CN115015969A - GNSS satellite visibility forecasting method under mountain area sheltering environment - Google Patents
GNSS satellite visibility forecasting method under mountain area sheltering environment Download PDFInfo
- Publication number
- CN115015969A CN115015969A CN202210621360.8A CN202210621360A CN115015969A CN 115015969 A CN115015969 A CN 115015969A CN 202210621360 A CN202210621360 A CN 202210621360A CN 115015969 A CN115015969 A CN 115015969A
- Authority
- CN
- China
- Prior art keywords
- satellite
- angle
- visibility
- visible
- azimuth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013277 forecasting method Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims description 32
- 238000004364 calculation method Methods 0.000 claims description 28
- 230000000007 visual effect Effects 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims 4
- 230000003139 buffering effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/08—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明提供了一种山区遮挡环境下的GNSS卫星可视性预报方法,涉及卫星可视性预报技术领域,在确定作业地点坐标、预报时间段、预报时间间隔及缓冲距离参数后,通过可视域分析获得山体障碍物最大仰角与方位角关系,利用卫星历书文件计算每颗卫星的坐标、方位角、高度角,最终各方位角上遮挡物最大仰角与卫星高度角的大小关系,判断卫星在该时刻是否可视,在预报时间段内进行可视性预报。本发明通过判断各方位角上山体障碍物的最大仰角与卫星高度角的大小关系,来确定该卫星的可视性状态,循环判断预报时段内所有卫星的可视性状态,从而预报山区遮挡情况下的卫星可视性状态,相较于单一高度角阈值方法,预报结果更为准确。
The invention provides a GNSS satellite visibility forecasting method in a mountainous area sheltered environment, and relates to the technical field of satellite visibility forecasting. Domain analysis obtains the relationship between the maximum elevation angle and azimuth angle of mountain obstacles, and uses the satellite almanac file to calculate the coordinates, azimuth angle, and altitude angle of each satellite. Whether the moment is visible or not, the visibility forecast is carried out within the forecast time period. The invention determines the visibility state of the satellite by judging the relationship between the maximum elevation angle of the mountain obstacle on each azimuth angle and the altitude angle of the satellite, and cyclically judges the visibility states of all satellites in the forecast period, thereby forecasting the occlusion situation in the mountainous area Compared with the single altitude threshold method, the forecast results are more accurate.
Description
技术领域technical field
本发明涉及卫星可视性预报技术领域,尤其涉及一种山区遮挡环境下的GNSS卫星可视性预报方法。The invention relates to the technical field of satellite visibility forecasting, in particular to a GNSS satellite visibility forecasting method in a mountainous area sheltered environment.
背景技术Background technique
自2020年我国北斗卫星导航系统正式提供全球服务以来,大大丰富了GNSS系统的卫星星座资源。在山区进行各种类型GNSS测量作业时,GNSS接收机能否接收到卫星信号至关重要,如山区搜救、地质灾害监测、道路、铁路等工程建设,都依赖于GNSS卫星的可视状况。Since my country's Beidou satellite navigation system officially provided global services in 2020, it has greatly enriched the satellite constellation resources of the GNSS system. When carrying out various types of GNSS surveying operations in mountainous areas, it is very important whether the GNSS receiver can receive satellite signals, such as mountain search and rescue, geological disaster monitoring, road, railway and other engineering construction, all rely on the visibility of GNSS satellites.
目前,主要还是依靠在GNSS测量作业前通过卫星历书数据来预报卫星可视性,通过设置卫星高度角阈值(如5°或15°)来判断某区域的可见卫星数是否满足作业需要。而山区影响卫星可视情况的原因主要是山体遮挡,现阶段通过阈值来判断卫星可见性的方法未能充分利用已有地形数据,未考虑山区地形对卫星的遮挡情况,导致对部分卫星可视性状态的误判,无法得到山区遮挡情况下较为准确的卫星可视性结果,预报效果较差。At present, satellite visibility is mainly predicted by satellite almanac data before GNSS measurement operations, and whether the number of visible satellites in a certain area can meet the operational needs is determined by setting a satellite altitude angle threshold (such as 5° or 15°). The main reason why mountainous areas affect the visibility of satellites is the occlusion of mountains. At this stage, the method of judging satellite visibility through thresholds fails to make full use of the existing terrain data, and does not consider the occlusion of satellites by mountainous terrain, resulting in the visibility of some satellites. It is impossible to obtain more accurate satellite visibility results in the case of mountain occlusion, and the forecast effect is poor.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种山区遮挡环境下的GNSS卫星可视性预报方法,目的是为了解决现有技术中存在的缺点。The present invention provides a GNSS satellite visibility forecasting method in a mountainous area sheltered environment, and aims to solve the shortcomings existing in the prior art.
为了实现上述目的,本发明提供如下技术方案:一种山区遮挡环境下的GNSS卫星可视性预报方法,包括如下步骤:In order to achieve the above object, the present invention provides the following technical solutions: a GNSS satellite visibility forecasting method in a mountainous area occluded environment, comprising the following steps:
确定作业地点坐标、预报时间段、预报时间间隔及缓冲距离参数;Determine the coordinates of the operation site, forecast time period, forecast time interval and buffer distance parameters;
下载包含作业地点区域的数字高程模型DEM数据及卫星历书文件;Download digital elevation model DEM data and satellite almanac files containing the operating site area;
对以作业地点为中心,缓冲距离为半径的区域进行可视域分析,获得该区域各方位角上山体障碍物的最大仰角,并通过多项式拟合获得最大仰角与方位角的函数f;Perform visual field analysis on the area with the operating site as the center and the buffer distance as the radius, obtain the maximum elevation angle of the mountain obstacles at each azimuth angle in the area, and obtain the function f of the maximum elevation angle and azimuth angle through polynomial fitting;
遍历预报时段判断卫星可视性,进行卫星可视性预报结果展示;Traverse the forecast period to judge the satellite visibility, and display the satellite visibility forecast results;
所述遍历预报时段计算卫星可视性的过程包括如下步骤:The process of traversing the forecast period to calculate the satellite visibility includes the following steps:
利用卫星历书文件计算星在WGS-84坐标系中的坐标及作业地点与每颗卫星的方位角、高度角;Use the satellite almanac file to calculate the coordinates of the satellite in the WGS-84 coordinate system and the azimuth and altitude of the operating site and each satellite;
利用当前时刻各卫星的方位角,按照函数f计算各方位角障碍物最大仰角;Using the azimuth angle of each satellite at the current moment, calculate the maximum elevation angle of each azimuth angle obstacle according to the function f;
通过方位角障碍物最大仰角与卫星高度角的大小判断卫星在该时刻是否可视;Determine whether the satellite is visible at this moment by the size of the maximum elevation angle of the azimuth obstacle and the satellite elevation angle;
按预报时间间隔循环计算预报时间段内各卫星的可视性状况;Circularly calculate the visibility status of each satellite within the forecast time period according to the forecast time interval;
统计预报时间段内各时刻的可视卫星总数,并计算该时刻的几何精度因子。Count the total number of visible satellites at each moment in the forecast period, and calculate the geometric precision factor at that moment.
优选地,通过多项式拟合获得最大仰角与方位角的函数f之前,对作业地点缓冲距离内的区域进行可视性分析,其具体步骤包括:Preferably, before obtaining the function f of the maximum elevation angle and azimuth angle by polynomial fitting, the visibility analysis is performed on the area within the buffer distance of the work site, and the specific steps include:
将作业地点视为坐标原点,则可以将DEM分割为八条方向线和8个扇区,给定两个与DEM行列号相同的矩阵,分别称为辅助格网、可视矩阵,对这两个矩阵进行初始化;Considering the work site as the origin of coordinates, the DEM can be divided into eight direction lines and eight sectors. Given two matrices with the same row and column numbers as the DEM, they are called auxiliary grids and visual matrices, respectively. The matrix is initialized;
处理八条方向线上的格网点,判断其遮挡关系;Process the grid points on the eight direction lines and judge their occlusion relationship;
处理八个扇区内的格网点,完成对DEM的可视域分析。The grid points within the eight sectors are processed to complete the visual field analysis of the DEM.
优选地,八条方向线上的格网点遮挡关系计算步骤包括:Preferably, the step of calculating the occlusion relationship of grid points on the eight direction lines includes:
计算格网点与测站正好可视的最小高程值Z;Calculate the minimum elevation value Z that is just visible to the grid point and the station;
对辅助格网及可视矩阵赋值,若格网点高程大于最小高程值Z,则测站与格网点可视,将格网点在辅助格网和可视矩阵中对应位置设为真,否则为不可视与假;Assign values to the auxiliary grid and the visible matrix. If the grid point elevation is greater than the minimum elevation value Z, the station and grid point are visible, and the corresponding position of the grid point in the auxiliary grid and visible matrix is set to true, otherwise it is not possible. sight and false;
沿方向线向外移动格网点,重复上述步骤,若距离达到缓冲距离则进入下一条方向线的处理,直到八个方向线均计算完成。Move the grid point outward along the direction line, repeat the above steps, if the distance reaches the buffer distance, enter the processing of the next direction line, until the calculation of the eight direction lines is completed.
优选地,对方向线格网点处理后落在扇区的剩余格网点进行处理,对扇区内的格网点处理步骤包括:Preferably, after the direction line grid points are processed, the remaining grid points falling in the sector are processed, and the processing steps of the grid points in the sector include:
计算格网点与测站正好可视的最小高程值Z;Calculate the minimum elevation value Z that is just visible to the grid point and the station;
对辅助格网及可视矩阵赋值,若格网点高程大于最小高程值Z,则测站与格网点可视,将格网点在辅助格网和可视矩阵中对应位置设为真,否则为不可视与假;Assign values to the auxiliary grid and the visible matrix. If the grid point elevation is greater than the minimum elevation value Z, the station and grid point are visible, and the corresponding position of the grid point in the auxiliary grid and visible matrix is set to true, otherwise it is not possible. sight and false;
将格网点向远离测站方向移动,若距离达到缓冲距离则进入下一个扇区的处理,直到八个扇区均计算完成,即完成了DEM的可视域分析。Move the grid point away from the station. If the distance reaches the buffer distance, the next sector will be processed until the calculation of all eight sectors is completed, that is, the DEM visual field analysis is completed.
优选地,对山体障碍物最大仰角提取及进行多项式拟合;Preferably, extract and perform polynomial fitting on the maximum elevation angle of mountain obstacles;
其中,提取山体障碍物最大仰角的具体步骤包括:Among them, the specific steps of extracting the maximum elevation angle of the mountain obstacle include:
对可视矩阵内任一位置进行判断,若其周围八个相邻位置存在不可视点,则记录该位置,搜索完矩阵所有位置后,得到一个位置集合,该集合即是可视域的边界位置;Judging any position in the visible matrix, if there are invisible points in eight adjacent positions around it, record the position. After searching all positions in the matrix, a position set is obtained, which is the boundary position of the visual field. ;
计算位置集合中相应位置山体的仰角:遍历该集合,将该位置在DEM数据中的坐标与作业地点坐标联合计算其方位角与仰角,最终得到所有边界点的方位角与仰角集合,记为{(A1,E1),(A2,E2),…,(An,En)};Calculate the elevation angle of the mountain at the corresponding position in the position set: traverse the set, calculate the azimuth and elevation angles of the coordinates of the position in the DEM data and the coordinates of the work site jointly, and finally obtain the azimuth and elevation angles of all boundary points, denoted as { (A1,E1),(A2,E2),…,(An,En)};
其中,进行多项式拟合的过程包括:Among them, the process of performing polynomial fitting includes:
提取山体障碍物最大仰角后可以获得多个离散点(A,E),对其进行多项式拟合,拟合准则采用最小二乘准则,最终得到方位角与障碍物最大仰角的函数关系式E=f(A),通过任一方位角可以得到该方位角的山体障碍物最大仰角,计算公式包括:After extracting the maximum elevation angle of the obstacles on the mountain, multiple discrete points (A, E) can be obtained, and polynomial fitting is performed on them. The fitting criterion adopts the least squares criterion, and finally the functional relationship between the azimuth angle and the maximum elevation angle of the obstacle is obtained E = f(A), through any azimuth angle, the maximum elevation angle of the mountain obstacle at this azimuth angle can be obtained. The calculation formula includes:
式中,n表示拟合阶数,表示多项式拟合系数。In the formula, n represents the fitting order, Represents the polynomial fit coefficients.
优选地,对预报时段按设定的时间间隔deltaT进行遍历,计算该时刻的卫星可视性状态,每次遍历的处理流程相同。Preferably, the forecast period is traversed according to the set time interval deltaT, and the satellite visibility state at this moment is calculated, and the processing flow of each traversal is the same.
优选地,所述卫星可视性状态计算步骤如下:Preferably, the satellite visibility state calculation steps are as follows:
计算卫星在t时刻的坐标(xs,ys,zs);Calculate the coordinates of the satellite at time t (x s , y s , z s );
根据作业地点坐标(x,y,z)计算各卫星视线向的高度角与方位角,具体计算公式如下:Calculate the altitude angle and azimuth angle of each satellite line of sight according to the coordinates of the operation site (x, y, z). The specific calculation formula is as follows:
elevation=arcsin(u)elevation=arcsin(u)
上述式中,表示作业地点至卫星视线向的单位向量;r表示作业地点至卫星的几何距离;OMGE表示地球角速度,为一常数,其值为7.2921151467×10-5;C为光速;表示以作业地点为中心的站心坐标系向量;azimuth、elevation分别表示卫星的方位角与高度角。In the above formula, Represents the unit vector from the operating site to the satellite line of sight; r represents the geometric distance from the operating site to the satellite; OMGE represents the angular velocity of the earth, which is a constant, and its value is 7.2921151467×10 -5 ; C is the speed of light; Represents the vector of the station center coordinate system centered on the operating site; azimuth and elevation represent the azimuth and elevation angles of the satellites, respectively.
优选地,将各卫星在t时刻的方位角代入山体障碍物最大仰角及其与方位角的函数中,可以获得各卫星在t时刻的障碍物最大仰角;Preferably, the azimuth angle of each satellite at time t is substituted into the maximum elevation angle of the mountain obstacle and its function with the azimuth angle, and the maximum elevation angle of the obstacle at time t of each satellite can be obtained;
对比t时刻各卫星的高度角与计算得到的障碍物最大仰角,若卫星高度角小于障碍物最大仰角,则此卫星在t时刻不可视;反之,若卫星高度角大于等于障碍物最大仰角,则此卫星在t时刻可视;Compare the altitude angle of each satellite at time t with the calculated maximum elevation angle of the obstacle. If the altitude angle of the satellite is less than the maximum elevation angle of the obstacle, the satellite is invisible at time t; on the contrary, if the altitude angle of the satellite is greater than or equal to the maximum elevation angle of the obstacle, then This satellite is visible at time t;
对t时刻所有卫星进行可视性判断后,统计t时刻所有可视卫星数。After the visibility of all satellites at time t is judged, the number of all visible satellites at time t is counted.
优选地,计算t时刻的几何精度因子,具体计算公式包括:Preferably, the geometric precision factor at time t is calculated, and the specific calculation formula includes:
其中,n为t时刻的可视卫星总数,eln中的el表示高度角,azn中的az表示方位角,n代表第n颗卫星,如el1表示第1颗卫星的高度角,az1表示第一颗卫星的方位角;cos、sin分别表示余弦、正弦函数;G矩阵中的g表示其元素,其中g11-g44表示其在矩阵G中的位置;GDOP、PDOP、HDOP、VDOP分别表示几何精度因子、位置精度因子、水平精度因子与垂直精度因子。Among them, n is the total number of visible satellites at time t, el in el n represents the altitude angle, az in az n represents the azimuth angle, n represents the nth satellite, such as el 1 represents the altitude angle of the first satellite, az 1 represents the azimuth of the first satellite; cos and sin represent cosine and sine functions respectively; g in the G matrix represents its element, where g 11 -g 44 represents its position in matrix G; GDOP, PDOP, HDOP, VDOP represents geometric precision factor, position precision factor, horizontal precision factor and vertical precision factor, respectively.
优选地,所述卫星可视性预报结果包括绘制的可视卫星天空视图、卫星可视性时序图与精度因子图。Preferably, the satellite visibility prediction result includes a drawn visible satellite sky view, a satellite visibility time sequence diagram and a precision factor diagram.
本发明与现有技术相比具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明无需野外工作,直接使用前期DEM数据,便于编程实现,可快速预报多个测站的卫星可视性,不需要多次断面特征点测量工作,更改测站位置时不会增大测量工作。1. The present invention does not require field work, and directly uses the DEM data in the early stage, which is convenient for programming, can quickly predict the satellite visibility of multiple stations, does not require multiple cross-section feature point measurement work, and does not increase when changing the position of the station. measurement work.
2、本发明在进行DEM可视域分析后获取山体遮挡最大仰角的方法是基于DEM数据特点进行的,与上述方案的基于视线遮挡分析的方法不同,本发明的方法得到的方位角对应最大仰角更密集,解决了传统断面测量的方式获取最大遮挡角较为稀疏,会遗漏一部分方位角所对应的最大遮挡角的技术缺陷。2. The method of the present invention to obtain the maximum elevation angle of mountain occlusion after the DEM visual field analysis is carried out based on the characteristics of the DEM data. Different from the method based on the line of sight occlusion analysis of the above scheme, the azimuth angle obtained by the method of the present invention corresponds to the maximum elevation angle. It is more dense, which solves the technical defect that the maximum occlusion angle obtained by the traditional cross-sectional measurement method is sparse, and the maximum occlusion angle corresponding to a part of the azimuth angle is missed.
3、本发明通过判断卫星方位角上山体障碍物的最大仰角与卫星高度角的大小关系,来确定该卫星的可视性状态,循环判断某一时段内所有卫星的可视性状态,从而预报山区遮挡情况下的卫星可视性状态,相较于单一高度角阈值方法,预报结果更为准确,具有较好的应用价值。3. The present invention determines the visibility state of the satellite by judging the relationship between the maximum elevation angle of the mountain obstacle on the satellite azimuth and the satellite elevation angle, and cyclically judges the visibility states of all satellites within a certain period of time, thereby forecasting. Compared with the single altitude angle threshold method, the forecast results of the satellite visibility state under the occlusion of mountainous areas are more accurate and have better application value.
附图说明Description of drawings
图1为本发明提供的整体流程图;Fig. 1 is the overall flow chart provided by the present invention;
图2为本发明提供的山体障碍物最大仰角的示意图;2 is a schematic diagram of the maximum elevation angle of a mountain obstacle provided by the present invention;
图3为本发明提供的将DEM数据栅格划分示意图;3 is a schematic diagram of dividing a DEM data grid provided by the present invention;
图4为本发明提供的DEM可视域分析结果图;Fig. 4 is a DEM visual field analysis result diagram provided by the present invention;
图5为本发明提供的可视卫星天空视图;Fig. 5 is the visible satellite sky view provided by the present invention;
图6为本发明提供的卫星可视性时序图;Fig. 6 is the satellite visibility timing chart provided by the present invention;
图7为本发明提供的最终的精度因子图。FIG. 7 is the final precision factor diagram provided by the present invention.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.
本发明提供了一种山区遮挡环境下的GNSS卫星可视性预报方法,如图1所示,包含以下步骤:The present invention provides a GNSS satellite visibility prediction method in a mountainous area sheltered environment, as shown in FIG. 1 , comprising the following steps:
步骤1,确定作业地点(测站)坐标、预报时间段、预报时间间隔、缓冲距离等参数。Step 1: Determine the coordinates of the operation site (station), forecast time period, forecast time interval, buffer distance and other parameters.
步骤2,下载包含作业地点区域的数字高程模型(DEM)数据及卫星历书文件。Step 2: Download digital elevation model (DEM) data and satellite almanac files including the operating site area.
步骤3,对作业地点(测站)在一定距离(如10km)缓冲区域内进行可视域分析,获得各方位角上与山体遮挡物的最大仰角,并通过多项式拟合获得最大仰角与方位角的函数关系。Step 3: Perform visual field analysis on the operation site (station) within a certain distance (such as 10km) buffer area to obtain the maximum elevation angle between the azimuth angle and the mountain occluder, and obtain the maximum elevation angle and azimuth angle through polynomial fitting. functional relationship.
步骤4,利用下载的GPS、BDS、GLONASS、GALILEO卫星历书文件,计算卫星在WGS-84坐标系中的坐标。Step 4, using the downloaded GPS, BDS, GLONASS, GALILEO satellite almanac files, calculate the coordinates of the satellites in the WGS-84 coordinate system.
步骤5,计算作业地点(测站)与每颗卫星的方位角、高度角。Step 5: Calculate the azimuth angle and elevation angle of the operation site (station) and each satellite.
步骤6,利用步骤3获得的函数关系计算获得方位角上的最大仰角,通过对比最大仰角与卫星高度角的大小关系判断卫星在该时刻是否可视。Step 6, use the functional relationship obtained in
步骤7,按一定时间间隔(30s)循环计算预报时间段内各卫星的可视性状况。Step 7: Circularly calculate the visibility status of each satellite in the forecast time period at a certain time interval (30s).
步骤8,统计预报时间段内各时刻的可视卫星总数,并计算该时刻的几何精度因子(GDOP)。Step 8: Count the total number of visible satellites at each moment in the forecast time period, and calculate the geometrical precision factor (GDOP) at the moment.
步骤9,绘制预报时段内的可视卫星天空视图、可视卫星数时序图、精度因子变化图等结果。Step 9: Draw the results of the visible satellite sky view, the time sequence diagram of the number of visible satellites, and the variation diagram of the precision factor within the forecast period.
实施例1Example 1
本发明使用GNSS卫星历书数据计算卫星概略位置,计算山区内某一作业地点与卫星连线的方位角与高度角,利用作业山区的数字高程模型信息(Digital ElevationModel,DEM)模拟该区域的实际地形,通过判断卫星方位角上山体障碍物的最大仰角与卫星高度角的大小关系,来确定该卫星的可视性状态,循环判断某一时段内所有卫星的可视性状态,从而预报山区遮挡情况下的卫星可视性状态,本专利公布的方法易于编程实现,而且相较于单一高度角阈值方法,预报结果更为准确,可用于山区地质灾害GNSS监测点的自动化选址等作业,具有较好的应用价值。The present invention uses the GNSS satellite almanac data to calculate the approximate position of the satellite, calculates the azimuth and altitude of the line connecting a certain operating site and the satellite in the mountainous area, and uses the digital elevation model information (Digital Elevation Model, DEM) of the operating mountainous area to simulate the actual terrain of the area , by judging the relationship between the maximum elevation angle of the mountain obstacle on the satellite azimuth and the satellite altitude angle, to determine the visibility state of the satellite, and cyclically determine the visibility state of all satellites in a certain period of time, so as to predict the occlusion of the mountainous area. The method disclosed in this patent is easy to program and implement, and compared with the single altitude angle threshold method, the prediction results are more accurate, and it can be used for automatic site selection of GNSS monitoring points for geological hazards in mountainous areas. good application value.
下文出现的“测站”即“作业地点”。The "station" that appears below is the "operating site".
一、预报参数确定及卫星历书、DEM数据准备1. Determination of forecast parameters and preparation of satellite almanac and DEM data
1.预报参数确定:确定准备进行卫星可视预报的测站坐标(x,y,z),该坐标的坐标系为WGS-84坐标系;给定预报时间区间[ts,te],该时间格式为(yyyy mm dd hh mm ss),分别为年、月、日、时、分、秒;确定预报时间间隔deltaT,如给定时间间隔为30秒,则每30秒计算一次卫星可视性;给定缓冲距离dBuff,如给定缓冲距离为10km,则只顾及以测站为中心,10km为半径的区域内的地形。1. Determination of forecast parameters: Determine the coordinates (x, y, z) of the station to be used for satellite visual forecast, and the coordinate system of this coordinate is the WGS-84 coordinate system; given the forecast time interval [ts, te], the time The format is (yyyy mm dd hh mm ss), which are year, month, day, hour, minute, and second respectively; determine the forecast time interval deltaT, if the given time interval is 30 seconds, the satellite visibility is calculated every 30 seconds ; Given the buffer distance dBuff, if the given buffer distance is 10km, only the terrain in the area with the station as the center and the radius of 10km is considered.
2.卫星历书准备:下载GPS、BDS、GLONASS、GALILEO发布的卫星历书数据,该卫星历书数据有效期应包含所给定的预报时间段。2. Satellite almanac preparation: Download the satellite almanac data released by GPS, BDS, GLONASS, and GALILEO. The validity period of the satellite almanac data should include the given forecast time period.
3.DEM数据准备:DEM数据能反映测站周边地区的地形,本发明对所使用的DEM数据来源及分辨率基本无要求,建议使用30m分辨率DEM数据,可直接下载美国地质调查局提供的30m分辨率DEM数据(http://dwtkns.com/srtm30m/),或日本宇宙航空研究所提供的12.5m分辨率DEM数据(https://search.asf.alaska.edu/),其中测站需要位于DEM数据中。3. DEM data preparation: DEM data can reflect the topography of the surrounding area of the station. The present invention basically does not require the source and resolution of the DEM data used. It is recommended to use 30m resolution DEM data, which can be directly downloaded from the US Geological Survey. 30m resolution DEM data (http://dwtkns.com/srtm30m/), or 12.5m resolution DEM data provided by JAXA (https://search.asf.alaska.edu/), where the station Need to be in DEM data.
二、测站可视域分析及障碍物最大仰角与方位角的函数关系2. Analysis of the visual field of the station and the functional relationship between the maximum elevation angle and azimuth angle of obstacles
1.测站可视域分析:若某卫星被山体遮挡,则该卫星不可视;找到某方位角上山体障碍物的最大仰角是判断卫星是否可视的关键,即若最大仰角大于某卫星的高度角,则该卫星不可视,山体障碍物最大仰角的示意图如图2所示;由于DEM数据是格网数据,直接分析山体与测站之间视线的仰角,需要对DEM数据进行插值处理,计算量大,因此本专利使用一种不需DEM内插计算的方法来分析测站缓冲区域内的可视性,其具体步骤包括:1. Analysis of the visual field of the station: if a satellite is blocked by a mountain, the satellite cannot be seen; finding the maximum elevation angle of the mountain obstacle at a certain azimuth is the key to judging whether the satellite is visible, that is, if the maximum elevation angle is greater than a certain satellite. If the altitude angle is high, the satellite is not visible, and the schematic diagram of the maximum elevation angle of the mountain obstacle is shown in Figure 2; since the DEM data is grid data, it is necessary to directly analyze the elevation angle of the line of sight between the mountain and the station, and the DEM data needs to be interpolated. The amount of calculation is large, so this patent uses a method that does not require DEM interpolation calculation to analyze the visibility in the buffer area of the station. The specific steps include:
(1)将测站(x,y,z)视为坐标原点,则可以将DEM分割为八条方向线和8个扇区,如图3所示;给定两个与DEM行列号相同的矩阵,分别称为辅助格网、可视矩阵,对这两个矩阵进行初始化:将测站及其八个相邻的格网点的辅助格网设为对应DEM格网点的高程值,相应的可视矩阵点值设为真,其余辅助格网点值为零,其余可视矩阵点值设为假,此时即假设八个相邻格网点与测站可视;由于测站与相邻格网点之间无其他格网点遮挡,在DEM数据的精度范围内可以认为该假设成立。(1) Considering the station (x, y, z) as the coordinate origin, the DEM can be divided into eight direction lines and eight sectors, as shown in Figure 3; given two matrices with the same row and column numbers as the DEM , respectively called auxiliary grid and visual matrix, and initialize these two matrices: set the auxiliary grid of the station and its eight adjacent grid points as the elevation values of the corresponding DEM grid points, and the corresponding visual The value of matrix points is set to true, the values of other auxiliary grid points are zero, and the values of other visible matrix points are set to false. At this time, it is assumed that eight adjacent grid points are visible to the station; There is no other grid point occlusion between them, and this assumption can be considered to be true within the accuracy range of DEM data.
(2)处理八条方向线上的格网点:位于八条方向线上的格网点的几何特征简单,判断其遮挡关系的具体计算步骤包括:(2) Handling the grid points on the eight direction lines: the geometric characteristics of the grid points located on the eight direction lines are simple, and the specific calculation steps for judging the occlusion relationship include:
①计算格网点与测站正好可视的最小高程值Z:为方便表示,用二维坐标表示格网点与测站在DEM数据中的位置,格网点行列号为(m,n),测站行列号为(i,j),在方向线上,格网点与测站间的点t1表示为(m1,n1);则最小高程Z的计算公式为:①Calculate the minimum elevation value Z that is just visible to the grid point and the station: For convenience, two-dimensional coordinates are used to represent the position of the grid point and the station in the DEM data. The row and column numbers are (i, j), and on the direction line, the point t1 between the grid point and the station is represented as (m1, n1); the calculation formula of the minimum elevation Z is:
上式中,下标表示在相应格网中的行列号,r表示辅助格网;需要注意的是,应注意正确指定t1点位置;当格网点在正西方向,t1为(m+1,n);当格网点在西北方向,t1为(m+1,n+1);当格网点位于北方向,t1为(m,n+1);当格网点位于东北方向,t1为(m-1,n+1);其他方向依次类推即可。In the above formula, the subscript represents the row and column number in the corresponding grid, and r represents the auxiliary grid; it should be noted that the position of the t1 point should be specified correctly; when the grid point is in the due west direction, t1 is (m+1, n); when the grid point is in the northwest direction, t1 is (m+1, n+1); when the grid point is in the north direction, t1 is (m, n+1); when the grid point is in the northeast direction, t1 is (m -1,n+1); other directions can be deduced and so on.
②辅助格网及可视矩阵赋值:若格网点(m,n)高程大于最小高程值Z,则测站与格网点可视,将格网点(m,n)在辅助格网和可视矩阵中对应位置设为真;否则测站与格网点不可视,辅助格网与可视矩阵中相应位置设为假。②Assignment of auxiliary grid and visual matrix: If the elevation of grid point (m,n) is greater than the minimum elevation value Z, the station and grid point are visible, and the grid point (m,n) is placed in the auxiliary grid and visual matrix The corresponding position in the grid is set to true; otherwise, the station and grid points are not visible, and the corresponding position in the auxiliary grid and visible matrix is set to false.
③沿方向线向外移动格网点(m,n):重复①②步骤,如距离达到缓冲距离则进入下一条方向线的处理,直到八个方向线均计算完成。③ Move the grid point (m, n) outward along the direction line: repeat steps ① and ②, if the distance reaches the buffer distance, enter the processing of the next direction line, until the calculation of the eight direction lines is completed.
(3)处理八个扇区内的格网点:处理完八条方向线上的格网点后,需要处理的剩余格网点分布在八个扇区内,对扇区内的格网点处理步骤包括。(3) Processing the grid points in the eight sectors: After processing the grid points on the eight direction lines, the remaining grid points to be processed are distributed in the eight sectors, and the processing steps for the grid points in the sectors include.
①计算格网点与测站正好可视的最小高程值Z:与方向线上格网点处理不同,扇区内格网点判断可视需要用到格网点附近的两个格网点t1(m1,n1)和t2(m2,n2),具体计算公式包括:①Calculate the minimum elevation value Z that is just visible between the grid point and the station: Different from the grid point processing on the direction line, the grid point judgment in the sector can use the two grid points t1 (m1, n1) near the grid point as needed. and t2(m2,n2), the specific calculation formula includes:
x1=m1·dx;y1=n1·dy;z1=rm1,n1;x 1 =m1·dx; y 1 =n1·dy; z 1 =r m1,n1 ;
x2=m2·dx;y2=n2·dy;z2=rm2,n2;x 2 =m2·dx; y 2 =n2·dy; z 2 =r m2,n2 ;
x3=i·dx;y3=j·dy;z3=ri,j;x 3 =i·dx; y 3 =j·dy; z 3 =r i,j ;
x=m·dx;y=n·dy;z=Z;x=m·dx; y=n·dy; z=Z;
x21=x2-x1;y21=y2-y1;z21=z2-z1;x 21 =x 2 -x 1 ; y 21 =y 2 -y 1 ; z 21 =z 2 -z 1 ;
x31=x3-x1;y31=y3-y1;z31=z3-z1;x 31 =x 3 -x 1 ; y 31 =y 3 -y 1 ; z 31 =z 3 -z 1 ;
上式中,r表示辅助格网,r的下标表示其行列号,dx、dy分别为DEM格网在X、Y方向上的间距;需要注意的是,应注意正确指定t1、t2点位置;当格网点(m,n)位于西到北西方向线间的扇区时,t1为(m+1,n),t2为(m+1,n+1);当格网点位于北西到北方向线间的扇区时,t1为(m,n+1),t2为(m+1,n+1);当格网点位于北到北东方向线间的扇区时,t1为(m-1,n+1),t2为(m,n+1);其余扇区内的格网点依次类推即可。In the above formula, r represents the auxiliary grid, the subscript of r represents its row and column number, and dx and dy are the spacing of the DEM grid in the X and Y directions respectively; it should be noted that the positions of t1 and t2 should be correctly specified. ;When the grid point (m,n) is located in the sector between the west and northwest direction lines, t1 is (m+1,n), t2 is (m+1,n+1); when the grid point is located in the northwest to north When the sector between the direction lines, t1 is (m, n+1), t2 is (m+1, n+1); when the grid point is located in the sector between the north and northeast direction lines, t1 is (m -1, n+1), t2 is (m, n+1); the grid points in the other sectors can be deduced in turn.
②辅助格网及可视矩阵赋值:若格网点(m,n)高程大于最小高程值Z,则测站与格网点可视,将格网点(m,n)在辅助格网和可视矩阵中对应位置设为真;否则测站与格网点不可视,辅助格网与可视矩阵中相应位置设为假。②Assignment of auxiliary grid and visual matrix: If the elevation of grid point (m,n) is greater than the minimum elevation value Z, the station and grid point are visible, and the grid point (m,n) is placed in the auxiliary grid and visual matrix The corresponding position in the grid is set to true; otherwise, the station and grid points are not visible, and the corresponding position in the auxiliary grid and visible matrix is set to false.
③将格网点(m,n)向远离测站方向移动:重复①②步骤,如距离达到缓冲距离则进入下一个扇区的处理,直到八个扇区均计算完成,即完成了DEM的可视域分析。③ Move the grid point (m, n) away from the station: repeat steps ① and ②, if the distance reaches the buffer distance, enter the processing of the next sector until the calculation of all eight sectors is completed, that is, the visualization of the DEM is completed. Domain Analysis.
完成DEM数据测站的可视域分析后,可以将DEM数据划分为2部分:可视域与不可视域,如图4所示。After completing the visibility area analysis of the DEM data station, the DEM data can be divided into two parts: the visible area and the invisible area, as shown in Figure 4.
2.山体遮挡最大仰角提取及多项式拟合:2. Mountain occlusion maximum elevation angle extraction and polynomial fitting:
(1)山体遮挡最大仰角提取:在进行DEM测站可视域分析后,可以获得一个与DEM格网大小相对应可视矩阵,由于本专利使用的山体可视判断方法是基于高程进行判断,低于测站高程的格网点也认为可视,即可视域边界是测站所能可视的最大范围,故可视域边界处的山体仰角及山体遮挡最大仰角;提取山体遮挡最大仰角的具体步骤包括。(1) Extraction of the maximum elevation angle occluded by the mountain: After analyzing the visual field of the DEM station, a visual matrix corresponding to the size of the DEM grid can be obtained. Since the visual judgment method of the mountain used in this patent is based on the elevation, The grid points lower than the elevation of the station are also considered visible, that is, the boundary of the viewing area is the maximum range that the station can see, so the elevation angle of the mountain at the boundary of the visible area and the maximum elevation angle of the mountain occlusion; extract the maximum elevation angle of the mountain occlusion. Specific steps include.
①对可视矩阵内任一位置进行判断,若其周围八个相邻位置存在不可视点,则记录该位置(m,n),搜索完矩阵所有位置后,得到一个位置集合,该集合即是可视域的边界位置。① Judging any position in the visible matrix, if there are invisible points in eight adjacent positions around it, record the position (m, n), and after searching all the positions of the matrix, a position set is obtained, and the set is The location of the boundaries of the viewport.
②计算位置集合中相应位置山体的仰角:遍历该集合,将该位置在DEM数据中的坐标与测站坐标联合计算其方位角与仰角,最终得到所有边界点的方位角与仰角集合,记为{(A1,E1),(A2,E2),…,(An,En)}。②Calculate the elevation angle of the mountain at the corresponding position in the position set: traverse the set, calculate the azimuth and elevation angles of the coordinates of the position in the DEM data and the coordinates of the station jointly, and finally obtain the azimuth and elevation angles of all boundary points, denoted as {(A1,E1),(A2,E2),…,(An,En)}.
(2)多项式拟合:提取山体障碍物最大仰角后可以获得多个离散点(A,E),对其进行多项式拟合,拟合准则采用最小二乘准则,最终得到方位角与障碍物最大仰角的函数关系式E=f(A),通过任一方位角可以得到该方位角的山体障碍物最大仰角,计算公式包括:(2) Polynomial fitting: After extracting the maximum elevation angle of the obstacles on the mountain, multiple discrete points (A, E) can be obtained, and polynomial fitting is performed on them. The functional relationship of the elevation angle E=f(A), through any azimuth angle, the maximum elevation angle of the mountain obstacle at the azimuth angle can be obtained. The calculation formula includes:
式中,n表示拟合阶数,表示多项式拟合系数。In the formula, n represents the fitting order, Represents the polynomial fit coefficients.
三、遍历预报时段计算卫星可视性3. Traverse the forecast period to calculate the satellite visibility
对预报时段[ts,te]按设定的时间间隔deltaT进行遍历,计算该时刻的卫星可视性状态,每次遍历的处理流程相同,下面对预报时段内某一时刻t的卫星可视性状态计算流程进行说明。The forecast period [ts,te] is traversed according to the set time interval deltaT, and the satellite visibility status at this moment is calculated. The processing flow of each traversal is the same. The calculation process of sexual state is explained.
1.计算卫星在t时刻的坐标:卫星历书提供了各卫星的基本卫星轨道参数和2个钟差改正数,可以用于求解各卫星的概略位置和速度,GPS、BDS、GLONASS、GALILEO发布的卫星历书数据大致相同,以GPS历书为例,其中包含的各个参数如表1所示。1. Calculate the coordinates of the satellites at time t: The satellite almanac provides the basic satellite orbit parameters and 2 clock error correction numbers of each satellite, which can be used to solve the approximate position and speed of each satellite, published by GPS, BDS, GLONASS, GALILEO The satellite almanac data is roughly the same, taking the GPS almanac as an example, the parameters contained in it are shown in Table 1.
表1 GPS历书参数Table 1 GPS almanac parameters
计算各卫星的概略位置,利用历书计算与广播星历参数计算方法类似,但需要注意的是历书信息中包含的开普勒轨道参数是在基准时刻Toe上生效的,且历书中没有的星历参数可以直接取值为零,这对卫星的概略位置计算影响很小;最后将得到的各卫星在地心地固下的坐标转换为在大地坐标系WGS-84,与DEM的坐标保持一致。To calculate the approximate position of each satellite, the almanac calculation is similar to the broadcast ephemeris parameter calculation method, but it should be noted that the Kepler orbit parameters contained in the almanac information are valid at the reference time Toe, and the ephemeris not included in the almanac information The parameter can be directly set to zero, which has little effect on the calculation of the approximate position of the satellite; finally, the obtained coordinates of each satellite at the center of the earth are converted into the geodetic coordinate system WGS-84, which is consistent with the coordinates of the DEM.
2.计算各卫星的高度角与方位角:获得某卫星在t时刻的WGS-84坐标(xs,ys,zs)后,可以根据测站坐标(x,y,z)计算测站到卫星视线向的高度角与方位角,具体计算公式包括:2. Calculate the altitude and azimuth of each satellite: After obtaining the WGS-84 coordinates (x s , y s , z s ) of a satellite at time t, the station can be calculated according to the station coordinates (x, y, z) The altitude angle and azimuth angle to the satellite line of sight, the specific calculation formula includes:
elevation=arcsin(u)。elevation=arcsin(u).
上述式中,表示测站至卫星视线向的单位向量;r表示测站至卫星的几何距离;OMGE表示地球角速度,为一常数,其值为7.2921151467×10-5;C为光速;表示以测站为中心的站心坐标系向量;azimuth、elevation分别表示卫星的方位角与高度角。In the above formula, Represents the unit vector of the line-of-sight direction from the station to the satellite; r represents the geometric distance from the station to the satellite; OMGE represents the angular velocity of the earth, which is a constant, and its value is 7.2921151467×10 -5 ; C is the speed of light; Represents the station center coordinate system vector centered on the station; azimuth and elevation represent the azimuth angle and elevation angle of the satellite, respectively.
3.计算各卫星在t时刻的障碍物最大仰角:将各卫星在t时刻的方位角代入山体障碍物最大仰角及其与方位角的函数中,可以获得各卫星在t时刻的障碍物最大仰角。3. Calculate the maximum elevation angle of the obstacles of each satellite at time t: Substitute the azimuth angle of each satellite at time t into the maximum elevation angle of the mountain obstacle and its function with the azimuth angle, and the maximum elevation angle of each satellite at time t can be obtained. .
4.判断卫星可视性并统计:对比t时刻各卫星的高度角与计算得到的障碍物最大仰角,若卫星高度角小于障碍物最大仰角,则此卫星在t时刻不可视;反之,若卫星高度角大于等于障碍物最大仰角,则此卫星在t时刻可视;对t时刻所有卫星进行可视性判断后,统计t时刻所有可视卫星数。4. Judge the satellite visibility and make statistics: Compare the altitude angle of each satellite at time t with the calculated maximum elevation angle of the obstacle. If the satellite altitude angle is less than the maximum elevation angle of the obstacle, the satellite will not be visible at time t; otherwise, if the satellite is not visible at time t If the altitude angle is greater than or equal to the maximum elevation angle of the obstacle, the satellite is visible at time t; after judging the visibility of all satellites at time t, the number of all visible satellites at time t is counted.
5.计算几何精度因子:几何精度因子(Geometric dilution ofprecision,GDOP)是衡量定位精度很重要的一个系数,它表征了在测量时被跟踪卫星在几何结构上的强度。GDOP的数值变大,会导致定位精度变差;GDOP的数值变小,会导致定位精度变好,实际上较小的GDOP是指卫星在空间中分布不集中于一个区域,而是能在不同方位区域均匀分布。除GDOP外,还有PDOP、HDOP、VDOP等精度因子,它们分别表示三维位置精度因子、平面位置精度因子及高程精度因子。5. Calculate the geometric precision factor: Geometric dilution of precision (GDOP) is a very important coefficient to measure the positioning accuracy, which characterizes the strength of the tracked satellite in the geometric structure during the measurement. The larger the value of GDOP, the worse the positioning accuracy; the smaller the value of GDOP, the better the positioning accuracy. In fact, a smaller GDOP means that the satellites are not concentrated in one area in space, but can be distributed in different areas. The azimuth area is evenly distributed. In addition to GDOP, there are PDOP, HDOP, VDOP and other precision factors, which respectively represent the three-dimensional position precision factor, the plane position precision factor and the elevation precision factor.
在确定所有可视卫星的位置和测站位置后,就可以计算各精度因子的数值,n为t时刻的可视卫星总数,具体计算公式包括:After determining the positions of all visible satellites and stations, the value of each precision factor can be calculated, and n is the total number of visible satellites at time t. The specific calculation formula includes:
上述式中,eln中的el表示高度角,azn中的az表示方位角,n代表第n颗卫星,如el1表示第1颗卫星的高度角,az1表示第一颗卫星的方位角;cos、sin分别表示余弦、正弦函数;G矩阵中的g表示其元素,其中g11-g44表示其在矩阵G中的位置;GDOP、PDOP、HDOP、VDOP分别表示几何精度因子、位置精度因子、水平精度因子与垂直精度因子。In the above formula, el in el n represents the elevation angle, az in az n represents the azimuth angle, and n represents the nth satellite, for example, el 1 represents the elevation angle of the first satellite, and az 1 represents the azimuth of the first satellite. Angle; cos and sin represent cosine and sine functions respectively; g in G matrix represents its element, where g 11 -g 44 represents its position in matrix G; GDOP, PDOP, HDOP, VDOP represent geometric precision factor, position Precision factor, horizontal precision factor, and vertical precision factor.
四、卫星可视性预报结果展示4. Display of satellite visibility forecast results
在对预报时段内所有时刻完成卫星可视性状态等计算后,需要绘制相应的图像,直观展示测站的可视性情况,绘制内容主要包括:After completing the calculation of the satellite visibility status at all times in the forecast period, it is necessary to draw corresponding images to visually display the visibility of the station. The drawing contents mainly include:
1.可视卫星天空视图:以测站为中心,利用计算每个可视卫星获得的高度角与方位角,可以直观展示卫星在预报时段的运动轨迹;其中方位角范围为0~360°,高度角范围为0~90°;天空视图的底图为由外向内的三个圆和4条直线组成,三个圆由外向内依次代表高度角0°、30°、60°,中心点的高度角为90°;四条直线分别表示正北-正南、东北-西南、正东-正西、东南-西北的方位角方向。通过遍历绘制预报时段内每时刻所有可视卫星在天空视图中的位置,得到最终的可视卫星天空视图,如图5所示。1. Visible satellite sky view: With the station as the center, the altitude and azimuth angles obtained by calculating each visible satellite can be used to intuitively display the trajectory of the satellite during the forecast period; the azimuth angle ranges from 0 to 360°, The altitude angle ranges from 0 to 90°; the base image of the sky view is composed of three circles and four straight lines from the outside to the inside. The altitude angle is 90°; the four straight lines represent the azimuth directions of due north-due south, northeast-southwest, due east-due west, and southeast-northwest respectively. By traversing and drawing the positions of all visible satellites in the sky view at each moment in the forecast period, the final visible satellite sky view is obtained, as shown in Figure 5.
2.卫星可视性时序图:卫星可视性图可以直观展示每颗卫星在预报时段内的可视时段;其以预报时段内各时刻为X轴,GPS、BDS、GLONASS、GALILEO的所有卫星编号为Y轴;通过遍历预报时段内各时刻的可见卫星编号,即可得到卫星可视性时序图,如图6所示。2. Satellite visibility time sequence diagram: The satellite visibility diagram can intuitively display the visibility period of each satellite in the forecast period; it takes each moment in the forecast period as the X-axis, and all satellites of GPS, BDS, GLONASS and GALILEO The number is the Y-axis; by traversing the visible satellite numbers at each moment in the forecast period, the satellite visibility time sequence diagram can be obtained, as shown in Figure 6.
3.精度因子图:精度因子包括GDOP、PDOP、HDOP、VDOP可以表征某时刻卫星空间构型的好坏,通过遍历预报时段内各时段的精度因子结果,能直观展示卫星空间构型随时间的变化情况;其以预报时段内各时刻为X轴,精度因子数值为Y轴;遍历预报时段内各时刻的各类精度因子结果,即可得到最终的精度因子图,如图7所示。3. Precision factor graph: The precision factor includes GDOP, PDOP, HDOP, and VDOP, which can characterize the quality of the satellite space configuration at a certain time. By traversing the precision factor results of each time period in the forecast period, it can intuitively display the satellite space configuration over time. It takes each moment in the forecast period as the X-axis, and the precision factor value as the Y-axis; traversing the results of various precision factors at each moment in the forecast period, the final precision factor map can be obtained, as shown in Figure 7.
以上所述实施例仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换,均属于本发明的保护范围。The above-mentioned embodiments are only preferred specific embodiments of the present invention, and the protection scope of the present invention is not limited thereto. Any person skilled in the art can obviously obtain the simplicity of the technical solution within the technical scope disclosed in the present invention. Changes or equivalent replacements all belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210621360.8A CN115015969A (en) | 2022-06-02 | 2022-06-02 | GNSS satellite visibility forecasting method under mountain area sheltering environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210621360.8A CN115015969A (en) | 2022-06-02 | 2022-06-02 | GNSS satellite visibility forecasting method under mountain area sheltering environment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115015969A true CN115015969A (en) | 2022-09-06 |
Family
ID=83072978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210621360.8A Pending CN115015969A (en) | 2022-06-02 | 2022-06-02 | GNSS satellite visibility forecasting method under mountain area sheltering environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115015969A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115794414A (en) * | 2023-01-28 | 2023-03-14 | 中国人民解放军国防科技大学 | Satellite-to-ground full-view analysis method, device and equipment based on parallel computing |
US20240118430A1 (en) * | 2022-09-27 | 2024-04-11 | Powerchina Northwest Engineering Corporation Limited | Gnss emergency monitoring error suppression method for alpine canyon complex environment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2634599A1 (en) * | 2012-02-29 | 2013-09-04 | Nxp B.V. | Satellite positioning using a sky-occlusion map |
CN106959456A (en) * | 2017-03-27 | 2017-07-18 | 中国电建集团西北勘测设计研究院有限公司 | A kind of GNSS SURVEYING CONTROL NETWORKs Accuracy Estimation |
CN106970398A (en) * | 2017-03-27 | 2017-07-21 | 中国电建集团西北勘测设计研究院有限公司 | Take the satellite visibility analysis and ephemeris forecasting procedure of satellite obstruction conditions into account |
CN111275757A (en) * | 2020-01-08 | 2020-06-12 | 中国电子科技集团公司第五十四研究所 | Pseudo-satellite field simulation layout method based on DEM data processing |
CN111596319A (en) * | 2020-05-18 | 2020-08-28 | 中国人民解放军国防科技大学 | Efficient simulation algorithm for influence of terrain occlusion on GNSS interference source action area |
CN112162248A (en) * | 2020-08-21 | 2021-01-01 | 中国人民解放军93114部队 | Rapid calculation method and device for radar terrain shielding blind area |
CN112558119A (en) * | 2020-11-30 | 2021-03-26 | 中航机载系统共性技术有限公司 | Satellite selection method based on self-adaptive BFO-PSO |
US20220050211A1 (en) * | 2020-07-14 | 2022-02-17 | Spirent Communications Plc | Architecture for providing forecasts of gnss obscuration and multipath |
-
2022
- 2022-06-02 CN CN202210621360.8A patent/CN115015969A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2634599A1 (en) * | 2012-02-29 | 2013-09-04 | Nxp B.V. | Satellite positioning using a sky-occlusion map |
CN106959456A (en) * | 2017-03-27 | 2017-07-18 | 中国电建集团西北勘测设计研究院有限公司 | A kind of GNSS SURVEYING CONTROL NETWORKs Accuracy Estimation |
CN106970398A (en) * | 2017-03-27 | 2017-07-21 | 中国电建集团西北勘测设计研究院有限公司 | Take the satellite visibility analysis and ephemeris forecasting procedure of satellite obstruction conditions into account |
CN111275757A (en) * | 2020-01-08 | 2020-06-12 | 中国电子科技集团公司第五十四研究所 | Pseudo-satellite field simulation layout method based on DEM data processing |
CN111596319A (en) * | 2020-05-18 | 2020-08-28 | 中国人民解放军国防科技大学 | Efficient simulation algorithm for influence of terrain occlusion on GNSS interference source action area |
US20220050211A1 (en) * | 2020-07-14 | 2022-02-17 | Spirent Communications Plc | Architecture for providing forecasts of gnss obscuration and multipath |
CN112162248A (en) * | 2020-08-21 | 2021-01-01 | 中国人民解放军93114部队 | Rapid calculation method and device for radar terrain shielding blind area |
CN112558119A (en) * | 2020-11-30 | 2021-03-26 | 中航机载系统共性技术有限公司 | Satellite selection method based on self-adaptive BFO-PSO |
Non-Patent Citations (9)
Title |
---|
TIANHE REN: "《An Improved R-Index Model for Terrain Visibility Analysis for Landslide Monitoring with InSAR》", 《REMOTE SENSING》, 16 May 2022 (2022-05-16), pages 1 - 21 * |
吴艳兰: "《基于参考面的可视域算法》", 《测绘信息与工程》 * |
吴艳兰: "《基于参考面的可视域算法》", 《测绘信息与工程》, 30 March 2001 (2001-03-30), pages 19 - 21 * |
王可东: "《Kalman滤波基础及MATLAB仿真》", 31 January 2019, 北京航空航天大学出版社, pages: 267 - 268 * |
舒宝;何元浩;王利: "《一种适用于大尺度卫星导航定位基准站的网络RTK方法》", 《武汉大学学报(信息科学版)》 * |
舒宝;何元浩;王利: "《一种适用于大尺度卫星导航定位基准站的网络RTK方法》", 《武汉大学学报(信息科学版)》, 5 November 2021 (2021-11-05), pages 1609 - 1619 * |
许士杰: "《双模系统选星算法研究与全球导航性能分析》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
许士杰: "《双模系统选星算法研究与全球导航性能分析》", 《中国优秀硕士学位论文全文数据库 信息科技辑》, 15 March 2022 (2022-03-15), pages 136 - 1835 * |
雷虎民 等: "导弹制导控制原理(第2版)", 国防工业出版社, pages: 267 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240118430A1 (en) * | 2022-09-27 | 2024-04-11 | Powerchina Northwest Engineering Corporation Limited | Gnss emergency monitoring error suppression method for alpine canyon complex environment |
US12025716B2 (en) * | 2022-09-27 | 2024-07-02 | Powerchina Northwest Engineering Corporation Limited | GNSS emergency monitoring error suppression method for alpine canyon complex environment |
CN115794414A (en) * | 2023-01-28 | 2023-03-14 | 中国人民解放军国防科技大学 | Satellite-to-ground full-view analysis method, device and equipment based on parallel computing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106970398B (en) | Satellite visibility analysis and ephemeris forecasting method considering satellite shielding condition | |
CN111123300B (en) | Near-real-time large-range high-precision ionosphere electron density three-dimensional monitoring method and device | |
CN106959456B (en) | A kind of GNSS SURVEYING CONTROL NETWORK Accuracy Estimation | |
Sun et al. | Pursuing precise vehicle movement trajectory in urban residential area using multi-GNSS RTK tracking | |
CN115015969A (en) | GNSS satellite visibility forecasting method under mountain area sheltering environment | |
Mahmoud et al. | VANETs positioning in urban environments: A novel cooperative approach | |
CN106989717A (en) | A kind of quasigeoid detection method and device | |
Yang et al. | GPS-derived velocity and strain fields around Dome Argus, Antarctica | |
CN105044738A (en) | Prediction method and prediction system for receiver autonomous integrity monitoring | |
CN112859130B (en) | High-precision electronic map position matching method for field navigation patrol | |
CN108775899B (en) | Deep mining well up-down coordinate system connection method based on pseudolite and inertia information | |
KR100448543B1 (en) | Method for Preparing Geographical Information System | |
CN104181571A (en) | Method for rapidly measuring precision coordinate and elevation of ground point in area with weak CORS signals or without CORS signals | |
Nordin et al. | Ability of RTK-Based GPS Measurement Method in High Accuracy Work in Geomatics Study | |
KR100496814B1 (en) | Method for obtaining road coordinates information and producing digital map using gps measurement | |
CN101581778A (en) | Method for solving hidden point ITRF frame coordinates by using gyro total station | |
CN114966779B (en) | A mountain valley positioning method and system based on Beidou navigation satellite monitoring station | |
KR100448054B1 (en) | Method for Preparing Geographical Information System Employing the Amended Value as Road Data | |
Encarnacion et al. | RTKLIB-based GPS localization for multipath mitigation in ITS applications | |
Idoko et al. | Comparison of Orthometric Heights Obtained Using Total Station and Differential Global Positioning Systems (DGPS) with Precise Levels Instruments | |
CN206235742U (en) | A kind of fixed point monitoring device data fidelity accessory system | |
CN112731512B (en) | Ionized layer real-time map construction method, device, equipment and storage medium | |
Davidovic et al. | Analysis of the influence of satellites constellation in gnss positioning accuracy | |
Morariu et al. | Advanced method for station point control accuracy to monitor the behaviour in service stage of civil engineering structures using geodetic satellite technology | |
Fan | GPS POSITIONING: A STUDY ON THE APPLICATION TO LAND SURVEYING AND MAPPING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220906 |
|
RJ01 | Rejection of invention patent application after publication |