CN115007115A - 一种同步净化四环素和Cu2+的吸附剂的制备方法 - Google Patents

一种同步净化四环素和Cu2+的吸附剂的制备方法 Download PDF

Info

Publication number
CN115007115A
CN115007115A CN202210635052.0A CN202210635052A CN115007115A CN 115007115 A CN115007115 A CN 115007115A CN 202210635052 A CN202210635052 A CN 202210635052A CN 115007115 A CN115007115 A CN 115007115A
Authority
CN
China
Prior art keywords
adsorbent
solution
tetracycline
mcs
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210635052.0A
Other languages
English (en)
Inventor
陈波
曹阳瑞
于凤玲
蓝珊琳
李娟�
刘洋
潘学军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210635052.0A priority Critical patent/CN115007115A/zh
Publication of CN115007115A publication Critical patent/CN115007115A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种同步净化四环素和Cu2+的吸附剂的制备方法,结合壳聚糖(CS)优异的吸附性能和四氧化三铁磁性纳米颗粒(Fe3O4)良好的分散性和磁分离性,以及Fe3+与抗生素特殊的络合作用,使用戊二醛交联法,合成了一种结构简单、效果稳定、环境友好的Fe3+掺杂磁性壳聚糖复合吸附剂(MCS‑Fe3+);本发明使用戊二醛交联法,合成了一种结构简单、效果稳定、环境友好的Fe3+掺杂磁性壳聚糖复合吸附剂(MCS‑Fe3+),此吸附剂吸附处理效率高、成本低、操作简单、不易造成二次污染。

Description

一种同步净化四环素和Cu2+的吸附剂的制备方法
技术领域
本发明属于水处理领域,具体涉及一种同步净化四环素和Cu2+的吸附剂的制备方法。
背景技术
目前,由于医疗废水、生活污水和工业废水排放的交叠,重金属与抗生素的复合污染问题日益凸显。许多常用抗生素中的羧基、羟基、氨基等活性基团易与重金属离子在特定条件下通过络合作用结合,所形成的络合物可能比原污染物毒性更强。不仅如此,重金属和抗生
素复合污染还会增加环境ARGs的多样性和相对丰度,导致更严重的生态健康风险。重金属和抗生素复合污染对生态可持续发展和人类健康具有巨大的威胁。因此,迫切需要一种低耗能、高效率、环境友好、适用范围广的复合污染修复技术。
壳聚糖(Chitosan,CS)是天然多糖甲壳素脱除部分乙酰基的产物,是自然界中含量第二丰富的生物高聚物,尤其是存在于螃蟹和龙虾壳中的生物高聚物,由于其成本低、无毒、生物相容性和生物降解性,是处理水溶性重金属和有机污染物的理想吸附剂,丰富的氨基和羟基使得该多糖具有优异的生物学功能并能进行化学修饰反应。
Fe3O4磁性纳米颗粒具有毒性低、体积小、结构均匀、比表面积大、容易与液相分离等优点,Fe3O4能够作为许多功能性结构的载体。
基于上述优点,本发明提出一种结合壳聚糖(CS)优异的吸附性能和四氧化三铁磁性纳米颗粒(Fe3O4)良好的分散性和磁分离性的吸附剂制备方法。
发明内容
为了解决上述技术问题,本发明提供了一种同步净化四环素和Cu2+的吸附剂的制备方法,结合壳聚糖(CS)优异的吸附性能和四氧化三铁磁性纳米颗粒(Fe3O4)良好的分散性和磁分离性,以及Fe3+与抗生素特殊的络合作用,使用戊二醛交联法,合成了一种结构简单、效果稳定、环境友好的Fe3+掺杂磁性壳聚糖复合吸附剂(MCS-Fe3+)。
为了达到解决上述技术问题的技术效果,本发明是通过以下技术方案实现的:一种同步净化四环素和Cu2+的吸附剂的制备方法,其特征在于,具体包括以下步骤:
Step1:称取适量的FeCl2·4H2O和FeCl3·6H2O放入底烧瓶中,加入超纯水,磁力搅拌至完全溶解后,然后加入浓盐酸,并在氮气保护下,于上述溶液中加入适量的1.5M NaOH溶液,并在水浴下搅拌,待溶液冷却后,将制得的黑色Fe3O4磁性分离,并用超纯水洗至中性,最后,通过冷冻干燥获得Fe3O4磁性纳米颗粒;
Step2:将Step1中得到的适量的Fe3O4和适量的CS分散于一定浓度的Fe(NO3)3溶液中,并在室温下搅拌至形成CS-Fe3+络合物,然后于上述混合溶液中缓慢加入50%戊二醛,继续搅拌以进行交联,交联完成后将产物在60℃下真空干燥,然后研磨过筛。
Step3:清洗Step2所得产物,干燥得到MCS-Fe3+
进一步的,所述Step1中,Fe3O4材料制备中加入的FeCl2·4H2O和FeCl3·6H2O的质量分别为2g、5.2g;
进一步的,所述Step1中水浴下搅拌条件为:在80℃水浴下磁力搅拌30min;
进一步的,所述Step2中,MCS-Fe3+材料制备中加入的Fe3O4和CS的质量均为0.5g,Fe(NO3)3溶液的浓度为0.01M;
进一步的,所述Step3中清洗Step2所得产物条件为:用超纯水和95%乙醇溶液反复洗涤,真空干燥温度为60℃;
本发明的有益效果是:
1、本发明使用戊二醛交联法,合成了一种结构简单、效果稳定、环境友好的Fe3+掺杂磁性壳聚糖复合吸附剂(MCS-Fe3+),此吸附剂吸附处理效率高、成本低、操作简单、不易造成二次污染。
2、本发明所得的新型吸附剂MCS-Fe3+在TC+Cu2+的复合吸附体系中,在pH=6下,Cu2 +与TC均促进了彼此的吸附;且CS上的氨基和羟基基团可以与Fe3+等过渡金属离子络合,增强了复合材料的化学稳定性,还能够作为抗生素的吸附位点,进一步增强吸附容量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明得到的(a)Fe3O4、(b)MCS-Fe3+的SEM示意图;
图2为本发明得到的(a)Fe3O4、(b)MCS-Fe3+的TEM示意图;
图3为本发明的制备方法中Fe3O4、CS、Fe3+比例对TC吸附的影响示意图;
图4为本发明的制备方法中Cu2+浓度和初始pH对TC吸附的影响;
图5为本发明的制备方法中(a)TC存在或不存在时Cu2+的吸附动力学;(b)Cu2+存在或不存在时TC的吸附动力学。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
参阅图1至图5所示,一种同步净化四环素和Cu2+的吸附剂的制备方法,其特征在于,包括以下步骤:
步骤一:称取2g FeCl2·4H2O和5.2g FeCl3·6H2O放入500mL的三口圆底烧瓶中,并加入25mL超纯水,磁力搅拌至完全溶解后,加入0.85mL浓盐酸,并在氮气保护下,将250mL1.5M NaOH溶液通过分液漏斗缓慢加入上述溶液中,在80℃水浴下磁力搅拌30min,待溶液冷却后,将制得的黑色Fe3O4磁性分离,并用超纯水洗至中性,最后,通过冷冻干燥获得Fe3O4磁性纳米颗粒。
步骤二:将0.5g Fe3O4和0.5g CS分散于0.01M的Fe(NO3)3溶液中,并在室温下搅拌4小时以形成CS-Fe3+络合物。然后将5mL 50%戊二醛缓慢加入上述混合液中,继续搅拌2小时以进行交联,交联完成将产物在60℃下真空干燥,然后研磨过筛。
步骤三:将得到的粉末用超纯水和95%乙醇溶液反复洗涤至中性,并在60℃下真空干燥。
经检测,Fe3O4和MCS-Fe3+的BET比表面积(SBET)分别为101.35、13.79m2·g-1,总孔体积(Vtotal)则分别为0.3693、0.0386cm3·g-1。
实施例2
使用方法:
在待处理的溶液中加入10mg MCS-Fe3+材料形成悬浮物置于100mL锥形瓶中,在恒温摇床中震荡24h,使得材料表面对于水体中污染物达到吸附平衡,即可除去TC或Cu2+
实施例3
一种同步净化四环素和Cu2+的吸附剂的制备方法,包括以下步骤:
探究Fe3O4与CS质量比对于TC单体系吸附实验的影响,包括以下步骤:
(1)材料制备:将0.5g Fe3O4和0.25g、0.5g、1g、2.5g CS分散于0.01M的Fe(NO3)3溶液中,并在室温下搅拌4小时以形成CS-Fe3+络合物。然后将5mL 50%戊二醛缓慢加入上述混合液中,继续搅拌2小时以进行交联,交联完成将产物在60℃下真空干燥,然后研磨过筛。将得到的粉末用超纯水和95%乙醇溶液反复洗涤至中性,并在60℃下真空干燥。
(2)实验过程:配制TC浓度为50mg/L,调节pH值为10;称取材料各0.01g放入100mL磨口锥形瓶中,倒入TC 30mL;25℃、180r/min下振荡24h。
(3)实验结果表明:当Fe3O4与CS质量比为1:1的时候,其吸附效果较好。
探究Fe3+的浓度对于单体系吸附实验的影响,包括以下步骤:
(1)材料制备:将0.5g Fe3O4和0.25g、0.5g、1g、2.5g CS分散于0.1M、0.01M的Fe(NO3)3溶液中,并在室温下搅拌4小时以形成CS-Fe3+络合物。然后将5mL 50%戊二醛缓慢加入上述混合液中,继续搅拌2小时以进行交联,交联完成将产物在60℃下真空干燥,然后研磨过筛。将得到的粉末用超纯水和95%乙醇溶液反复洗涤至中性,并在60℃下真空干燥。
(2)实验过程:配制TC浓度为50mg/L,调节pH值为10;称取材料各0.01g放入100mL磨口锥形瓶中,倒入TC溶液30mL,于25℃180r/min下振荡24h。
(3)实验结果:当Fe3+的浓度为0.1M时,吸附效果较好。
(4)剩余浓度测定方法:将得到的溶液过滤后用紫外可见分光光度计在波长为357nm下测定剩余TC。
实施例4
一种同步净化四环素和Cu2+的吸附剂的制备方法,包括以下步骤:
(1)配制溶液浓度为TC浓度为20mg/L、TC-Cu2+浓度为20mg/L+5mg/L、TC-Cu2+浓度为20mg/L+10mg/L、TC-Cu2+浓度为20mg/L+20mg/L、TC-Cu2+浓度为20mg/L+40mg/L,并用1M的NaOH、1M的HCl调节pH,pH范围为3至6;
(2)称取实施例1中所制得的MCS-Fe3+材料各0.01g,放入磨口锥形瓶中,不同浓度、不同pH条件下分别设置两个平行样;
(3)向(2)中倒入(1)中溶液各体积为30mL,放入摇床中,振荡时间24h,转速180r/min;
实验结果表明:Cu2+对于TC的吸附具有促进作用,且Cu2+浓度在0~20mg/L这一范围里去除率与Cu2+浓度存在正相关。
剩余浓度测定方法,包括测定TC和Cu2+的测定,其具体测定内容如下:
(1)将得到的单体系溶液过滤后用紫外可见分光光度计在波长为357nm下测定剩余TC;
(2)将得到的复合体系溶液过滤后酸化,并在波长为270nm下测定剩余TC;
(3)用火焰原子吸收测定剩余Cu2+浓度。
实施例5
一种同步净化四环素和Cu2+的吸附剂的制备方法,包括:
(1)配制溶液浓度为TC-Cu2+浓度为20mg/L+20mg/L,Cu2+-TC浓度为20mg/L+20mg/L,并用1M的NaOH、1M的HCl调节pH,pH为6;
(2)称取实施例1中所制得的MCS-Fe3+材料各0.01g,放入磨口锥形瓶中,不同浓度、不同吸附时间下分别设置两个平行样;
(3)向(2)中倒入(1)中溶液各体积为30mL,放入摇床中,转速180r/min;
实验结果表明:Cu2+对于TC的吸附具有明显促进作用;TC对于Cu2+的吸附也具有明显促进作用。
剩余浓度测定方法,包括测定TC和Cu2+的测定,其具体测定内容如下:
(1)将得到的单体系溶液过滤后用紫外可见分光光度计在波长为357nm下测定剩余TC;
(2)将得到的复合体系溶液过滤后酸化,并在波长为270nm下测定剩余TC;
(3)用火焰原子吸收测定剩余Cu2+浓度。
工作原理:
由图1可知:图1(a)中清楚地看到,纯的Fe3O4为表面粗糙的不规则纳米颗粒。而图1(b)中观察到的MCS-Fe3+复合材料的表面显然比Fe3O4更加光滑,这充分证明有机层包裹在Fe3O4的表面,或是Fe3O4纳米颗粒嵌入壳聚糖基质内部。有机质的包裹可以改善Fe3O4的团聚现象,并防止其长期暴露在空气中被氧化。Fe3O4和MCS-Fe3+截然不同的表面形态充分表明了材料的成功制备。
由图2可知:如图2(a)所示,Fe3O4为不规则纳米颗粒,并观察到明显的晶格条纹,表明了Fe3O4纳米颗粒的成功制备,其平均粒径在10nm左右,并且没有杂质包裹,边缘锐利。MCS-Fe3+的内部结构图2(b)所示,透射电镜下所观察到的MCS-Fe3+整体呈颗粒堆叠状,但依然能够根据晶格分辨出Fe3O4和其外部包裹的有机质层,Fe3O4边缘在被CS有机质层包裹后变得光滑。以上结论与SEM表征的结论基本一致,说明了MCS-Fe3+的成功制备。
由图3可得:当Fe3O4与CS的比例为1:0.5时,由于CS比重低,两种不同浓度溶液中的Fe3+在CS上的负载均饱和,而更偏酸性的环境可能不利于Fe3+与CS的络合,故0.01M Fe3+溶液的效果好于0.1M Fe3+。而在Fe3O4:CS为1:1、1:2、1:5的材料中,0.01M Fe3+溶液的吸附效果均差于0.1M Fe3+溶液,这表明Fe3+在0.01M Fe3+溶液的负载比例低于0.1M Fe3+溶液。同时,随CS比重的提高,TC去除率先增后减,说明Fe3+的单位负载量在Fe3O4:CS为1:1时达到最大。当继续提高Fe3+溶液的浓度时,Fe3+的水解将导致溶液处于极酸环境,不利于Fe3+与CS的络合以及戊二醛与CS之间的交联反应,因此,最终Fe3O4与CS质量比选择为1:1,Fe3+溶液的浓度定为0.1M。
由图4可得:图4展示了TC去除率随pH以及Cu2+浓度的变化情况,当初始pH值低于6时,pH值越低,TC的吸附量越小。应该强调的是,此时Cu2+的存在抑制了TC的吸附,且Cu2+浓度越高抑制作用越明显,表明Cu2+和TC在吸附过程中处于竞争关系。当系统初始pH值达到6时,TC的去除率迅速提高,Cu2+对TC的去除影响由抑制转换为促进,且Cu2+浓度在0-20mgL-1这一范围内去除率与Cu2+浓度正相关。这种现象的一般解释为Cu2+与TC会形成络合物从而促进了TC的吸附。然而,当pH=3时,Cu2+和TC就已经开始形成络合物,说明络合物的形成并没有在这个过程中立即促进TC的吸附,这一现象可从以下两个方面去解释:1)Cu2+和TC的络合作用与吸附竞争作用同时存在,而当pH在6以下时,竞争作用的表现强于络合作用,因此最终表现为抑制;2)当pH达到6时,TC的去除率突然提高且Cu2+转为促进作用,这可能与CuTC0络合物在pH=6时开始出现有关,因为Cu2+和TC在低pH下所形成的络合物CuHTC+与吸附剂的表面电位是相同的,这很可能导致静电斥力而不利于TC的负载。此外,当Cu2+的浓度达到40mg L-1,TC的去除率不再继续升高,甚至有所降低。这可能是因为Cu2+浓度增加,与TC形成竞争性吸附有关。
由图5可得:图5(a)中可以看到,pH=6下MCS-Fe3+对TC的吸附平衡时间约为48h。吸附时间的增加主要是因为负电荷TC比例较低,静电吸引力弱,TC无法迅速靠近吸附剂表面。Cu2+的存在明显促进了TC的吸附,Cu2+和TC的络合反应与Cu2+对TC吸附的促进作用很可能存在关联性。图5(b)可以明显看到当TC存在时,MCS-Fe3+对Cu2+的吸附量提高了约一倍。同时,其达到吸附平衡的时间也略有变化,这充分说明TC的存在影响了MCS-Fe3+对Cu2+的吸附。
上述现象表明:本发明使用戊二醛交联法,成功设计并合成了一种结构简单、效果稳定、环境友好的Fe3+掺杂磁性壳聚糖复合吸附剂(MCS-Fe3+)。在TC/Cu2+的复合吸附体系中发现,在pH=6下,Cu2+与TC均促进了彼此的吸附。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (5)

1.一种同步净化四环素和Cu2+的吸附剂的制备方法,其特征在于,具体包括以下步骤:
Step1:称取适量的FeCl2·4H2O和FeCl3·6H2O放入底烧瓶中,加入超纯水,磁力搅拌至完全溶解后,然后加入浓盐酸,并在氮气保护下,于上述溶液中加入适量的1.5M NaOH溶液,并在水浴下搅拌,待溶液冷却后,将制得的黑色Fe3O4磁性分离,并用超纯水洗至中性,最后,通过冷冻干燥获得Fe3O4磁性纳米颗粒;
Step2:将Step1中得到的适量的Fe3O4和适量的CS分散于一定浓度的Fe(NO3)3溶液中,并在室温下搅拌至形成CS-Fe3+络合物,然后于上述混合溶液中缓慢加入50%戊二醛,继续搅拌以进行交联,交联完成后将产物在60℃下真空干燥,然后研磨过筛。
Step3:清洗Step2所得产物,干燥得到MCS-Fe3+
2.根据权利要求1所述一种同步净化四环素和Cu2+的吸附剂的制备方法,其特征在于,所述Step1中,Fe3O4材料制备中加入的FeCl2·4H2O和FeCl3·6H2O的质量分别为2g、5.2g。
3.根据权利要求1所述一种同步净化四环素和Cu2+的吸附剂的制备方法,其特征在于,所述Step1中水浴下搅拌条件为:在80℃水浴下磁力搅拌30min。
4.根据权利要求1所述一种同步净化四环素和Cu2+的吸附剂的制备方法,其特征在于,所述Step2中,MCS-Fe3+材料制备中加入的Fe3O4和CS的质量均为0.5g,Fe(NO3)3溶液的浓度为0.01M。
5.根据权利要求1所述一种同步净化四环素和Cu2+的吸附剂的制备方法,其特征在于,所述Step3中清洗Step2所得产物条件为:用超纯水和95%乙醇溶液反复洗涤,真空干燥温度为60℃。
CN202210635052.0A 2022-06-06 2022-06-06 一种同步净化四环素和Cu2+的吸附剂的制备方法 Pending CN115007115A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210635052.0A CN115007115A (zh) 2022-06-06 2022-06-06 一种同步净化四环素和Cu2+的吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210635052.0A CN115007115A (zh) 2022-06-06 2022-06-06 一种同步净化四环素和Cu2+的吸附剂的制备方法

Publications (1)

Publication Number Publication Date
CN115007115A true CN115007115A (zh) 2022-09-06

Family

ID=83072196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210635052.0A Pending CN115007115A (zh) 2022-06-06 2022-06-06 一种同步净化四环素和Cu2+的吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN115007115A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107980A (zh) * 2011-01-18 2011-06-29 浙江大学 磁性壳聚糖吸附剂去除碱性废水中含磺酸基染料的方法
CN103920472A (zh) * 2014-04-11 2014-07-16 江苏大学 一种磁性壳聚糖复合微球吸附剂的制备方法
CN104874366A (zh) * 2015-05-29 2015-09-02 西北师范大学 壳聚糖磁性吸附材料的制备及在吸附污水中Pb2+、As3+的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107980A (zh) * 2011-01-18 2011-06-29 浙江大学 磁性壳聚糖吸附剂去除碱性废水中含磺酸基染料的方法
CN103920472A (zh) * 2014-04-11 2014-07-16 江苏大学 一种磁性壳聚糖复合微球吸附剂的制备方法
CN104874366A (zh) * 2015-05-29 2015-09-02 西北师范大学 壳聚糖磁性吸附材料的制备及在吸附污水中Pb2+、As3+的应用

Similar Documents

Publication Publication Date Title
Luo et al. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon
Zheng et al. Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions
Iftekhar et al. Synthesis of novel GA-g-PAM/SiO2 nanocomposite for the recovery of rare earth elements (REE) ions from aqueous solution
Guo et al. Fabrication of efficient alginate composite beads embedded with N-doped carbon dots and their application for enhanced rare earth elements adsorption from aqueous solutions
Xu et al. Facile assembly of three-dimensional cylindrical egg white embedded graphene oxide composite with good reusability for aqueous adsorption of rare earth elements
Kong et al. Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater
Luo et al. Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite
Zhang et al. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal
Zhou et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan microspheres
Peng et al. Magnetic Fe3O4@ silica–xanthan gum composites for aqueous removal and recovery of Pb2+
Ahmadpoor et al. Magnetic silica coated iron carbide/alginate beads: Synthesis and application for adsorption of Cu (II) from aqueous solutions
Ding et al. Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization
Liao et al. Hydrothermal fabrication of novel three-dimensional graphene oxide-pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents
Feng et al. Evaluation of Ce (III) and Gd (III) adsorption from aqueous solution using CTS-g-(AA-co-SS)/ISC hybrid hydrogel adsorbent
Altun et al. Cr (VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads
CN101973620A (zh) 利用氧化石墨烯片去除水中重金属离子的方法
Wang et al. Facile preparation of magnetic chitosan/poly (vinyl alcohol) hydrogel beads with excellent adsorption ability via freezing-thawing method
CN104448659B (zh) 一种磁性两性纤维素粉体材料、制备方法及应用
Feng et al. An environmental-friendly magnetic bio-adsorbent for high-efficiency Pb (Ⅱ) removal: Preparation, characterization and its adsorption performance
Zeng et al. Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability
WO2018122878A1 (en) Method for preparing cellulose microstructures-templated nanocomposites with enhanced arsenic removal capacity and a purifier thereof
Zeng et al. Adsorption of As (V) by magnetic alginate-chitosan porous beads based on iron sludge
CN112934165A (zh) 一种用于高效固定去除锑污染的多孔铁锰复合材料及其制备方法与应用
Chen et al. Preparation and recycled simultaneous adsorption of methylene blue and Cu2+ co-pollutants over carbon layer encapsulated Fe3O4/graphene oxide nanocomposites rich in amino and thiol groups
Kim et al. Core–shell magnetic manganese dioxide nanocomposites modified with citric acid for enhanced adsorption of basic dyes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination