CN114996850B - 一种基于cfd仿真技术的汽车冷却系统设计分析方法 - Google Patents

一种基于cfd仿真技术的汽车冷却系统设计分析方法 Download PDF

Info

Publication number
CN114996850B
CN114996850B CN202210665952.XA CN202210665952A CN114996850B CN 114996850 B CN114996850 B CN 114996850B CN 202210665952 A CN202210665952 A CN 202210665952A CN 114996850 B CN114996850 B CN 114996850B
Authority
CN
China
Prior art keywords
cooling
cooling system
pipeline
pressure
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210665952.XA
Other languages
English (en)
Other versions
CN114996850A (zh
Inventor
范海滨
王才新
王乾汉
张彤阳
安晓蒙
柳成冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAW Jiefang Automotive Co Ltd
Original Assignee
FAW Jiefang Automotive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAW Jiefang Automotive Co Ltd filed Critical FAW Jiefang Automotive Co Ltd
Priority to CN202210665952.XA priority Critical patent/CN114996850B/zh
Publication of CN114996850A publication Critical patent/CN114996850A/zh
Application granted granted Critical
Publication of CN114996850B publication Critical patent/CN114996850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明属于汽车冷却系统设计技术领域,公开了一种基于CFD仿真技术的汽车冷却系统设计分析方法。该基于CFD仿真技术的汽车冷却系统设计分析方法,使用数值模拟方法直接获得冷却系统内冷却管路在不同预设流量下的压降,并结合已知的系统部件的压降能够获得该冷却系统内总的在不同预设流量下的压降,将其与水泵在不同预设流量下的压升进行对比分析,即可获得该冷却系统运行时的所需的系统运行流量。该基于CFD仿真技术的汽车冷却系统设计分析方法能够准确获得冷却系统管路的水阻,即压降,便于在后续计算中直接得到冷却系统所需的流量,从而快速对冷却系统管路进行优化,从而使该冷却系统内的流量同时满足运行需求和冷却需求。

Description

一种基于CFD仿真技术的汽车冷却系统设计分析方法
技术领域
本发明涉及汽车冷却系统设计技术领域,尤其涉及一种基于CFD仿真技术的汽车冷却系统设计分析方法。
背景技术
电动汽车的冷却系统作为整车重要的一部分,一方面使动力系统关键零部件工作在合适的温度范围内,防止因温度失控导致性能受限甚至损坏;另一方面,冷却系统控制方案影响着整车的能量利用,对于纯电动汽车来说,没有发动机的余热可以利用,电池包的加热需采用辅助电加热器,由于取消了发动机,电子水泵等也将消耗一部分电能,从而影响整车的续驶里程。
因此,纯电动汽车冷却系统的合理优化构型,保证整车的热性能、尽可能少地消耗能量,对电动车来说具有重要意义。目前国内纯电动汽车冷却系统管路的水阻采用经验估算的方法,无法模拟真实水阻,导致计算冷却系统各部件所需的冷却液流量出现误差,造成在对冷却系统管路进行设计优化时步骤变得复杂。
发明内容
本发明的目的在于提供一种基于CFD仿真技术的汽车冷却系统设计分析方法,能够准确获得冷却系统管路的压降,便于直接得到冷却系统所需的流量,从而快速对冷却系统管路进行优化。
为达此目的,本发明采用以下技术方案:
该基于CFD仿真技术的汽车冷却系统设计分析方法中,冷却系统包括系统部件、水泵和连接系统部件和水泵的冷却管路,包括步骤:S1、计算冷却管路压差:使用数值模拟软件计算得到多个不同的预设流量下冷却管路的压差;S2、获得系统部件压差:获得系统部件在多个不同的预设流量下的系统部件的标定的已知压差;S3、计算冷却系统压差:将系统部件压差和冷却管路压差求和叠加,求得多个不同预设流量下的冷却系统的压差,并绘制冷却系统的压差流量曲线;S4、获得水泵压差:获得水泵在多个不同的预设流量下的水泵的标定的已知压差,并绘制水泵的压差流量曲线;S5、计算冷却系统流动流量:将冷却系统与水泵的压差流量曲线进行比较,获得冷却系统与水泵的压差流量曲线的交点,交点处的流量即为冷却系统流动流量。
可选地,系统部件包括散热器、输出装置和控制器,冷却管路包括第一管道、第二管道和第三管道,第一管道将散热器和控制器连通,第二管道将控制器和输出装置连通,第三管道将输出装置和散热器连通;冷却管路的压差为第一管道、第二管道和第三管道压差之和,系统部件的压差为散热器、输出装置和控制器的压差之和。
可选地,水泵设置于第一管道上。
可选地,输出装置为电动机或电池箱。
可选地,步骤S5之后还包括步骤:S6、校核流量:将冷却系统的流动流量与冷却系统部件时所需的冷却流量进行比较,流动流量与冷却流量中数值大的一个为冷却系统的系统流量。
可选地,步骤S1中,具体包括步骤:S11、建立冷却管路的三维模型;S12、使用三维模型划分网格;S13、将网格导入数值仿真软件;S14、在数值仿真软件中依次输入多个预设流量参数,分别计算得到冷却管路的压差。
可选地,步骤S12中,网格为结构化网格。
可选地,步骤S14中,还包括判断计算收敛的步骤,包括:设定求解目标值,判断数值模拟软件的输出目标值,当输出目标值不大于求解目标值时,则判断收敛,停止计算;当输出目标值大于求解目标值时,则判断不收敛,继续计算直至输出目标值不大于求解目标值。
可选地,步骤S14中,还包括步骤:输出冷却管路的压力云图,读取压力云图上冷却管路的进口和出口的压力,计算冷却管路的进口和出口的压力差值得到冷却管路的压差。
可选地,步骤S1中,预设流量设置有5个,分别为16L/min、17L/min、18L/min、19L/min和20L/min。
有益效果:
该基于CFD仿真技术的汽车冷却系统设计分析方法,使用数值模拟方法直接获得冷却系统内冷却管路在不同预设流量下的压降,并结合已知的系统部件的压降能够获得该冷却系统内总的在不同预设流量下的压降,将其与水泵在不同预设流量下的压升进行对比分析,即可获得该冷却系统运行时的所需的系统运行流量。该基于CFD仿真技术的汽车冷却系统设计分析方法能够准确获得冷却系统管路的水阻,即压降,便于在后续计算中直接得到冷却系统所需的流量,从而快速对冷却系统管路进行优化,从而使该冷却系统内的流量同时满足运行需求和冷却需求。
附图说明
图1是本发明具体实施方式提供的冷却系统的示意图;
图2是本发明具体实施方式提供的冷却管路的压差流量曲线图;
图3是本发明具体实施方式提供的输出装置的压差流量曲线图;
图4是本发明具体实施方式提供的控制器的压差流量曲线图;
图5是本发明具体实施方式提供的散热器的压差流量曲线图;
图6是本发明具体实施方式提供的冷却系统的压差流量曲线图;
图7是本发明具体实施方式提供的水泵的压差流量曲线图;
图8是本发明具体实施方式提供的冷却系统和水泵的压差流量叠加之后的曲线图;
图9是本发明具体实施方式提供的基于CFD仿真技术的汽车冷却系统设计分析方法的流程图。
图中:
10、水泵;11、第一管道;12、第二管道;13、第三管道;21、散热器;22、输出装置;23、控制器。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
在本实施例中,选取用STAR-CCM软件进行仿真计算,现有的CFD(计算流体力学,Computational Fluid Dynamics)软件主流有STAR-CCM、FLUENT、CFX、OpenFOAM和NNW-FlowStar等,具体软件的选取由使用者的习惯和熟悉程度所决定,此处不作具体限制。
请参考图1至图8,在本实施例中,该基于CFD仿真技术的汽车冷却系统设计分析方法中,冷却系统包括系统部件、水泵10和连接系统部件和水泵10的冷却管路,包括步骤:
S1、计算冷却管路压差:使用数值模拟软件计算得到多个不同的预设流量下冷却管路的压差;具体地,包括如下步骤:S11、建立冷却管路的三维模型;S12、使用三维模型划分网格;S13、将网格导入数值仿真软件;S14、在数值仿真软件中依次输入多个预设流量参数,分别计算得到冷却管路的压差。
进一步地,步骤S12中,网格为结构化网格。结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元,为六面体;在结构化网格中,每一个节点及控制容积的几何信息必须加以存储,但该节点的邻点关系则是可以依据网格编号的规律而自动得出的,因此数据结构简单,不必专门存储这类信息,这是结构化网格的一大优点;除此外,还具有的优点是:1:网格生成的速度快;2:网格生成的质量好;3:对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。
可选地,步骤S14中,还包括判断计算收敛的步骤,包括:设定求解目标值,判断数值模拟软件的输出目标值,当输出目标值不大于求解目标值时,则判断收敛,停止计算;当输出目标值大于求解目标值时,则判断不收敛,继续计算直至输出目标值不大于求解目标值。在本市和私立中,使用的软件为STAR-CCM,则该软件的收敛判断标准为,首先设置相邻两个迭代步内的最大值与最小值的目标差值,该目标差值即为求解目标值,然后计算时输出相邻两个迭代步内的最大值与最小值的计算差值,该计算差值即为输出目标值,当输出目标值不大于求解目标值时,则判断收敛,此时停止计算并输出计算结果。
可选地,步骤S14中,还包括步骤:输出冷却管路的压力云图,读取压力云图上冷却管路的进口和出口的压力,计算冷却管路的进口和出口的压力差值得到冷却管路的压差。具体地,在从压力云图上读取进口和出口压力时,直接读取冷却管路中心轴线处的压力,使得读取压力的过程更加简单快捷。
请继续参考图1,本实施例提供了一种典型的纯电动客车电动机冷却系统的结构,在本实施例中,系统部件包括散热器21、输出装置22和控制器23,冷却管路包括第一管道11、第二管道12和第三管道13,第一管道11将散热器21和控制器23连通,第二管道12将控制器23和输出装置22连通,第三管道13将输出装置22和散热器21连通;冷却管路的压差为第一管道11、第二管道12和第三管道13压差之和,系统部件的压差为散热器21、输出装置22和控制器23的压差之和。进一步地,水泵10设置于第一管道11上。可选地,输出装置22为电动机或电池箱,在本实施例中选取为电动机。
进一步地,步骤S1中,预设流量设置有5个,分别为16L/min、17L/min、18L/min、19L/min和20L/min。第一管道11、第二管道12和第三管道13在上述流量下计算所得到的压差如下表所示,包括第一管道11、第二管道12和第三管道13的冷却管路在上述5个预设流量下的流量压差曲线图如图2所示:
S2、获得系统部件压差:获得系统部件在多个不同的预设流量下的系统部件的标定的已知压差;该系统部件,包括散热器21、电动机和控制器23,这些部件的压差即为冷却液从各部件的进口到出口的压降,这些值在部件生产制造时已经确定了,只需简单测量或者直接从部件技术手册中读取即可,本实施例不作具体限制。散热器21、输出装置22(即电动机)和控制器23的流量曲线图如图3至图5所述。
S3、计算冷却系统压差:将系统部件压差和冷却管路压差求和叠加,求得多个不同预设流量下的冷却系统的压差,并绘制冷却系统的压差流量曲线;该冷却系统的压差流量曲线图如图6所示。
S4、获得水泵10压差:获得水泵10在多个不同的预设流量下的水泵10的标定的已知压差,并绘制水泵10的压差流量曲线;该水泵10在上述5个预设流量下的压差流量曲线图如图7所示。
S5、计算冷却系统流动流量:将冷却系统与水泵10的压差流量曲线进行比较,获得冷却系统与水泵10的压差流量曲线的交点,交点处的流量即为冷却系统流动流量。如图8所示,将冷却系统的压差流量图和水泵10的压差流量图绘制于同一幅图中,则可得到冷却系统与水泵10的压差流量曲线的交点,该交点处水泵10的压升和冷却系统的总压降相同,也即交点处的流量即为该冷却系统所需的能满足系统运行的流动流量,本实施例中,该交点处的流量为17.8L/min。
可选地,步骤S5之后还包括步骤:S6、校核流量:将冷却系统的流动流量与冷却系统部件时所需的冷却流量进行比较,流动流量与冷却流量中数值大的一个为冷却系统的系统流量。当系统流量大于冷却流量时,则表明冷却系统内冷却液循环时能够满足各部件的冷却流量需求;当系统流量小于冷却流量时,则表明冷却系统内冷却液循环时无法满足各部件的冷却流量需求,此时应增大系统内冷却液流量,也即应增大水泵10的输出功率。
该基于CFD仿真技术的汽车冷却系统设计分析方法,使用数值模拟方法直接获得冷却系统内冷却管路在不同预设流量下的压降,并结合已知的系统部件的压降能够获得该冷却系统内总的在不同预设流量下的压降,将其与水泵10在不同预设流量下的压升进行对比分析,即可获得该冷却系统运行时的所需的系统运行流量。该基于CFD仿真技术的汽车冷却系统设计分析方法能够准确获得冷却系统管路的水阻,即压降,便于在后续计算中直接得到冷却系统所需的流量,从而快速对冷却系统管路进行优化,从而使该冷却系统内的流量同时满足运行需求和冷却需求。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

1.一种基于CFD仿真技术的汽车冷却系统设计分析方法,所述冷却系统包括系统部件、水泵(10)和连接所述系统部件和所述水泵(10)的冷却管路,其特征在于,包括步骤:
S1、计算所述冷却管路压差:使用数值模拟软件计算得到多个不同的预设流量下所述冷却管路的压差;
S2、获得所述系统部件压差:获得所述系统部件在多个不同的所述预设流量下的所述系统部件的标定的已知压差;
S3、计算所述冷却系统压差:将所述系统部件压差和所述冷却管路压差求和叠加,求得多个不同所述预设流量下的所述冷却系统的压差,并绘制所述冷却系统的压差流量曲线;
S4、获得所述水泵(10)压差:获得所述水泵(10)在多个不同的所述预设流量下的所述水泵(10)的标定的已知压差,并绘制所述水泵(10)的压差流量曲线;
S5、计算所述冷却系统流动流量:将所述冷却系统与所述水泵(10)的压差流量曲线进行比较,获得所述冷却系统与所述水泵(10)的压差流量曲线的交点,所述交点处的流量即为所述冷却系统流动流量;
所述系统部件包括散热器(21)、输出装置(22)和控制器(23),所述冷却管路包括第一管道(11)、第二管道(12)和第三管道(13),所述第一管道(11)将所述散热器(21)和所述控制器(23)连通,所述第二管道(12)将所述控制器(23)和所述输出装置(22)连通,所述第三管道(13)将所述输出装置(22)和所述散热器(21)连通;所述冷却管路的压差为所述第一管道(11)、所述第二管道(12)和所述第三管道(13)压差之和,所述系统部件的压差为所述散热器(21)、所述输出装置(22)和所述控制器(23)的压差之和;
所述步骤S1中,具体包括步骤:
S11、建立所述冷却管路的三维模型;
S12、使用所述三维模型划分网格;
S13、将所述网格导入数值仿真软件;
S14、在数值仿真软件中依次输入多个所述预设流量参数,分别计算得到所述冷却管路的压差。
2.根据权利要求1所述的基于CFD仿真技术的汽车冷却系统设计分析方法,其特征在于,所述水泵(10)设置于所述第一管道(11)上。
3.根据权利要求1所述的基于CFD仿真技术的汽车冷却系统设计分析方法,其特征在于,所述输出装置(22)为电动机或电池箱。
4.根据权利要求1所述的基于CFD仿真技术的汽车冷却系统设计分析方法,其特征在于,所述步骤S5之后还包括步骤:
S6、校核流量:将所述冷却系统的流动流量与冷却所述系统部件时所需的冷却流量进行比较,所述流动流量与所述冷却流量中数值大的一个为所述冷却系统的系统流量。
5.根据权利要求1所述的基于CFD仿真技术的汽车冷却系统设计分析方法,其特征在于,所述步骤S12中,所述网格为结构化网格。
6.根据权利要求1所述的基于CFD仿真技术的汽车冷却系统设计分析方法,其特征在于,所述步骤S14中,还包括判断计算收敛的步骤,包括:设定求解目标值,判断所述数值模拟软件的输出目标值,当所述输出目标值不大于所述求解目标值时,则判断收敛,停止计算;当所述输出目标值大于所述求解目标值时,则判断不收敛,继续计算直至所述输出目标值不大于所述求解目标值。
7.根据权利要求1所述的基于CFD仿真技术的汽车冷却系统设计分析方法,其特征在于,所述步骤S14中,还包括步骤:输出所述冷却管路的压力云图,读取所述压力云图上所述冷却管路的进口和出口的压力,计算所述冷却管路的进口和出口的压力差值得到所述冷却管路的压差。
8.根据权利要求1所述的基于CFD仿真技术的汽车冷却系统设计分析方法,其特征在于,所述步骤S1中,所述预设流量设置有5个,分别为16L/min、17L/min、18L/min、19L/min和20L/min。
CN202210665952.XA 2022-06-13 2022-06-13 一种基于cfd仿真技术的汽车冷却系统设计分析方法 Active CN114996850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210665952.XA CN114996850B (zh) 2022-06-13 2022-06-13 一种基于cfd仿真技术的汽车冷却系统设计分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210665952.XA CN114996850B (zh) 2022-06-13 2022-06-13 一种基于cfd仿真技术的汽车冷却系统设计分析方法

Publications (2)

Publication Number Publication Date
CN114996850A CN114996850A (zh) 2022-09-02
CN114996850B true CN114996850B (zh) 2024-05-10

Family

ID=83034653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210665952.XA Active CN114996850B (zh) 2022-06-13 2022-06-13 一种基于cfd仿真技术的汽车冷却系统设计分析方法

Country Status (1)

Country Link
CN (1) CN114996850B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112214936A (zh) * 2020-09-09 2021-01-12 黄冈格罗夫氢能汽车有限公司 一种氢能汽车冷却水泵布置方案的优化设计方法及系统
CN112214937A (zh) * 2020-09-09 2021-01-12 黄冈格罗夫氢能汽车有限公司 一种氢能汽车冷却管路的优化设计方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090948A1 (en) * 2020-09-22 2022-03-24 Westinghouse Electric Company Llc Two and three-dimensional model based correction of elbow tap flow measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112214936A (zh) * 2020-09-09 2021-01-12 黄冈格罗夫氢能汽车有限公司 一种氢能汽车冷却水泵布置方案的优化设计方法及系统
CN112214937A (zh) * 2020-09-09 2021-01-12 黄冈格罗夫氢能汽车有限公司 一种氢能汽车冷却管路的优化设计方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于CFD方法的整车冷却系统匹配分析;侯献军;马将森;杜松泽;李增科;;汽车技术;20151124(11);全文 *

Also Published As

Publication number Publication date
CN114996850A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN103136423B (zh) 一种发动机冷却系统优化设计方法
JP2007163131A (ja) プレート式熱交換器の強度決定方法とプレート式熱交換器の製作方法並びに工業プロセスエンジニアリングプラントの製作方法
CN110311154A (zh) 一种氢燃料电池电堆的冷却系统
CN111859557B (zh) 一种基于Hyperstudy和Fluent联合仿真的液冷板结构尺寸优化方法
CN116522755A (zh) 车用电池组及其热管理模块耦合建模与联合仿真方法
CN114065567A (zh) 一种燃料电池电堆公共歧管结构优化方法和装置
CN208111632U (zh) 电池热管理系统
CN112966391B (zh) 一种基于傅里叶解析扩散角的功率模块热阻抗建模方法
CN114996850B (zh) 一种基于cfd仿真技术的汽车冷却系统设计分析方法
CN113809440B (zh) 一种液冷动力电池冷却液流量控制方法、系统及汽车
CN112711879B (zh) 一种燃料电池发动机三维热管理仿真方法
CN116976244A (zh) 一种基于拓扑优化的燃料电池冷却通道的设计方法及系统
CN116845286A (zh) 基于重卡的三维非等温质子交换膜燃料电池优化冷却方法
CN114593000A (zh) 一种车辆的热循环系统、发动机预热方法及装置
CN115618635A (zh) 储能集装箱水冷系统工作参数的计算方法及设备
CN112231826B (zh) 一种基于gt-suit的一维燃油车整车热管理仿真分析方法
CN114722550A (zh) 冷却管路排布方法、装置、电子设备及存储介质
CN205559045U (zh) 一种增压汽油机冷却系统
CN114707435B (zh) 再生式换热器不同运行方式下流量转折点分析方法及系统
CN114300708B (zh) 一种燃料电池冷却液自动加水排气方法
Tao et al. Numerical Modelling of Coolant Filling and De-aeration in a Battery Electric Vehicle Cooling System
CN117972909B (zh) 车辆冷却系统中的流量确定方法、装置、存储介质和产品
CN217426807U (zh) 测试装置
CN216050013U (zh) 一种燃料电池发动机散热器测试装置
CN116502348A (zh) 一种电池包的热阻计算方法、系统、存储介质及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant