CN114995416A - Global path navigation method, device, terminal equipment and storage medium - Google Patents
Global path navigation method, device, terminal equipment and storage medium Download PDFInfo
- Publication number
- CN114995416A CN114995416A CN202210603086.1A CN202210603086A CN114995416A CN 114995416 A CN114995416 A CN 114995416A CN 202210603086 A CN202210603086 A CN 202210603086A CN 114995416 A CN114995416 A CN 114995416A
- Authority
- CN
- China
- Prior art keywords
- mobile robot
- path
- global path
- narrow channel
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000003860 storage Methods 0.000 title claims abstract description 10
- 238000001514 detection method Methods 0.000 claims description 25
- 230000001276 controlling effect Effects 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 14
- 238000013507 mapping Methods 0.000 claims description 12
- 230000002596 correlated effect Effects 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 230000000875 corresponding effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 5
- 230000000249 desinfective effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000010408 sweeping Methods 0.000 description 3
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 235000019169 all-trans-retinol Nutrition 0.000 description 1
- 239000011717 all-trans-retinol Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0255—Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本申请适用于路径规划技术领域,提供一种全局路径导航方法、装置、终端设备及存储介质,通过基于代价地图规划由移动机器人的当前位置至目标位置的全局路径,代价地图中离障碍物预设膨胀半径内的栅格具有第一代价值、离障碍物预设膨胀半径外的栅格具有小于第一代价值且与栅格离障碍物的距离负相关的第二代价值;控制移动机器人沿全局路径在作业环境中运动;沿全局路径遍历离移动机器人第一预设距离内的第一路径点;若第一路径点中存在代价值大于预设代价阈值的第二路径点,则确定第二路径点处于窄通道;基于窄通道控制移动机器人在作业环境中运动,可以精确的检测移动机器人的运动路径上的窄通道,从而提高移动机器人的窄通道通过能力。
The present application is applicable to the technical field of path planning, and provides a global path navigation method, device, terminal device and storage medium. Suppose the grid within the expansion radius has the first generation value, and the grid outside the preset expansion radius from the obstacle has the second generation value which is less than the first generation value and is negatively related to the distance between the grid and the obstacle; control the mobile robot Move in the working environment along the global path; traverse the first path point within the first preset distance from the mobile robot along the global path; if there is a second path point whose cost value is greater than the preset cost threshold in the first path point, determine The second path point is in the narrow channel; based on the narrow channel to control the mobile robot to move in the working environment, the narrow channel on the movement path of the mobile robot can be accurately detected, thereby improving the narrow channel passing ability of the mobile robot.
Description
技术领域technical field
本申请属于路径规划技术领域,尤其涉及一种全局路径导航方法、装置、终端设备及存储介质。The present application belongs to the technical field of route planning, and in particular, relates to a global route navigation method, apparatus, terminal device and storage medium.
背景技术Background technique
在移动机器人的某些应用环境中,常常有大量的狭窄通道。移动机器人的窄通道通过能力直接决定了其导航的灵活性。提高移动机器人窄通道通过能力的方式,一方面可以从减小移动机器人的尺寸着手,但是这会导致移动机器人运动时的稳定性减弱;另一方面,就是提高移动机器人的路径规划及控制算法的能力,从而可以在移动机器人的尺寸允许的前提下,精准控制移动机器人安全通过窄通道。在控制移动机器人通过窄通道之前,需要先检测窄通道,窄通道的检测精度直接影响到移动机器人的窄通道通过能力。In some application environments of mobile robots, there are often a large number of narrow passages. The narrow channel passing ability of a mobile robot directly determines the flexibility of its navigation. On the one hand, one can start with reducing the size of the mobile robot, but this will reduce the stability of the mobile robot when it moves; on the other hand, it is to improve the path planning and control algorithms of the mobile robot. Therefore, the mobile robot can be precisely controlled to safely pass through the narrow passage under the premise of the size of the mobile robot. Before controlling the mobile robot to pass through the narrow channel, the narrow channel needs to be detected. The detection accuracy of the narrow channel directly affects the narrow channel passing ability of the mobile robot.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供了一种全局路径导航方法、装置、终端设备及存储介质,可以精确的检测移动机器人的运动路径上的窄通道。The embodiments of the present application provide a global path navigation method, device, terminal device and storage medium, which can accurately detect narrow channels on the motion path of a mobile robot.
本申请实施例的第一方面提供了一种全局路径导航方法,包括:A first aspect of the embodiments of the present application provides a global path navigation method, including:
基于作业环境的代价地图,规划由移动机器人的当前位置至目标位置的全局路径,所述代价地图中离障碍物预设膨胀半径内的栅格具有第一代价值、离障碍物预设膨胀半径外的栅格具有第二代价值,第二代价值小于第一代价值且与栅格离障碍物的距离负相关;Based on the cost map of the working environment, plan the global path from the current position of the mobile robot to the target position. In the cost map, the grid within the preset expansion radius from the obstacle has the first generation value, and the preset expansion radius from the obstacle has the first generation value. The grid outside has the second generation value, and the second generation value is smaller than the first generation value and is negatively related to the distance between the grid and the obstacle;
控制所述移动机器人沿所述全局路径在所述作业环境中运动;controlling the mobile robot to move in the work environment along the global path;
在所述移动机器人沿所述全局路径在所述作业环境中运动的过程中,沿所述全局路径遍历离所述移动机器人第一预设距离内的第一路径点,检测所述第一路径点的代价值;During the movement of the mobile robot in the work environment along the global path, traverse a first path point within a first preset distance from the mobile robot along the global path, and detect the first path point value;
若所述第一路径点中存在代价值大于预设代价阈值的第二路径点,则确定所述第二路径点处于窄通道;If there is a second waypoint with a cost value greater than a preset cost threshold in the first waypoint, determining that the second waypoint is in a narrow channel;
基于所述窄通道,控制所述移动机器人在所述作业环境中运动。Based on the narrow passage, the mobile robot is controlled to move in the work environment.
本申请实施例的第二方面提供了一种全局路径导航装置,包括:A second aspect of the embodiments of the present application provides a global path navigation device, including:
路径规划单元,用于基于作业环境的代价地图,规划由移动机器人的当前位置至目标位置的全局路径,所述代价地图中离障碍物预设膨胀半径内的栅格具有第一代价值、离障碍物预设膨胀半径外的栅格具有第二代价值,第二代价值小于第一代价值且与栅格离障碍物的距离负相关;The path planning unit is used to plan the global path from the current position of the mobile robot to the target position based on the cost map of the working environment, and the grids within the preset expansion radius from the obstacle in the cost map have the first generation value and the distance from the obstacle. The grid outside the preset expansion radius of the obstacle has the second generation value, and the second generation value is smaller than the first generation value and is negatively correlated with the distance between the grid and the obstacle;
第一运动控制单元,用于控制所述移动机器人沿所述全局路径在所述作业环境中运动;a first motion control unit for controlling the mobile robot to move in the work environment along the global path;
代价值检测单元,用于在所述移动机器人沿所述全局路径在所述作业环境中运动的过程中,沿所述全局路径遍历离所述移动机器人第一预设距离内的第一路径点,检测所述第一路径点的代价值;A cost value detection unit for traversing a first path point within a first preset distance from the mobile robot along the global path during the movement of the mobile robot in the work environment along the global path , and detect the cost value of the first path point;
窄通道检测单元,用于若所述第一路径点中存在代价值大于预设代价阈值的第二路径点,则确定所述第二路径点处于窄通道;a narrow channel detection unit, configured to determine that the second waypoint is in a narrow channel if there is a second waypoint with a cost value greater than a preset cost threshold in the first waypoint;
第二运动控制单元,用于基于所述窄通道,控制所述移动机器人在所述作业环境中运动。The second motion control unit is configured to control the mobile robot to move in the working environment based on the narrow passage.
本申请实施例的第三方面提供了一种机器人,包括处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本申请实施例的第一方面所述全局路径导航方法的步骤。A third aspect of the embodiments of the present application provides a robot, including a processor and a computer program stored in the memory and executable on the processor, when the processor executes the computer program, the present invention is implemented The steps of the global path navigation method described in the first aspect of the application embodiments.
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例的第一方面所述全局路径导航方法的步骤。A fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the first aspect of the embodiments of the present application is implemented Describe the steps of the global path navigation method.
本申请实施例的第一方面提供的全局路径导航方法,首先,基于代价地图,规划由移动机器人的当前位置至目标位置的全局路径,控制移动机器人沿全局路径在作业环境中运动,代价地图中离障碍物预设膨胀半径内的栅格具有第一代价值、离障碍物预设膨胀半径外的栅格具有第二代价值,第二代价值小于第一代价值且与栅格离障碍物的距离负相关;然后,沿全局路径遍历离移动机器人第一预设距离内的第一路径点,若第一路径点中存在代价值大于预设代价阈值的第二路径点,则确定第二路径点处于窄通道;最后,基于窄通道,控制移动机器人在作业环境中运动,可以精确的检测移动机器人的运动路径上的窄通道,从而提高移动机器人的窄通道通过能力。In the global path navigation method provided by the first aspect of the embodiments of the present application, first, based on the cost map, a global path from the current position of the mobile robot to the target position is planned, and the mobile robot is controlled to move in the working environment along the global path. The grid within the preset expansion radius from the obstacle has the first generation value, and the grid outside the preset expansion radius from the obstacle has the second generation value. Then, traverse the first path point within the first preset distance from the mobile robot along the global path, if there is a second path point whose cost value is greater than the preset cost threshold in the first path point, then determine the second path point. The path point is in the narrow channel; finally, based on the narrow channel, the mobile robot is controlled to move in the working environment, and the narrow channel on the moving path of the mobile robot can be accurately detected, thereby improving the narrow channel passing ability of the mobile robot.
可以理解的是,上述第二方面至第四方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。It can be understood that, for the beneficial effects of the foregoing second aspect to the fourth aspect, reference may be made to the relevant descriptions in the foregoing first aspect, and details are not described herein again.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本申请实施例提供的全局路径导航方法的第一种流程示意图;1 is a first schematic flowchart of a global path navigation method provided by an embodiment of the present application;
图2是本申请实施例提供的全局路径导航方法的第二种流程示意图;2 is a second schematic flowchart of a global path navigation method provided by an embodiment of the present application;
图3是本申请实施例提供的全局路径导航方法的第三种流程示意图;3 is a third schematic flowchart of a global path navigation method provided by an embodiment of the present application;
图4是本申请实施例提供的全局路径导航方法的第四种流程示意图;4 is a fourth schematic flowchart of a global path navigation method provided by an embodiment of the present application;
图5是本申请实施例提供的全局路径导航方法的第五种流程示意图;5 is a fifth schematic flowchart of a global path navigation method provided by an embodiment of the present application;
图6是本申请实施例提供的全局路径导航方法的第六种流程示意图;6 is a sixth schematic flowchart of a global path navigation method provided by an embodiment of the present application;
图7是本申请实施例提供的检测框的示意图;7 is a schematic diagram of a detection frame provided by an embodiment of the present application;
图8是本申请实施例提供的映射有测距数据点的图像的示意图FIG. 8 is a schematic diagram of an image mapped with ranging data points provided by an embodiment of the present application
图9是本申请实施例提供的全局路径导航装置的结构示意图;9 is a schematic structural diagram of a global route navigation device provided by an embodiment of the present application;
图10是本申请实施例提供的终端设备的结构示意图。FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
具体实施方式Detailed ways
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as a specific system structure and technology are set forth in order to provide a thorough understanding of the embodiments of the present application. However, it will be apparent to those skilled in the art that the present application may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It is to be understood that, when used in this specification and the appended claims, the term "comprising" indicates the presence of the described feature, integer, step, operation, element and/or component, but does not exclude one or more other The presence or addition of features, integers, steps, operations, elements, components and/or sets thereof.
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It will also be understood that, as used in this specification and the appended claims, the term "and/or" refers to and including any and all possible combinations of one or more of the associated listed items.
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, in the description of the specification of the present application and the appended claims, the terms "first", "second", "third", etc. are only used to distinguish the description, and should not be construed as indicating or implying relative importance.
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。References in this specification to "one embodiment" or "some embodiments" and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application. Thus, appearances of the phrases "in one embodiment," "in some embodiments," "in other embodiments," "in other embodiments," etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean "one or more but not all embodiments" unless specifically emphasized otherwise. The terms "including", "including", "having" and their variants mean "including but not limited to" unless specifically emphasized otherwise.
本申请实施例提供一种全局路径导航方法,可以由终端设备的处理器在运行相应的计算机程序时执行,通过精确的检测移动机器人的运动路径上的窄通道,并基于窄通道控制移动机器人在作业环境中运动,可以提高移动机器人的窄通道通过能力。The embodiment of the present application provides a global path navigation method, which can be executed by a processor of a terminal device when a corresponding computer program is run, by accurately detecting a narrow channel on a moving path of a mobile robot, and controlling the mobile robot based on the narrow channel Movement in the working environment can improve the narrow passage capacity of the mobile robot.
在应用中,终端设备可以移动机器人,也可以是(云)服务器、手机、平板电脑、可穿戴设备、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本、个人数字助理(Personal Digital Assistant,PDA)等能够与移动机器人通信,以对移动机器人进行控制的计算设备。移动机器人可以是具有作业和移动功能的任意类型的机器人,例如,扫地机器人、消杀机器人、植保无人机、自动导引车等。In the application, the terminal device can be a mobile robot, or a (cloud) server, a mobile phone, a tablet, a wearable device, an Augmented Reality (AR)/Virtual Reality (VR) device, a laptop, a super A mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a netbook, a personal digital assistant (Personal Digital Assistant, PDA) and other computing devices that can communicate with a mobile robot to control the mobile robot. The mobile robot can be any type of robot with working and moving functions, such as a sweeping robot, a disinfecting robot, a plant protection drone, an automatic guided vehicle, and the like.
如图1所示,本申请实施例提供的全局路径导航方法,包括如下步骤S100至S105:As shown in FIG. 1 , the global path navigation method provided by the embodiment of the present application includes the following steps S100 to S105:
步骤S100、对作业环境的栅格地图进行膨胀,生成代价地图,进入步骤S101。In step S100, the grid map of the work environment is expanded to generate a cost map, and the process proceeds to step S101.
在应用中,作业环境是移动机器人当前所处的环境中、移动机器人正在作业或待作业的任意地理位置区域。根据移动机器人类型的不同,作业环境也不同,例如,当移动机器人为扫地机器人时,作业环境为扫地机器人正在进行清扫或待清扫的居家场所、办公场所、生产场所等;当移动机器人为消杀机器人时,作业环境为消杀机器人正在进行消杀或待消杀的居家场所、办公场所、生产场所等;当移动机器人为植保机器人时,作业环境为植保机器人正在进行植保作业或待进行植保作业的农田、园林等;当移动机器人为自动导引车时,作业环境为自动导引车正在进行作业或待进行作业的仓库、生产场所等。In the application, the working environment is the environment where the mobile robot is currently located, or any geographic location area where the mobile robot is working or is waiting to work. Depending on the type of mobile robot, the working environment is also different. For example, when the mobile robot is a sweeping robot, the working environment is the home, office, and production place where the sweeping robot is cleaning or is to be cleaned; When the robot is a robot, the working environment is the home, office, production site, etc. where the disinfecting robot is disinfecting or is to be disinfected; when the mobile robot is a plant protection robot, the working environment is that the plant protection robot is performing or waiting for plant protection. farmland, garden, etc.; when the mobile robot is an automatic guided vehicle, the working environment is the warehouse, production place, etc. where the automatic guided vehicle is working or is to be operated.
在应用中,在生成代价地图之前,先对作业环境的电子地图进行栅格化处理,生成作业环境的栅格地图;然后遍历栅格地图,将栅格地图中离障碍物所占据的栅格的距离在预设膨胀半径内的栅格赋值为第一代价值,将栅格地图中离障碍物所占据的栅格的距离在预设膨胀半径外的栅格赋值为第二代价值,生成代价地图。可以将第一代价值设置为一个大于第二代价值的固定值,第二代价值应当小于第一代价值且与栅格离障碍物所占据的栅格的距离负相关。任意两个栅格之间的距离可以为这两个栅格的几何中心点之间的直线距离。In the application, before generating the cost map, the electronic map of the working environment is first rasterized to generate the grid map of the working environment; The grid whose distance is within the preset expansion radius is assigned as the first generation value, and the grid in the grid map whose distance from the grid occupied by the obstacle is outside the preset expansion radius is assigned as the second generation value to generate cost map. The first generation value can be set to a fixed value greater than the second generation value. The second generation value should be smaller than the first generation value and negatively related to the distance of the grid from the grid occupied by the obstacle. The distance between any two grids can be the straight-line distance between the geometric center points of the two grids.
在一个实施例中,所述代价地图中的栅格的代价值的计算公式为:In one embodiment, the formula for calculating the cost value of the grid in the cost map is:
其中,m0表示代价值,m1表示第一代价值,ρ表示栅格离障碍物的距离,r表示预设膨胀半径,m2表示第二代价值,k表示常系数。Among them, m 0 represents the cost value, m 1 represents the first generation value, ρ represents the distance from the grid to the obstacle, r represents the preset expansion radius, m 2 represents the second generation value, and k represents the constant coefficient.
在应用中,栅格的代价值可以表示栅格在电子地图中的灰度值,或者,栅格被障碍物占据的概率。当代价值表示栅格的灰度值时,使得代价地图中被障碍物占据和未被障碍物占据栅格的灰度值不同,从而使得代价地图中被障碍物占据和未被障碍物占据的栅格能够被明显区分。第一代价值和第二代价值可以由用户根据实际需要通过终端设备的人机交互器件进行设置,例如,当代价值表示灰度值且灰度值具有从0%(白色)到100%(黑色)的亮度值和0(黑色)到255(白色)的灰度等级时,第一代价值为具有A亮度或a灰度等级的灰度值,第二代价值为具有B亮度或b灰度等级的灰度值,0%≤B≤C<A≤100%且B与栅格离障碍物所占据的栅格的距离负相关,0≤a<c≤b≤255且B与栅格离障碍物所占据的栅格的距离正相关;或者,当代价值表示概率时,第一代价值为100%的概率、第二代价值为D的概率,0%≤D<100%且D与栅格离障碍物所占据的栅格的距离负相关。In application, the cost value of the grid can represent the gray value of the grid in the electronic map, or the probability that the grid is occupied by obstacles. When the contemporary value represents the gray value of the grid, the gray value of the grid occupied by the obstacle and the grid not occupied by the obstacle in the cost map are different, so that the grid occupied by the obstacle and the grid not occupied by the obstacle in the cost map are different. can be clearly distinguished. The value of the first generation and the value of the second generation can be set by the user through the human-computer interaction device of the terminal device according to actual needs, for example, the contemporary value represents the gray value and the gray value has a value from 0% (white) to 100% (black). ) and a grayscale of 0 (black) to 255 (white), the first cost value is a grayscale value with A brightness or a grayscale, and the second cost value is a grayscale with B brightness or b grayscale The gray value of the level, 0%≤B≤C<A≤100% and B is negatively related to the distance of the grid from the grid occupied by the obstacle, 0≤a<c≤b≤255 and B is the distance from the grid to the grid. The distance of the grid occupied by the obstacle is positively correlated; or, when the contemporary value represents the probability, the first cost value is the probability of 100%, the second cost value is the probability of D, 0%≤D<100% and D and the grid The distance of the grid from the grid occupied by the obstacle is negatively correlated.
在应用中,预设膨胀半径可以设置为小于或等于移动机器人的半径。当移动机器人为非圆形时,移动机器人的半径可以是移动机器人的最小外切圆的半径。为了增加移动机器人通过窄通道的通过性,可以将预设膨胀半径设置为略低于移动机器人的半径,例如,将预设膨胀半径的取值范围设置为[90%*移动机器人的半径,100%*移动机器人的半径)。In application, the preset expansion radius can be set to be less than or equal to the radius of the mobile robot. When the mobile robot is non-circular, the radius of the mobile robot may be the radius of the smallest circumscribed circle of the mobile robot. In order to increase the passability of the mobile robot through the narrow passage, the preset expansion radius can be set to be slightly lower than the radius of the mobile robot. For example, the value range of the preset expansion radius can be set to [90%*radius of the mobile robot, 100 %* The radius of the mobile robot).
在应用中,代价地图中的所有栅格被赋值之后的代价值可以存储在存储器中,例如,可以在存储器中预先设置一个数据存储列表,将代价地图中的所有栅格被赋值之后的代价值存储至数据存储列表中。还可以在存储器中建立代价地图与对应的作业环境之间的对应关系,以在后续需要控制移动机器人对作业环境进行作业时,可以快速的查找到对应的代价地图,有效节省处理器的算力资源和执行时间。对应关系可以为映射关系,可以以对应关系表的形式存在,对应关系表可以是显示查找表(Look-Up-Table,LUT),也可以通过其他输入数据即可查找并输出对应的查找结果的形式存在。In the application, the cost value after all the grids in the cost map are assigned can be stored in the memory, for example, a data storage list can be preset in the memory, and the cost value after all the grids in the cost map are assigned Stored in the datastore list. The corresponding relationship between the cost map and the corresponding operating environment can also be established in the memory, so that when the mobile robot needs to be controlled to operate in the operating environment, the corresponding cost map can be quickly found, effectively saving the computing power of the processor. resources and execution time. The corresponding relationship can be a mapping relationship, and can exist in the form of a corresponding relationship table. The corresponding relationship table can be a display look-up table (Look-Up-Table, LUT), or it can search and output the corresponding search results through other input data. form exists.
在应用中,对于任意的作业环境,终端设备只需要执行一次步骤S100,根据作业环境的栅格地图生成代价地图并进行存储,以便于在后续基于代价地图规划移动机器人由作业环境的当前位置移动至目标位置的全局路径时使用。若作业环境发生改变(例如,作业环境中的障碍物的数量、位置或尺寸发生改变),则需要对作业环境的栅格地图进行更新,并根据更新后的栅格地图重新生成新的代价地图,实现对代价地图的更新。In the application, for any working environment, the terminal device only needs to perform step S100 once, generate and store a cost map according to the grid map of the working environment, so as to facilitate the subsequent planning of the mobile robot based on the cost map to move from the current position of the working environment Used when the global path to the target location. If the operating environment changes (for example, the number, location or size of obstacles in the operating environment changes), the grid map of the operating environment needs to be updated, and a new cost map should be regenerated based on the updated grid map , to update the cost map.
步骤S101、基于所述代价地图,规划由移动机器人的当前位置至目标位置的全局路径;Step S101, planning a global path from the current position of the mobile robot to the target position based on the cost map;
步骤S102、控制所述移动机器人沿所述全局路径在所述作业环境中运动,进入步骤S103。Step S102 , controlling the mobile robot to move in the working environment along the global path, and proceeding to step S103 .
在应用中,在生成代价地图之后,根据作业环境的实际作业需求,基于路径规划方法,规划由移动机器人在代价地图中的当前位置至目标位置的全局路径,然后基于代价地图将全局路径按照缩放比例尺映射到真实的作业环境中,基于移动机器人的当前位姿控制移动机器人沿全局路径在作业环境中运动,以实现对作业环境的全局作业,同时,在代价地图中标注移动机器人的实时位置。目标位置即为移动机器人在作业环境中的作业终点在代价地图中的映射。In the application, after the cost map is generated, according to the actual operation requirements of the operating environment, based on the path planning method, plan the global path from the current position of the mobile robot in the cost map to the target position, and then scale the global path based on the cost map. The scale is mapped to the real working environment. Based on the current pose of the mobile robot, the mobile robot is controlled to move along the global path in the working environment to realize the global operation of the working environment. At the same time, the real-time position of the mobile robot is marked in the cost map. The target position is the mapping of the end point of the mobile robot in the work environment in the cost map.
在应用中,适用于移动机器人的路径规划方法可以是传统的路径规划算法、基于采样的路径规划算法、智能仿生算法等。传统的路径规划算法可以是A算法、Dijkstra算法、D算法、人工势场法等,基于采样的路径规划算法可以是PRM算法、RRT算法等,智能仿生路径规划算法可以是神经网络算法、蚁群算法、遗传算法等。In applications, the path planning methods suitable for mobile robots can be traditional path planning algorithms, sampling-based path planning algorithms, intelligent bionic algorithms, and the like. The traditional path planning algorithm can be A algorithm, Dijkstra algorithm, D algorithm, artificial potential field method, etc. The sampling-based path planning algorithm can be PRM algorithm, RRT algorithm, etc. The intelligent bionic path planning algorithm can be neural network algorithm, ant colony algorithm, etc. Algorithms, Genetic Algorithms, etc.
步骤S103、沿所述全局路径遍历离所述移动机器人第一预设距离内的第一路径点,检测所述第一路径点的代价值,进入步骤S104。Step S103 , traverse a first path point within a first preset distance from the mobile robot along the global path, detect the cost value of the first path point, and proceed to step S104 .
在应用中,在移动机器人沿所述全局路径在作业环境中运动的过程中,从移动机器人沿全局路径在作业环境中运动的起始时刻开始,在代价地图中沿全局路径遍历与移动机器人之间的距离在第一预设距离内的路径点(称之为第一路径点),检测遍历到的所有第一路径点所在的栅格的代价值。由于在步骤S100中已经将每个栅格赋值为第一代价值或第二代价值,因此,检测到的每个第一路径点所在的栅格的代价值是第一代价值或第二代价值。In the application, in the process of moving the mobile robot in the work environment along the global path, starting from the start time when the mobile robot moves in the work environment along the global path, in the cost map traversing along the global path and the mobile robot The distance between the path points is within the first preset distance (referred to as the first path point), and the cost value of the grid where all the traversed first path points are located is detected. Since each grid has been assigned the first generation value or the second generation value in step S100, the detected value of the grid where each first waypoint is located is the first generation value or the second generation value value.
在应用中,由于窄通道两侧的墙壁或遮挡物在栅格地图和代价地图中都属于障碍物,因此,要检测窄通道,可以通过检测障碍物占据的栅格和障碍物周围的栅格来实现,又由于步骤S100中已经对障碍物占据和障碍物周围的栅格分别采用不同的代价值进行赋值,因此,要检测窄通道,可以通过检测障碍物占据的栅格的代价值和障碍物周围的栅格的代价值来实现。In the application, since the walls or occluders on both sides of the narrow channel belong to the obstacles in the grid map and the cost map, to detect the narrow channel, you can detect the grid occupied by the obstacle and the grid around the obstacle In addition, since the grids occupied by obstacles and the grids around the obstacles have been assigned different cost values in step S100, to detect narrow channels, the cost value and obstacles of the grid occupied by obstacles can be detected. The cost value of the grid around the object is implemented.
在应用中,第一预设距离可以根据实际需要进行设置,第一预设距离应当设置为大于或等于一个栅格的宽度,以使得终端设备每次至少遍历一个栅格。为了提高窄通道的检测精度,利于后续控制移动机器人顺利通过或避开窄通道,可以将终端设备设定为每次至多检测到一个窄通道,基于这种设定,第一预设距离可以设置为小于或等于栅格地图(或代价地图)中距离最小的两个障碍物之间的距离,以避免终端设备将一次检测到多个窄通道的情况误识别为检测到一个窄通道。In an application, the first preset distance can be set according to actual needs, and the first preset distance should be set to be greater than or equal to the width of one grid, so that the terminal device traverses at least one grid at a time. In order to improve the detection accuracy of the narrow channel and facilitate the subsequent control of the mobile robot to smoothly pass through or avoid the narrow channel, the terminal device can be set to detect at most one narrow channel at a time. Based on this setting, the first preset distance can be set It is less than or equal to the distance between two obstacles with the smallest distance in the grid map (or cost map), so as to avoid the terminal device from misidentifying the situation of detecting multiple narrow channels at one time as detecting one narrow channel.
步骤S104、若所述第一路径点中存在代价值大于预设代价阈值的第二路径点,则确定所述第二路径点处于窄通道,进入步骤S105。Step S104 , if there is a second waypoint with a cost value greater than a preset cost threshold in the first waypoint, determine that the second waypoint is in a narrow channel, and go to step S105 .
在应用中,由于窄通道通常是指宽度小于、等于或略大于移动机器人的直径(半径的两倍)的通道,而步骤S100中已经将离障碍物(包含窄通道两侧的墙壁或遮挡物)预设膨胀半径内的栅格赋值为第一代价值、离障碍物预设膨胀半径外的栅格赋值为第二代价值,因此,处于窄通道中的路径点所在的栅格的代价值必然等于第一代价值或一个较大的第二代价值,相应的,预设代价阈值可以设置为大于或等于第三代价值,第三代价值等于与障碍物之间的距离大于预设距离阈值的栅格所具有第二代价值。预设距离阈值等于预设膨胀半径+E*移动机器人的半径,E的取值范围可以设置为0%~10%。In application, since a narrow channel usually refers to a channel whose width is less than, equal to or slightly larger than the diameter (twice of the radius) of the mobile robot, the distance from obstacles (including walls or obstructions on both sides of the narrow channel) has been set in step S100. ) The grid within the preset expansion radius is assigned the first generation value, and the grid outside the preset expansion radius from the obstacle is assigned the second generation value. Therefore, the grid where the path point in the narrow passage is located has the cost value. It must be equal to the value of the first generation or a larger value of the second generation. Correspondingly, the preset cost threshold can be set to be greater than or equal to the value of the third generation, and the value of the third generation is equal to the distance between the obstacle and the obstacle is greater than the preset distance. Thresholded raster has second generation value. The preset distance threshold is equal to the preset expansion radius + E* the radius of the mobile robot, and the value range of E can be set to 0% to 10%.
步骤S105、基于所述窄通道,控制所述移动机器人在所述作业环境中运动。Step S105 , controlling the mobile robot to move in the working environment based on the narrow channel.
在应用中,在确定移动机器人沿全局路径移动时,其当前所处位置第一预设距离内存在窄通道时,可以根据窄通道的位置采取对应的措施控制移动机器人在作业环境中运动,以使得移动机器人可以顺利通过窄通道,或者,重新规划全局路径绕过窄通道。In the application, when it is determined that the mobile robot moves along the global path, when there is a narrow channel within the first preset distance from its current position, corresponding measures can be taken according to the position of the narrow channel to control the mobile robot to move in the working environment, so as to prevent the mobile robot from moving in the working environment. The mobile robot can pass through the narrow passage smoothly, or re-plan the global path to bypass the narrow passage.
如图2所示,在一个实施例中,步骤S105包括:As shown in FIG. 2, in one embodiment, step S105 includes:
步骤S201、控制所述移动机器人降低运动速度通过所述窄通道。Step S201 , controlling the mobile robot to reduce the movement speed to pass through the narrow passage.
在应用中,为了使得移动机器人能够安全的通过窄通道,避免移动机器人与窄通道两侧的障碍物发生碰撞,可以降低移动机器人的运动速度,以使得移动机器人可以低速通过窄通道。具体的,可以获取移动机器人的当前运动速度,在移动机器人的当前运行速度大于预设运动速度阈值时,将移动机器人的当前运动速度降低为预设运动速度阈值,在移动机器人的当前运动速度小于或等于预设运动速度阈值时,保持移动机器人的当前运动速度不变。In applications, in order to enable the mobile robot to safely pass through the narrow aisle and avoid collision between the mobile robot and obstacles on both sides of the narrow aisle, the moving speed of the mobile robot can be reduced so that the mobile robot can pass through the narrow aisle at a low speed. Specifically, the current motion speed of the mobile robot can be obtained, and when the current motion speed of the mobile robot is greater than the preset motion speed threshold, the current motion speed of the mobile robot is reduced to the preset motion speed threshold, and when the current motion speed of the mobile robot is less than the preset motion speed threshold or equal to the preset motion speed threshold, keep the current motion speed of the mobile robot unchanged.
如图3所示,在一个实施例中,步骤S105包括如下步骤S301和S302:As shown in FIG. 3, in one embodiment, step S105 includes the following steps S301 and S302:
步骤S301、重新规划由所述移动机器人的当前位置至目标位置的新全局路径,所述新全局路径中处于所述窄通道的第三路径点离所述窄通道的中心点的距离小于第二预设距离,进入步骤S302;Step S301, re-plan a new global path from the current position of the mobile robot to the target position, the distance between the third path point in the narrow channel and the center point of the narrow channel in the new global path is smaller than the second distance. Preset distance, enter step S302;
步骤S302、控制所述移动机器人沿所述新全局路径在所述作业环境中运动。Step S302, controlling the mobile robot to move in the working environment along the new global path.
在应用中,在确定移动机器人沿全局路径移动时,其当前所处位置第一预设距离内存在窄通道时,也可以根据窄通道的位置重新规划移动机器人的当前位置至目标位置的新全局路径,以避免移动机器人通过窄通道时碰撞到窄通道两侧的障碍物。具体的,可以调整全局路径中经过窄通道的局部路径(也即第二路径点所处的路径),使得调整之后的局部路径(也即第三路径点所处的路径)经过或者更靠近窄通道的中心点,也即使得第三路径点离所述窄通道的中心点的距离小于第二预设距离,第二预设距离可以根据实际需要设置为使得第三路径点相对于第二路径点更靠近窄通道的中心点的距离值,例如,第二预设距离小于或等于第二路径点与窄通道的中心点之间的距离。在基于第三路径点生成新全局路径之后,即控制移动机器人沿新全局路径继续在作业环境中运动,以继续对作业环境进行作业。In the application, when it is determined that the mobile robot moves along the global path, when there is a narrow channel within the first preset distance from its current position, it is also possible to re-plan the new global from the current position of the mobile robot to the target position according to the position of the narrow channel. path to avoid collision with obstacles on both sides of the narrow passage when the mobile robot passes through the narrow passage. Specifically, the local path passing through the narrow channel in the global path (that is, the path where the second waypoint is located) can be adjusted, so that the adjusted local path (that is, the path where the third waypoint is located) passes through or is closer to the narrow channel. The center point of the channel, that is, the distance between the third path point and the center point of the narrow channel is smaller than the second preset distance, and the second preset distance can be set according to actual needs such that the third path point is relative to the second path. The distance value of the point closer to the center point of the narrow channel, for example, the second preset distance is less than or equal to the distance between the second path point and the center point of the narrow channel. After the new global path is generated based on the third path point, the mobile robot is controlled to continue to move in the work environment along the new global path, so as to continue to work on the work environment.
如图4所示,在一个实施例中,步骤S302包括如下步骤S401和S402:As shown in FIG. 4, in one embodiment, step S302 includes the following steps S401 and S402:
步骤S401、检测所述窄通道中离所述第二路径点第三预设距离内且代价值最低的第三路径点,进入步骤步骤S402;Step S401, detecting the third waypoint in the narrow channel that is within the third preset distance from the second waypoint and has the lowest cost value, and then proceeds to step S402;
步骤S402、重新规划由所述移动机器人的当前位置至目标位置且经过所述第三路径点的新全局路径。Step S402, re-plan a new global path from the current position of the mobile robot to the target position and passing through the third path point.
在应用中,由于步骤S100中已经将离窄通道两侧的障碍物预设膨胀半径内的栅格赋值为第一代价值、离障碍物预设膨胀半径外的栅格赋值为第二代价值,并使得第二代价值小于第一代价值且与栅格离障碍物的距离负相关,因此,根据第二路径点的代价值即可获知第二路径点离窄通道两侧的障碍物的距离,进而获知第二路径点离窄通道的中心点的位置,在需要根据更靠近窄通道的中心点的第三路径点重新规划新全局路径时,可以参照第二路径点的位置来确定第三路径点的位置。具体的,可以先查找代价地图中离第二路径点第三预设距离内的栅格;再筛选出离第二路径点第三预设距离内的栅格中代价值最低的栅格,作为第三路径点;最后基于第三路径点重新规划新全局路径。第三预设距离可以根据实际需要设置为小于或等于第二路径点离窄通道两侧的障碍物的最大距离。In application, since in step S100, the grids within the preset expansion radius of the obstacles on both sides of the narrow channel have been assigned as the first generation value, and the grids outside the preset expansion radius of the obstacles are assigned as the second generation value , and the second generation value is smaller than the first generation value and negatively correlated with the distance from the grid to the obstacle. Therefore, according to the cost value of the second path point, the distance between the second path point and the obstacles on both sides of the narrow passage can be known. distance, and then know the position of the second waypoint from the center point of the narrow channel. When the new global path needs to be re-planned according to the third waypoint closer to the center point of the narrow channel, the position of the second waypoint can be used to determine the first path. The location of the three waypoints. Specifically, the grids within the third preset distance from the second waypoint in the cost map can be searched first; then the grids with the lowest cost value among the grids within the third preset distance from the second waypoint are screened out as The third waypoint; finally, the new global path is re-planned based on the third waypoint. The third preset distance can be set to be less than or equal to the maximum distance between the second waypoint and the obstacles on both sides of the narrow passage according to actual needs.
如图5所示,在一个实施例中,所述预设膨胀半径小于所述移动机器人的半径,步骤S105包括如下步骤S501至S504:As shown in FIG. 5 , in one embodiment, the preset expansion radius is smaller than the radius of the mobile robot, and step S105 includes the following steps S501 to S504:
步骤S501、基于设置于所述移动机器人的测距传感器的测距数据,获取所述窄通道的宽度,进入步骤S502;Step S501, obtaining the width of the narrow channel based on the ranging data of the ranging sensor set on the mobile robot, and entering step S502;
步骤S502、若所述窄通道的宽度低于预设宽度阈值,则在所述代价地图中所述窄通道所处位置添加虚拟障碍物,生成新代价地图,进入步骤S503;Step S502, if the width of the narrow channel is lower than a preset width threshold, add a virtual obstacle in the cost map where the narrow channel is located to generate a new cost map, and then go to step S503;
步骤S503、基于所述新代价地图,重新规划由移动机器人的当前位置至目标位置且避开所述窄通道的新全局路径,进入步骤S504;Step S503, based on the new cost map, re-plan a new global path from the current position of the mobile robot to the target position and avoid the narrow channel, and enter step S504;
步骤S504、控制所述移动机器人沿所述新全局路径在所述作业环境中运动。Step S504, controlling the mobile robot to move in the working environment along the new global path.
在应用中,若将预设膨胀半径设置为与移动机器人的半径相同,则容易由于数据噪声的影响,导致检测到的部分窄通道在代价地图中判定为移动机器人无法通过的通道,从而在无法通过的窄通道中添加虚拟障碍物,使得无法通过的窄通道被封死,导致无法规划出使得移动机器人能够通过窄通道的全局路径,因此,可以将预设膨胀半径设置为略低于移动机器人的半径。In the application, if the preset expansion radius is set to be the same as the radius of the mobile robot, it is easy to cause some of the detected narrow channels to be determined in the cost map as channels that the mobile robot cannot pass due to the influence of data noise. Virtual obstacles are added to the narrow passages that pass through, so that the narrow passages that cannot be passed are blocked, which makes it impossible to plan a global path that enables the mobile robot to pass through the narrow passages. Therefore, the preset expansion radius can be set to be slightly lower than that of the mobile robot. radius.
在应用中,若将预设膨胀半径设置为低于移动机器人的半径,规划出的全局路径可能会经过宽度低于或非常接近于移动机器人的直径的窄通道,因此,需要利用设置于移动机器人的测距传感器(例如,激光雷达、超声波测距传感器、红外测距传感器、深度相机(例如,RGBD相机)等)测量窄通道的实际宽度,若窄通道的宽度低于预设宽度阈值,可以在代价地图中窄通道所处位置添加虚拟障碍物,从而迫使终端设备重新规划避开窄通道的新全局路径。预设宽度阈值可以根据实际需要设置为等于或略大于移动机器人的直径,例如,将预设宽度阈值的取值范围设置为[100%*移动机器人的直径,110%*移动机器人的直径)。In the application, if the preset expansion radius is set to be lower than the radius of the mobile robot, the planned global path may pass through a narrow channel whose width is lower than or very close to the diameter of the mobile robot. The actual width of the narrow channel is measured by the ranging sensor (for example, lidar, ultrasonic ranging sensor, infrared ranging sensor, depth camera (for example, RGBD camera), etc.), if the width of the narrow channel is lower than the preset width threshold, you can Virtual obstacles are added at the location of the narrow channel in the cost map, thereby forcing the terminal device to re-plan a new global path to avoid the narrow channel. The preset width threshold can be set equal to or slightly larger than the diameter of the mobile robot according to actual needs. For example, the value range of the preset width threshold can be set to [100%*diameter of the mobile robot, 110%*diameter of the mobile robot).
如图6所示,在一个实施例中,步骤S501,包括如下步骤S601至S607:As shown in FIG. 6, in one embodiment, step S501 includes the following steps S601 to S607:
步骤S601、以所述移动机器人在所述作业环境中的位置为边界点、以所述移动机器人在所述作业环境中的运动方向为中轴线方向,构建涵盖所述窄通道所处位置的检测框,所述检测框中经过所述边界点的边界或切线垂直于所述中轴线,进入步骤S602;Step S601, taking the position of the mobile robot in the working environment as the boundary point, and taking the movement direction of the mobile robot in the working environment as the central axis direction, construct a detection covering the position of the narrow passage. frame, the boundary or tangent passing through the boundary point in the detection frame is perpendicular to the central axis, and the process goes to step S602;
步骤S602、生成所述检测框所在区域的图像,进入步骤S603;Step S602, generate an image of the area where the detection frame is located, and enter step S603;
步骤S603、基于所述移动机器人的当前位姿,将所述全局路径映射至所述图像,进入步骤S604;Step S603, map the global path to the image based on the current pose of the mobile robot, and enter step S604;
步骤S604、以所述全局路径为分隔线,将所述图像划分为第一图像区域和第二图像区域,进入步骤S605;Step S604, using the global path as a dividing line, divide the image into a first image area and a second image area, and enter step S605;
步骤S605、将所述移动机器人的测距数据映射至所述图像,进入步骤S606;Step S605, map the ranging data of the mobile robot to the image, and enter step S606;
步骤S606、获取所述第一图像区域中的每个检测数据与所述第二图像区域中的每个检测数据之间的距离值,进入步骤S607;Step S606, obtain the distance value between each detection data in the first image area and each detection data in the second image area, and enter step S607;
步骤S607、获取所有所述距离值中的最小距离值,作为所述窄通道的宽度。Step S607: Obtain the minimum distance value among all the distance values as the width of the narrow channel.
在应用中,终端设备可以先根据窄通道在真实的作业环境中所处的位置,构建一个涵盖窄通道所处的位置且大小合适的检测框;In the application, the terminal device can first construct a detection frame of suitable size covering the position of the narrow channel according to the position of the narrow channel in the real working environment;
再根据测距传感器获得的涵盖检测框的测距数据,以预设分辨率获取检测框所在区域的图像,当测距传感器是激光雷达、超声波测距传感器或红外测距传感器时,测距数据是点云数据,图像是点云图像;当测距传感器是深度相机时,测距数据是深度图像数据,图像是深度图像;预设分辨率可以设置为大于或等于代价地图的分辨率,以使得每个栅格对应点云数据中的至少一个点云数据点或深度图像中的至少一个像素点;Then, according to the ranging data obtained by the ranging sensor covering the detection frame, the image of the area where the detection frame is located is obtained at a preset resolution. When the ranging sensor is a lidar, ultrasonic ranging sensor or infrared ranging sensor, the ranging data is the point cloud data, and the image is the point cloud image; when the ranging sensor is the depth camera, the ranging data is the depth image data, and the image is the depth image; the preset resolution can be set to be greater than or equal to the resolution of the cost map, to Make each grid correspond to at least one point cloud data point in the point cloud data or at least one pixel point in the depth image;
然后获取移动机器人的当前位姿,位姿包含移动机器人在图像坐标系中的位置坐标和姿态,图像坐标系可以是二维坐标系也可以是三维坐标系,对应的,位置坐标可以包括二维坐标或三维坐标;基于移动机器人的当前位姿建立代价地图坐标系和图像坐标系之间的映射关系,基于映射关系将全局地图映射至图像;Then obtain the current pose of the mobile robot. The pose includes the position coordinates and pose of the mobile robot in the image coordinate system. The image coordinate system can be a two-dimensional coordinate system or a three-dimensional coordinate system. Correspondingly, the position coordinates can include a two-dimensional coordinate system. Coordinates or three-dimensional coordinates; establish the mapping relationship between the cost map coordinate system and the image coordinate system based on the current pose of the mobile robot, and map the global map to the image based on the mapping relationship;
再然后以映射至图像中的全局路径为分隔线,将图像划分为两个图像区域,也即第一图像区域和第二图像区域,并将测距数据映射至划分区域之后的图像;也可以先将测距数据映射至图像,再以映射至图像中的全局路径为分隔线,将图像划分为两个图像区域,也即步骤S604和S605的执行顺序可以调换;Then, take the global path mapped to the image as the dividing line, divide the image into two image areas, namely the first image area and the second image area, and map the ranging data to the image after the divided area; First map the ranging data to the image, and then use the global path mapped to the image as a dividing line to divide the image into two image areas, that is, the execution order of steps S604 and S605 can be exchanged;
接下来先分别获取第一图像区域中的第一个测距数据点与第二图像区域中的每个测距数据点之间的距离值,再分别获取第一图像区域中的第二个测距数据点与第二图像区域中的每个测距数据点之间的距离值,……,依此类推;同理,也可以先分别获取第二图像区域中的第一个测距数据点与第一图像区域中的每个测距数据点之间的距离值,再分别获取第二图像区域中的第二个测距数据点与第一图像区域中的每个测距数据点之间的距离值,……,依此类推,最终获取到第一图像区域中的每个测距数据点与第二图像区域中的每个测距数据点之间的距离值;当测距传感器是激光雷达、超声波测距传感器或红外测距传感器时,测距数据点是点云数据中的数据点;当测距传感器是深度相机时,测距数据点是深度图像数据中的像素点;Next, firstly obtain the distance value between the first ranging data point in the first image area and each ranging data point in the second image area, and then separately obtain the second ranging data point in the first image area. The distance value between the distance data point and each distance measurement data point in the second image area, ..., and so on; in the same way, the first distance measurement data point in the second image area can also be obtained separately. The distance value from each ranging data point in the first image area, and then obtain the distance between the second ranging data point in the second image area and each ranging data point in the first image area. The distance value of , ..., and so on, finally obtain the distance value between each ranging data point in the first image area and each ranging data point in the second image area; when the ranging sensor is When lidar, ultrasonic ranging sensor or infrared ranging sensor, ranging data points are data points in point cloud data; when ranging sensors are depth cameras, ranging data points are pixels in depth image data;
最后比较所有距离值的大小,将所有距离值中的最小距离值,作为窄通道的宽度。Finally, compare the size of all distance values, and use the smallest distance value among all distance values as the width of the narrow channel.
在应用中,检测框可以根据实际需要设置为任意规则形状,只要能够涵盖窄通道所处位置即可,例如,矩形、圆形、椭圆形等。In application, the detection frame can be set to any regular shape according to actual needs, as long as it can cover the position where the narrow channel is located, for example, a rectangle, a circle, an ellipse, and the like.
如图7所示,示例性的示出了检测框的示意图;其中,11表示目标位置,12表示全局路径,13表示测距数据点,14表示窄通道两侧的障碍物,15表示检测框,16表示移动机器人,X表示运动方向,Y表示切线或边界方向。As shown in FIG. 7 , a schematic diagram of the detection frame is exemplarily shown; wherein, 11 represents the target position, 12 represents the global path, 13 represents the ranging data point, 14 represents the obstacles on both sides of the narrow channel, and 15 represents the detection frame , 16 represents the mobile robot, X represents the movement direction, and Y represents the tangent or boundary direction.
如图8所示,示例性的示出了映射有测距数据点的图像的示意图;其中,21表示图像,22表示全局路径,23表示测距数据点,24表示第一图像区域,25表示第二图像区域,26表示移动机器人。As shown in FIG. 8 , it exemplarily shows a schematic diagram of an image mapped with ranging data points; wherein, 21 represents an image, 22 represents a global path, 23 represents ranging data points, 24 represents a first image area, and 25 represents a The second image area, 26, represents the mobile robot.
在一个实施例中,步骤S603,包括:In one embodiment, step S603 includes:
基于所述移动机器人的当前位姿,建立所述代价地图坐标系和所述图像坐标系之间的映射关系;Based on the current pose of the mobile robot, establishing a mapping relationship between the cost map coordinate system and the image coordinate system;
基于所述映射关系,将所述全局路径映射至所述图像。Based on the mapping relationship, the global path is mapped to the image.
在一个实施例中,步骤S103之后,还包括:In one embodiment, after step S103, it further includes:
若所述第一路径点中不存在代价值大于预设代价阈值的第二路径点,则返回执行步骤S102。If there is no second waypoint whose cost value is greater than the preset cost threshold in the first waypoint, the process returns to step S102.
在应用中,若第一路径点中不存在代价值大于预设代价阈值的第二路径点,则说明全局路径上离移动机器人第一预设距离内不存在窄通道,此时可以返回执行步骤S102,继续控制移动机器人沿全局路径运动,然后继续执行步骤S103。In the application, if there is no second path point whose cost value is greater than the preset cost threshold value in the first path point, it means that there is no narrow channel within the first preset distance from the mobile robot on the global path, and the execution steps can be returned at this time. S102, continue to control the mobile robot to move along the global path, and then continue to perform step S103.
在一个实施例中,步骤S101之前包括:In one embodiment, before step S101, it includes:
若接收到开始作业控制指令,则进入窄通道模式。If the start job control command is received, it will enter the narrow channel mode.
在应用中,用户可以通过终端设备的人机交互器件输入开始作业控制指令,以控制移动机器人根据开始作业控制指令,进入窄通道模式,然后执行步骤S101。In the application, the user can input the start operation control instruction through the human-computer interaction device of the terminal device, so as to control the mobile robot to enter the narrow channel mode according to the start operation control instruction, and then perform step S101.
在一个实施例中,步骤S105之后包括:In one embodiment, after step S105, it includes:
若接收到停止作业控制指令,则停止运动,并进入关机模式、待机模式或充电模式。If the stop operation control command is received, the movement will be stopped, and the machine will enter a shutdown mode, a standby mode or a charging mode.
在应用中,用户可以通过终端设备的人机交互器件输入停止作业控制指令,以控制移动机器人根据停止作业控制指令,停止对作业环境进行作业,停止对作业环境进行作业之后,可以停止运动,并进入关机模式、待机模式或充电模式。停止对作业环境进行作业之后,也可以获取其他作业环境的代价地图,然后执行步骤S101,基于全局路径导航方法对其他作业环境进行作业。In the application, the user can input the stop operation control instruction through the human-computer interaction device of the terminal device to control the mobile robot to stop the operation in the operation environment according to the stop operation control instruction. Enter shutdown mode, standby mode or charging mode. After the work on the work environment is stopped, cost maps of other work environments may also be acquired, and then step S101 is executed to work on other work environments based on the global route navigation method.
在应用中,终端设备的人机交互器件可以包括实体按键、触控传感器、手势识别传感器和语音识别单元中的至少一种,使得用户可以通过对应的触控方式、手势操控方式或语音控制方式输入移动控制指令。实体按键和触控传感器可以设置于终端设备的任意位置,例如,控制面板。对实体按键的触控方式具体可以是按压或拨动。对触控传感器的触控方式具体可以为按压或触摸等。手势识别传感器可以设置在终端设备的壳体外部的任意位置。用于控制终端设备的手势可以由用户根据实际需要自定义设置或者采用出厂时的默认设置。语音识别单元可以包括麦克风和语音识别芯片,也可以仅包括麦克风并由终端设备的处理器来实现语音识别功能。用于控制终端设备的语音可以由用户根据实际需要自定义设置或者采用出厂时的默认设置。In an application, the human-computer interaction device of the terminal device may include at least one of a physical button, a touch sensor, a gesture recognition sensor, and a voice recognition unit, so that the user can use the corresponding touch method, gesture control method or voice control method Enter motion control commands. Physical buttons and touch sensors can be placed anywhere on the terminal device, for example, the control panel. The touch method for the physical button may be pressing or toggling. The touch method of the touch sensor may specifically be pressing or touching. The gesture recognition sensor can be set at any position outside the casing of the terminal device. The gestures used to control the terminal device can be customized by the user according to actual needs, or the factory default settings can be adopted. The speech recognition unit may include a microphone and a speech recognition chip, or may only include a microphone and the speech recognition function is implemented by the processor of the terminal device. The voice used to control the terminal device can be customized by the user according to actual needs or the factory default setting can be adopted.
在应用中,步骤S201以及步骤S301和S302可以同时执行,步骤S201以及步骤S501和S504也可以同时执行,也即在控制移动机器人通过窄通道之前和通过窄通道的过程中,或者,在控制移动机器人避开窄通道之前和避开窄通道的过程中,都可以降低移动机器人的运行速度,以使得移动机器人可以低速通过或避开窄通道,避免与窄通道两侧的障碍物发生碰撞。In application, step S201 and steps S301 and S302 can be performed simultaneously, and step S201 and steps S501 and S504 can also be performed simultaneously, that is, before and during the process of controlling the mobile robot to pass through the narrow passage, or, during the control movement Before the robot avoids the narrow passage and during the process of avoiding the narrow passage, the running speed of the mobile robot can be reduced, so that the mobile robot can pass or avoid the narrow passage at a low speed and avoid collision with obstacles on both sides of the narrow passage.
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that the size of the sequence numbers of the steps in the above embodiments does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present application.
本申请实施例还提供一种全局路径导航装置,用于执行上述方法实施例中的方法步骤。该装置可以是终端设备中的虚拟装置(virtual appliance),由终端设备的处理器运行,也可以是终端设备本身。The embodiments of the present application further provide a global path navigation device, which is used for executing the method steps in the above method embodiments. The apparatus may be a virtual appliance (virtual appliance) in the terminal device, executed by the processor of the terminal device, or may be the terminal device itself.
如图9所示,本申请实施例提供的全局路径导航装置1000包括:As shown in FIG. 9 , the global
地图生成单元100,用于对作业环境的栅格地图进行膨胀,生成代价地图,进入路径规划单元101;The
路径规划单元101,用于基于代价地图,规划由移动机器人的当前位置至目标位置的全局路径,进入第一运动控制单元102;The
第一运动控制单元102,用于控制所述移动机器人沿所述全局路径在所述作业环境中运动,进入代价值检测单元103;a first
代价值检测单元103,用于在所述移动机器人沿所述全局路径在所述作业环境中运动的过程中,沿所述全局路径遍历离所述移动机器人第一预设距离内的第一路径点,检测所述第一路径点的代价值,进入窄通道检测单元104;The cost
窄通道检测单元104,用于若所述第一路径点中存在代价值大于预设代价阈值的第二路径点,则确定所述第二路径点处于窄通道,进入第二运动控制单元105;Narrow
第二运动控制单元105,用于基于所述窄通道,控制所述移动机器人在所述作业环境中运动。The second
在一个实施例中,所述全局路径导航装置,还包括:In one embodiment, the global path navigation device further includes:
返回单元,用于若所述第一路径点中不存在代价值大于预设代价阈值的第二路径点,则返回第一运动控制单元。The returning unit is configured to return to the first motion control unit if there is no second waypoint whose cost value is greater than a preset cost threshold in the first waypoint.
在一个实施例中,所述全局路径导航装置,还包括:In one embodiment, the global path navigation device further includes:
开始单元,用于若接收到开始作业控制指令,则进入窄通道模式。The start unit is used to enter the narrow channel mode if the start job control instruction is received.
在一个实施例中,所述全局路径导航装置,还包括:In one embodiment, the global path navigation device further includes:
停止单元,用于若接收到停止作业控制指令,则停止运动,并进入关机模式、待机模式或充电模式。The stop unit is used to stop the movement and enter the shutdown mode, the standby mode or the charging mode if the stop operation control instruction is received.
在应用中,上述装置中的各单元可以为软件程序模块,也可以通过处理器中集成的不同逻辑电路或与处理器连接的独立物理部件实现,还可以通过多个分布式处理器实现。In application, each unit in the above apparatus may be a software program module, or may be implemented by different logic circuits integrated in the processor or independent physical components connected to the processor, or may be implemented by multiple distributed processors.
如图10所示,本申请实施例还提供一种终端设备2000,包括:至少一个处理器201(图10中仅示出一个处理器)、存储器202以及存储在存储器202中并可在至少一个处理器201上运行的计算机程序203,处理器201执行计算机程序203时实现上述各个全局路径导航方法实施例中的步骤。As shown in FIG. 10 , an embodiment of the present application further provides a
在应用中,终端设备可包括,但不仅限于,处理器以及存储器,图10仅仅是终端设备的举例,并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如,输入输出设备、网络接入设备等,当终端设备为移动机器人时还可以包括移动部件和测距传感器。输入输出设备可以包括前述人机交互器件,还可以包括显示屏,用于显示终端设备的工作参数。网络接入设备可以包括通信模块,用于终端设备与用户终端进行通信。移动部件可以包括用于驱动移动机器人的关节移动的舵机、电机、驱动器等器件。In an application, a terminal device may include, but is not limited to, a processor and a memory. FIG. 10 is only an example of a terminal device, and does not constitute a limitation to the terminal device, and may include more or less components than those shown in the figure, or Combining some components, or different components, for example, input and output devices, network access devices, etc., when the terminal device is a mobile robot, it may also include mobile components and ranging sensors. The input and output device may include the aforementioned human-computer interaction device, and may also include a display screen for displaying the working parameters of the terminal device. The network access device may include a communication module for the terminal device to communicate with the user terminal. The moving parts may include steering gears, motors, drivers and other devices for driving the joints of the mobile robot to move.
在应用中,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。In an application, the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuits) , ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
需要说明的是,上述装置/模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。It should be noted that the information exchange, execution process and other contents between the above-mentioned devices/modules are based on the same concept as the method embodiments of the present application. For specific functions and technical effects, please refer to the method embodiments section. It is not repeated here.
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要将上述功能分配由不同的功能模块完成,即将所述装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中,上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。另外,各功能模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and conciseness of the description, only the division of the above-mentioned functional modules is used as an example for illustration. The internal structure of the device is divided into different functional modules to complete all or part of the functions described above. Each functional module in the embodiment may be integrated in one processing module, or each module may exist physically alone, or two or more modules may be integrated in one module, and the above-mentioned integrated modules may be implemented in the form of hardware. , can also be implemented in the form of software function modules. In addition, the specific names of the functional modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working process of the modules in the above-mentioned system, reference may be made to the corresponding process in the foregoing method embodiments, which will not be repeated here.
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,计算机程序被处理器所执行时可实现上述各个方法实施例中的步骤。Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备可实现上述各个方法实施例中的步骤。The embodiments of the present application provide a computer program product, which enables the terminal device to implement the steps in the foregoing method embodiments when the computer program product runs on a terminal device.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the above-mentioned embodiments, those of ordinary skill in the art should understand that: it can still be used for the above-mentioned implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the application, and should be included in the within the scope of protection of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210603086.1A CN114995416A (en) | 2022-05-30 | 2022-05-30 | Global path navigation method, device, terminal equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210603086.1A CN114995416A (en) | 2022-05-30 | 2022-05-30 | Global path navigation method, device, terminal equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114995416A true CN114995416A (en) | 2022-09-02 |
Family
ID=83031418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210603086.1A Pending CN114995416A (en) | 2022-05-30 | 2022-05-30 | Global path navigation method, device, terminal equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114995416A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117021094A (en) * | 2023-08-20 | 2023-11-10 | 哈尔滨理工大学 | Path planning method of cutter changing robot of shield machine suitable for narrow space |
CN117472067A (en) * | 2023-12-27 | 2024-01-30 | 江苏中科重德智能科技有限公司 | Robot narrow channel passing method and system based on multilayer grid map |
WO2024114682A1 (en) * | 2022-12-02 | 2024-06-06 | 北京极智嘉科技股份有限公司 | Positioning method and apparatus, and computing device and storage medium |
WO2024179492A1 (en) * | 2023-02-28 | 2024-09-06 | 苏州宝时得电动工具有限公司 | Operation control method, self-moving device and storage medium |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558856A (en) * | 2013-11-21 | 2014-02-05 | 东南大学 | Service mobile robot navigation method in dynamic environment |
CN106774347A (en) * | 2017-02-24 | 2017-05-31 | 安科智慧城市技术(中国)有限公司 | Robot path planning method, device and robot under indoor dynamic environment |
CN107742304A (en) * | 2017-10-10 | 2018-02-27 | 广州视源电子科技股份有限公司 | Method and device for determining movement track, mobile robot and storage medium |
CN108646765A (en) * | 2018-07-25 | 2018-10-12 | 齐鲁工业大学 | Based on the quadruped robot paths planning method and system for improving A* algorithms |
CN112947464A (en) * | 2021-03-05 | 2021-06-11 | 上海有个机器人有限公司 | Method, device, terminal and storage medium for robot to pass through narrow space |
CN113110499A (en) * | 2021-05-08 | 2021-07-13 | 珠海市一微半导体有限公司 | Judging method of passing area, route searching method, robot and chip |
CN113156970A (en) * | 2021-05-08 | 2021-07-23 | 珠海市一微半导体有限公司 | Path fusion planning method for passing area, robot and chip |
CN113358110A (en) * | 2021-06-15 | 2021-09-07 | 云鲸智能(深圳)有限公司 | Method and device for constructing robot obstacle map, robot and storage medium |
CN113768420A (en) * | 2021-09-18 | 2021-12-10 | 安克创新科技股份有限公司 | Sweeper and control method and device thereof |
CN113791617A (en) * | 2021-08-31 | 2021-12-14 | 金华市浙工大创新联合研究院 | Global path planning method based on physical dimension of fire-fighting robot |
CN113960996A (en) * | 2020-07-20 | 2022-01-21 | 华为技术有限公司 | Method and device for planning obstacle avoidance path of traveling device |
CN114397893A (en) * | 2021-12-28 | 2022-04-26 | 深圳市银星智能科技股份有限公司 | Path planning method, robot cleaning method and related equipment |
-
2022
- 2022-05-30 CN CN202210603086.1A patent/CN114995416A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558856A (en) * | 2013-11-21 | 2014-02-05 | 东南大学 | Service mobile robot navigation method in dynamic environment |
CN106774347A (en) * | 2017-02-24 | 2017-05-31 | 安科智慧城市技术(中国)有限公司 | Robot path planning method, device and robot under indoor dynamic environment |
CN107742304A (en) * | 2017-10-10 | 2018-02-27 | 广州视源电子科技股份有限公司 | Method and device for determining movement track, mobile robot and storage medium |
CN108646765A (en) * | 2018-07-25 | 2018-10-12 | 齐鲁工业大学 | Based on the quadruped robot paths planning method and system for improving A* algorithms |
CN113960996A (en) * | 2020-07-20 | 2022-01-21 | 华为技术有限公司 | Method and device for planning obstacle avoidance path of traveling device |
CN112947464A (en) * | 2021-03-05 | 2021-06-11 | 上海有个机器人有限公司 | Method, device, terminal and storage medium for robot to pass through narrow space |
CN113110499A (en) * | 2021-05-08 | 2021-07-13 | 珠海市一微半导体有限公司 | Judging method of passing area, route searching method, robot and chip |
CN113156970A (en) * | 2021-05-08 | 2021-07-23 | 珠海市一微半导体有限公司 | Path fusion planning method for passing area, robot and chip |
CN113358110A (en) * | 2021-06-15 | 2021-09-07 | 云鲸智能(深圳)有限公司 | Method and device for constructing robot obstacle map, robot and storage medium |
CN113791617A (en) * | 2021-08-31 | 2021-12-14 | 金华市浙工大创新联合研究院 | Global path planning method based on physical dimension of fire-fighting robot |
CN113768420A (en) * | 2021-09-18 | 2021-12-10 | 安克创新科技股份有限公司 | Sweeper and control method and device thereof |
CN114397893A (en) * | 2021-12-28 | 2022-04-26 | 深圳市银星智能科技股份有限公司 | Path planning method, robot cleaning method and related equipment |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024114682A1 (en) * | 2022-12-02 | 2024-06-06 | 北京极智嘉科技股份有限公司 | Positioning method and apparatus, and computing device and storage medium |
WO2024179492A1 (en) * | 2023-02-28 | 2024-09-06 | 苏州宝时得电动工具有限公司 | Operation control method, self-moving device and storage medium |
CN117021094A (en) * | 2023-08-20 | 2023-11-10 | 哈尔滨理工大学 | Path planning method of cutter changing robot of shield machine suitable for narrow space |
CN117021094B (en) * | 2023-08-20 | 2024-04-26 | 哈尔滨理工大学 | Path planning method of cutter changing robot of shield machine suitable for narrow space |
CN117472067A (en) * | 2023-12-27 | 2024-01-30 | 江苏中科重德智能科技有限公司 | Robot narrow channel passing method and system based on multilayer grid map |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114995416A (en) | Global path navigation method, device, terminal equipment and storage medium | |
US10935383B1 (en) | Methods for finding the perimeter of a place using observed coordinates | |
US20200081125A1 (en) | Method and robot of mapping | |
US20230057965A1 (en) | Robot and control method therefor | |
CN114219905A (en) | Map construction method and device, terminal equipment and storage medium | |
CN109325979B (en) | Deep Learning-Based Robot Loop Closure Detection Method | |
CN116442245A (en) | Control method, device, system and storage medium of service robot | |
CN118429466A (en) | Multi-layer dynamic cost map construction method, device, medium and robot | |
WO2024007807A1 (en) | Error correction method and apparatus, and mobile device | |
US20250061599A1 (en) | Method and device for optimizing three-dimensional map display | |
WO2023151548A1 (en) | Navigation method and apparatus, and program and computer-readable storage medium | |
WO2023155157A1 (en) | Method and apparatus for cleaning swimming pools, and electronic device and storage medium thereof | |
CN114609646A (en) | Laser mapping method, device, medium and electronic device | |
CN114995407A (en) | Obstacle avoidance method, device, equipment and product for moving object | |
Sun et al. | Concave-hull induced graph-gain for fast and robust robotic exploration | |
CN118115515A (en) | Point cloud map segmentation method and device, electronic equipment and storage medium | |
CN113183153B (en) | A method, device, equipment and medium for creating a map | |
CN113885522B (en) | Water surface robot obstacle avoidance method, device, equipment and readable storage medium | |
CN116804763A (en) | Obstacle judging method, device, equipment and storage medium | |
CN115493581A (en) | Robot moving map generation method, device, equipment and storage medium | |
CN114705191A (en) | Map generation method, map generation device, map generation equipment and storage medium | |
CN114859922A (en) | Mobile robot positioning method and device, storage medium and electronic equipment | |
CN110244710B (en) | Automatic tracing method, device, storage medium and electronic equipment | |
CN116412824A (en) | Relocation method and equipment for self-mobile equipment and storage medium | |
JP2023019930A (en) | Information processing device, moving object, control method and program for information processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |