etc. , CD, etc., including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or some parts of the embodiments of the present invention.
以上对本发明所提供的一种信用风险评价方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。A credit risk evaluation method provided by the present invention has been introduced in detail above. Specific examples are used in this paper to illustrate the principles and implementations of the present invention. Its core idea; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. limit.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210606396.9A CN115018627A (en) | 2022-05-31 | 2022-05-31 | A credit risk assessment method and device, storage medium and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210606396.9A CN115018627A (en) | 2022-05-31 | 2022-05-31 | A credit risk assessment method and device, storage medium and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115018627A true CN115018627A (en) | 2022-09-06 |
Family
ID=83070658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210606396.9A Pending CN115018627A (en) | 2022-05-31 | 2022-05-31 | A credit risk assessment method and device, storage medium and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115018627A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117474004A (en) * | 2023-10-17 | 2024-01-30 | 中投国信(北京)科技发展有限公司 | User credit recovery evaluation method, device and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111680217A (en) * | 2020-05-27 | 2020-09-18 | 腾讯科技(深圳)有限公司 | Content recommendation method, device, equipment and storage medium |
CN112819604A (en) * | 2021-01-19 | 2021-05-18 | 浙江省农村信用社联合社 | Personal credit evaluation method and system based on fusion neural network feature mining |
CN113011961A (en) * | 2021-01-29 | 2021-06-22 | 招商银行股份有限公司 | Method, device and equipment for monitoring risk of company associated information and storage medium |
-
2022
- 2022-05-31 CN CN202210606396.9A patent/CN115018627A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111680217A (en) * | 2020-05-27 | 2020-09-18 | 腾讯科技(深圳)有限公司 | Content recommendation method, device, equipment and storage medium |
CN112819604A (en) * | 2021-01-19 | 2021-05-18 | 浙江省农村信用社联合社 | Personal credit evaluation method and system based on fusion neural network feature mining |
CN113011961A (en) * | 2021-01-29 | 2021-06-22 | 招商银行股份有限公司 | Method, device and equipment for monitoring risk of company associated information and storage medium |
Non-Patent Citations (1)
Title |
---|
王重仁等: "融合深度神经网络的个人信用评估方法", 《计算机工程》, vol. 46, no. 10, 15 October 2020 (2020-10-15), pages 308 - 313 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117474004A (en) * | 2023-10-17 | 2024-01-30 | 中投国信(北京)科技发展有限公司 | User credit recovery evaluation method, device and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111260620B (en) | Image abnormality detection method, device and electronic equipment | |
CN112861945A (en) | Multi-mode fusion lie detection method | |
CN114240659A (en) | Block chain abnormal node identification method based on dynamic graph convolutional neural network | |
WO2021189926A1 (en) | Service model training method, apparatus and system, and electronic device | |
Zhang | The Evaluation on the Credit Risk of Enterprises with the CNN‐LSTM‐ATT Model | |
CN115018627A (en) | A credit risk assessment method and device, storage medium and electronic equipment | |
CN118761888B (en) | Smart city service platform, method and equipment based on cloud computing and big data | |
CN118114257B (en) | Private domain data privacy disclosure risk assessment method based on knowledge graph | |
CN113554241A (en) | User layering method and prediction method based on user electricity complaint behaviors | |
CN117217807B (en) | Bad asset estimation method based on multi-mode high-dimensional characteristics | |
CN113761184A (en) | Text data classification method, equipment and storage medium | |
CN114119191A (en) | Wind control method, overdue prediction method, model training method and related equipment | |
CN116204786B (en) | Method and device for generating specified fault trend data | |
CN114529191B (en) | Method and device for risk identification | |
Peng | Research on credit risk identification of internet financial enterprises based on big data | |
Xiong et al. | L-RBF: A customer churn prediction model based on lasso+ RBF | |
CN117114705A (en) | Continuous learning-based e-commerce fraud identification method and system | |
CN116611911A (en) | Credit risk prediction method and device based on support vector machine | |
CN116506140A (en) | Method for detecting Ethernet malicious account by using graph annotation meaning neural network based on time sequence transaction relationship | |
Zhang et al. | A ResNet‐LSTM Based Credit Scoring Approach for Imbalanced Data | |
CN113344581A (en) | Service data processing method and device | |
CN114722723B (en) | Emotion tendency prediction method and equipment based on kernel extreme learning machine optimization | |
CN118070775B (en) | Performance evaluation method and device of abstract generation model and computer equipment | |
CN114281994B (en) | A text clustering integration method and system based on three-layer weighted model | |
CN116304058B (en) | Method and device for identifying negative information of enterprise, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |