CN114993969A - Method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by fire assay method - Google Patents
Method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by fire assay method Download PDFInfo
- Publication number
- CN114993969A CN114993969A CN202210576453.3A CN202210576453A CN114993969A CN 114993969 A CN114993969 A CN 114993969A CN 202210576453 A CN202210576453 A CN 202210576453A CN 114993969 A CN114993969 A CN 114993969A
- Authority
- CN
- China
- Prior art keywords
- lead
- gold
- palladium
- platinum
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims abstract description 76
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 70
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 55
- 239000010931 gold Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 55
- 229910052763 palladium Inorganic materials 0.000 title claims abstract description 38
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 35
- 238000003556 assay Methods 0.000 title claims abstract description 29
- YFLLTMUVNFGTIW-UHFFFAOYSA-N nickel;sulfanylidenecopper Chemical compound [Ni].[Cu]=S YFLLTMUVNFGTIW-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 238000012360 testing method Methods 0.000 claims abstract description 25
- 239000002893 slag Substances 0.000 claims abstract description 18
- 239000002245 particle Substances 0.000 claims abstract description 17
- 229910052573 porcelain Inorganic materials 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 16
- 239000004615 ingredient Substances 0.000 claims description 13
- 230000004907 flux Effects 0.000 claims description 12
- 230000029087 digestion Effects 0.000 claims description 11
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012141 concentrate Substances 0.000 claims description 8
- 235000013312 flour Nutrition 0.000 claims description 8
- 239000008187 granular material Substances 0.000 claims description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 235000013339 cereals Nutrition 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 2
- 240000008620 Fagopyrum esculentum Species 0.000 claims description 2
- 235000009419 Fagopyrum esculentum Nutrition 0.000 claims description 2
- 239000006004 Quartz sand Substances 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 2
- 241000209140 Triticum Species 0.000 claims description 2
- 235000021307 Triticum Nutrition 0.000 claims description 2
- 229910000004 White lead Inorganic materials 0.000 claims description 2
- 240000008042 Zea mays Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000292 calcium oxide Substances 0.000 claims description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 claims description 2
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 claims description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 2
- VLOJXAQYHIVPFI-UHFFFAOYSA-H lead(2+);diacetate;tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Pb+2].[Pb+2].[Pb+2].CC([O-])=O.CC([O-])=O VLOJXAQYHIVPFI-UHFFFAOYSA-H 0.000 claims description 2
- 239000004571 lime Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 238000002798 spectrophotometry method Methods 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 238000004448 titration Methods 0.000 claims description 2
- 239000010970 precious metal Substances 0.000 abstract description 13
- 238000005259 measurement Methods 0.000 abstract description 10
- 230000002829 reductive effect Effects 0.000 abstract description 5
- 239000011246 composite particle Substances 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 34
- 229910052717 sulfur Inorganic materials 0.000 description 23
- 239000011593 sulfur Substances 0.000 description 23
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 21
- 238000007664 blowing Methods 0.000 description 19
- 239000010949 copper Substances 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052759 nickel Inorganic materials 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 16
- 239000000523 sample Substances 0.000 description 16
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 13
- 229910000464 lead oxide Inorganic materials 0.000 description 12
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 10
- 238000003723 Smelting Methods 0.000 description 9
- 238000009614 chemical analysis method Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000011324 bead Substances 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 235000010333 potassium nitrate Nutrition 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000012086 standard solution Substances 0.000 description 5
- 238000004993 emission spectroscopy Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000004323 potassium nitrate Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- JUWSSMXCCAMYGX-UHFFFAOYSA-N gold platinum Chemical compound [Pt].[Au] JUWSSMXCCAMYGX-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012284 sample analysis method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000705 flame atomic absorption spectrometry Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940056932 lead sulfide Drugs 0.000 description 1
- 229910052981 lead sulfide Inorganic materials 0.000 description 1
- XMFOQHDPRMAJNU-UHFFFAOYSA-N lead(II,IV) oxide Inorganic materials O1[Pb]O[Pb]11O[Pb]O1 XMFOQHDPRMAJNU-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- DYJOUBLHPAIUEU-UHFFFAOYSA-N nickel(2+) sulfane Chemical compound S.[Ni+2] DYJOUBLHPAIUEU-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000000918 plasma mass spectrometry Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000013215 result calculation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4044—Concentrating samples by chemical techniques; Digestion; Chemical decomposition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/16—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
本发明涉及贵金属测定技术领域,公开了一种火试金法富集测定铜镍硫化矿中金铂钯的方法,具体包括以下步骤:S1:取待测样品加入混合配料混匀,滴入硝酸银溶液,然后用纸包裹成纸团;S2:将所述纸团放入950‑1050℃的高温炉中的试金器皿中,待外层的纸碳化后,关闭炉门,保温5‑20min,然后将熔渣上方形成的铅粒集中为铅扣,将高温炉温度降低为900‑950℃,将试金器皿中的所述铅扣灰吹为合粒,然后将试金器皿取出,冷却,锤出所述合粒;S3:将所述合粒消解后测定金、铂、钯的含量。该方法操作简单,测定结果准确,适合推广。
The invention relates to the technical field of precious metal determination, and discloses a method for enriching and determining gold, platinum, and palladium in copper-nickel sulfide ore by a fire assay method. , and then wrap it with paper to form a paper ball; S2: put the paper ball into a test vessel in a high-temperature furnace at 950-1050°C, after the outer layer of paper is carbonized, close the furnace door, keep the temperature for 5-20min, and then The lead particles formed above the molten slag are concentrated into lead buttons, the temperature of the high-temperature furnace is reduced to 900-950 ° C, the lead button ash in the test vessel is blown into combined particles, and then the test vessel is taken out, cooled, and hammered out The composite particles; S3: Determination of the contents of gold, platinum and palladium after the composite particles are digested. The method is simple in operation, accurate in measurement results, and suitable for popularization.
Description
技术领域technical field
本发明涉及贵金属测定技术领域,具体是一种火试金法富集测定铜镍硫化矿中金铂钯的方法。The invention relates to the technical field of precious metal determination, in particular to a method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by a fire assay method.
背景技术Background technique
铜镍硫化矿是我国重要的战略金属矿产资源,通常伴生有一定量的金、铂、钯等贵金属。由于铜镍硫化矿中铜、镍、硫的含量相对较高,金、铂、钯含量较低,导致铜镍硫化矿中金、铂、钯元素含量测定的难度较大。开展铜镍硫化矿中金、铂和钯含量的精确分析,有利于增加铜镍硫化矿石的综合利用率,减少铜镍硫化矿石的消耗量,提高铜镍硫化矿的综合利用水平。Copper-nickel sulfide ore is an important strategic metal mineral resource in my country, usually accompanied by a certain amount of precious metals such as gold, platinum and palladium. Due to the relatively high content of copper, nickel and sulfur in the copper-nickel sulfide ore and the low content of gold, platinum and palladium, it is difficult to determine the content of gold, platinum and palladium in the copper-nickel sulfide ore. Carrying out accurate analysis of gold, platinum and palladium content in copper-nickel sulfide ore will help increase the comprehensive utilization rate of copper-nickel sulfide ore, reduce the consumption of copper-nickel sulfide ore, and improve the comprehensive utilization level of copper-nickel sulfide ore.
火试金法是地质矿产样品中贵金属测定的主要方法之一,根据捕集剂的不同分为铅、镍锍、锑、铋、锡、铜等试金法,其中铅试金法的应用最为悠久和普遍,其他试金法均是在铅试金的基础之上发展而来。铅试金法的优点是捕集贵金属的能力强、造渣能力强、几乎适用于所有矿种、灰吹简便、流程快速,尤其是铅试金法操作的便捷性为其他衍生方法所不及,因此铅试金法在贵金属分析领域依然具有不可替代的作用。Fire gold assay is one of the main methods for the determination of precious metals in geological mineral samples. According to the different collectors, it is divided into lead, nickel sulfonium, antimony, bismuth, tin, copper and other gold assay methods. Among them, the lead assay method is the most widely used. Long and common, other assay methods are developed on the basis of lead assay. The advantages of the lead assay method are that it has strong ability to capture precious metals, strong slag-making ability, and is suitable for almost all types of minerals, easy to blow, and fast in the process. Lead assay still plays an irreplaceable role in the field of precious metal analysis.
目前,地质矿产样品中金、铂、钯分析的前处理主要是采用铅试金法,如现行的分析标准:地球化学样品中贵金属分析方法第6部分:铂量、钯量和金量的测定火试金富集-发射光谱法(GBT 17418.6-2010国家质量监督检验总局),金矿石化学分析方法第1部分:金量的测定(GB/T 20899.1-2019国家质量监督检验总局),金精矿化学分析方法(GB/T 7739.1-2019国家质量监督检验总局),区域地球化学样品分析方法第31部分:铂和钯量测定火试金富集-电感耦合等离子体质谱法(DZ/T 0279.31-2016国土资源部),区域地球化学样品分析方法第12部分:铂、钯和金量测定火试金富集-发射光谱法(DZ/T 0279.12-2016国土资源部),地球化学样品中铂、钯的测定电感耦合等离子体质谱法(DB51/T 2114-2016四川省质量技术监督局)等。另外,在商检、有色金属等行业的现行分析标准中,含铜、镍的样品同样以铅试金法为主,如镍精矿化学分析方法第3部分:金、铂、钯含量的测定电感耦合等离子体质谱法(SN/T 4501.3-2017国家质量监督检验检疫总局),废杂铜化学分析方法铂量的测定(DB44/T 1816-2016广东省市场监督管理局),铜阳极泥化学分析方法第3部分:铂量和钯量的测定火试金富集-电感耦合等离子体发射光谱法(YS/T 745.3-2010),铜冶炼分银渣化学分析方法第2部分:铂和钯含量的测定火试金法富集-电感耦合等离子体原子(YS/T1314.2-2019),黑铜化学分析方法第7部分∶铂量和钯量的测定火试金富集-电感耦合等离子体原子发射光谱法和火焰原子吸收光谱法(YS/T 716.7-2016)等。At present, the pretreatment of gold, platinum and palladium analysis in geological and mineral samples mainly adopts the lead assay method, such as the current analysis standard: Analysis of precious metals in geochemical samples Part 6: Determination of platinum, palladium and gold content Fire Assay Gold Enrichment-Emission Spectroscopy (GBT 17418.6-2010 General Administration of Quality Supervision and Inspection), Chemical Analysis Methods of Gold Ore Part 1: Determination of Gold Amount (GB/T 20899.1-2019 General Administration of Quality Supervision and Inspection), Gold Essence Mineral Chemical Analysis Methods (GB/T 7739.1-2019 General Administration of Quality Supervision and Inspection), Regional Geochemical Sample Analysis Methods Part 31: Determination of Platinum and Palladium Amounts by Fire Assay Gold Enrichment-Inductively Coupled Plasma Mass Spectrometry (DZ/T 0279.31 -2016 Ministry of Land and Resources), Regional Geochemical Sample Analysis Methods Part 12: Determination of Platinum, Palladium and Gold Quantity by Fire Assay Gold Enrichment-Emission Spectrometry (DZ/T 0279.12-2016 Ministry of Land and Resources), Platinum in Geochemical Samples , Determination of Palladium Inductively Coupled Plasma Mass Spectrometry (DB51/T 2114-2016 Sichuan Quality and Technical Supervision Bureau), etc. In addition, in the current analysis standards of commodity inspection, non-ferrous metals and other industries, the samples containing copper and nickel are also dominated by the lead assay method, such as the chemical analysis method of nickel concentrate Part 3: Determination of gold, platinum and palladium content inductance Coupled plasma mass spectrometry (SN/T 4501.3-2017 General Administration of Quality Supervision, Inspection and Quarantine), chemical analysis method for copper scrap Determination of platinum content (DB44/T 1816-2016 Guangdong Provincial Administration for Market Regulation), chemical analysis of copper anode slime Method part 3: Determination of platinum and palladium content Fire assay gold enrichment-inductively coupled plasma emission spectrometry (YS/T 745.3-2010), chemical analysis method of copper smelting silver slag part 2: platinum and palladium content Determination of Fire Assay Enrichment - Inductively Coupled Plasma Atomic (YS/T1314.2-2019), Chemical Analysis Methods for Black Copper Part 7: Determination of Platinum and Palladium Amounts Fire Assay Gold Enrichment - Inductively Coupled Plasma Atomic Emission Spectroscopy and flame atomic absorption spectrometry (YS/T 716.7-2016), etc.
可见,铅试金法强大的捕集能力、便捷的灰吹流程、简便的操作方式使其依然具有强大生命力。然而,上述方法针对铜镍硫化矿样品的富集测定却有其特殊困难:It can be seen that the strong capture ability, convenient ash blowing process and simple operation method of the lead assay method still have strong vitality. However, the above methods have special difficulties for the enrichment determination of copper-nickel sulfide ore samples:
1.铜、镍、硫在铅试金过程中容易成锍,与铅竞争捕集贵金属,造成贵金属在熔炼中的损失;1. Copper, nickel and sulfur are easy to form matte in the process of lead testing, and compete with lead to capture precious metals, resulting in the loss of precious metals in smelting;
2.熔炼时部分铜、镍会进入铅扣,影响铅扣的灰吹,造成灰吹时贵金属的损失;2. Part of copper and nickel will enter the lead button during smelting, which will affect the ash blowing of the lead button and cause the loss of precious metals during ash blowing;
3.硫进入铅扣后,使铅扣变脆变硬,灰吹时产生大量黑烟,导致灰吹难以进行。3. After the sulfur enters the lead button, the lead button becomes brittle and hard, and a lot of black smoke is generated when the ash blowing, which makes it difficult to carry out the ash blowing.
针对铅试金法富集含铜、镍、硫样品的共性问题,如中国专利(利用电感耦合等离子体发射光谱测定镍矿石中铂钯含量的方法CN 108680565 B),采用先焙烧除硫,后添加氧化铅的量为样品量的7-10倍,用多余的氧化铅来造渣排除镍的干扰,铅扣在镁砂灰皿中灰吹。中国专利(冰铜中钯量的测定方法CN 113376145 A),通过控制氧化铅的加入量,5-8g冰铜样品,氧化铅的加入量为150-250g,利用熔铅的强氧化性,能使几乎全部的铜、铁、砷和锌等与酸性熔剂、碱性熔剂形成相应盐进入熔渣,达到最佳灰吹效果,可以有效地消除冰铜中其他杂质元素的对钯量测定的干扰。上述方法焙烧除硫繁琐费时,大量加入的氧化铅严重污染环境。包括前述提到的含镍、铜基体的各类分析标准方法,主要还是采用加大氧化铅用量来除杂。文献(一种含硫金精矿的火试金方法试验研究及改进,梁玉省等,2016,世界有色金属),针对高含硫金精矿,采用硝石法来消除硫的干扰,即首先对样品中硫的还原力进行测试,然后加入硝酸钾除硫,通过调整硝酸钾的用量来调节铅扣大小。改进后方法适合含硫较高的金精矿样品,对于含铜、镍较高的样品配料方法特别是氧化铅的量将视铜镍含量计算后适当调整。该方法需测试样品还原力,非常麻烦繁琐,且不容易控制铅扣的大小。因此,目前亟需一种可以克服上述困难、操作简单、测量准确的的铅试金法富集铜镍硫化矿中金铂钯的方法。Aiming at the common problem of enriching samples containing copper, nickel and sulfur by the lead assay method, such as the Chinese patent (method for determining the content of platinum and palladium in nickel ore by inductively coupled plasma emission spectrometry CN 108680565 B), first roasting to remove sulfur, and then adding oxidation The amount of lead is 7-10 times the amount of the sample. The excess lead oxide is used to make slag to eliminate the interference of nickel. Chinese patent (measurement method of palladium amount in matte CN 113376145 A), by controlling the add-on of lead oxide, 5-8g matte sample, the add-on of lead oxide is 150-250g, utilizing the strong oxidizing property of molten lead, can Make almost all copper, iron, arsenic and zinc form corresponding salts with acidic flux and alkaline flux into the slag to achieve the best ash blowing effect, which can effectively eliminate the interference of other impurity elements in matte on the determination of palladium. The method for roasting and removing sulfur is cumbersome and time-consuming, and the lead oxide added in a large amount seriously pollutes the environment. Various analytical standard methods, including the aforementioned nickel- and copper-containing substrates, are mainly used to remove impurities by increasing the amount of lead oxide. Literature (Experimental Research and Improvement of Fire Assay Method for Sulfur-Containing Gold Concentrates, Liang Yusheng et al., 2016, Nonferrous Metals in the World), for high-sulfur gold concentrates, the saltpeter method is used to eliminate the interference of sulfur, that is, first The reducing power of sulfur in the sample was tested, then potassium nitrate was added to remove sulfur, and the size of the lead button was adjusted by adjusting the amount of potassium nitrate. The improved method is suitable for gold concentrate samples with high sulfur content. For samples with high copper and nickel content, the batching method, especially the amount of lead oxide, will be adjusted according to the content of copper and nickel after calculation. This method needs to test the reducing power of the sample, which is very troublesome and cumbersome, and it is not easy to control the size of the lead button. Therefore, there is an urgent need for a method for enriching gold, platinum and palladium in copper-nickel sulfide ore by a lead assay method that can overcome the above difficulties, is simple to operate, and has accurate measurement.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种用于火试金富集测定铜镍硫化矿中金、铂、钯的方法,以至少达到方法简单、测定结果准确。The object of the present invention is to overcome the deficiencies of the prior art, and to provide a method for measuring gold, platinum and palladium in copper-nickel sulfide ore by fire assay gold enrichment, so as to at least achieve a simple method and an accurate measurement result.
本发明的目的是通过以下技术方案来实现的:The purpose of this invention is to realize through the following technical solutions:
一种火试金法富集测定铜镍硫化矿中金铂钯的方法,包括以下步骤:A method for enriching and measuring gold, platinum, and palladium in copper-nickel sulfide ore by fire-assay gold method, comprising the following steps:
S1:取待测样品加入混合配料混匀,滴入硝酸银溶液,然后用纸包裹成团状;S1: Take the sample to be tested, add the mixed ingredients and mix well, drop the silver nitrate solution, and then wrap it with paper to form a dough;
S2:将纸团放入950-1050℃的高温炉中的试金器皿中,待外层的纸碳化后,关闭炉门,保温5-20min,然后将熔渣上方形成的铅粒集中为铅扣,将高温炉温度降低为900-950℃,将试金器皿中的所述铅扣灰吹为合粒,然后将试金器皿取出,冷却,取出所述合粒;S2: Put the paper ball into the gold test vessel in the high temperature furnace at 950-1050℃, after the outer layer of paper is carbonized, close the furnace door, keep the temperature for 5-20min, and then concentrate the lead particles formed above the slag into lead button, reduce the temperature of the high-temperature furnace to 900-950 ℃, blow the lead button ash in the test vessel into a composite grain, then take out the test gold container, cool it, and take out the composite grain;
S3:将所述合粒消解后测定金、铂、钯的含量。S3: Determination of the contents of gold, platinum and palladium after the granules are digested.
值得注意的是,如试样含硫高,则与铅易生成硫化铅,此时可不急于出炉,待硫氧化至烟少再出炉,同样可以得到满意的铅扣和结果;灰吹后期随着铅熔珠的减小,铅熔珠易被熔渣掩盖,造成氧化灰吹中断,因此灰吹过程中应随时观察,确保铅熔珠始终暴露于空气中,若被熔渣掩盖,应倾倒出少量熔渣后继续灰吹。It is worth noting that if the sample contains high sulfur, it is easy to form lead sulfide with lead. At this time, it is not necessary to release the furnace in a hurry. After the sulfur is oxidized to less smoke, a satisfactory lead button and result can also be obtained. The reduction of the molten beads, the lead molten beads are easily covered by the molten slag, resulting in the interruption of the oxidized ash blowing. Therefore, the ash blowing process should be observed at any time to ensure that the lead molten beads are always exposed to the air. If they are covered by the molten slag, a small amount of molten slag should be poured out. Then continue to blow.
进一步的,步骤S1中,所述待测样品的用量为5-10g;和/或所述硝酸银的浓度为10g/L、用量为2-5滴。Further, in step S1, the dosage of the sample to be tested is 5-10 g; and/or the concentration of the silver nitrate is 10 g/L, and the dosage is 2-5 drops.
进一步的,步骤S1中用纸包裹成团状的目的是防治转移过程中造成损失,采用普通纸张即可。Further, the purpose of wrapping the paper into a mass in step S1 is to prevent losses during the transfer process, and ordinary paper can be used.
进一步的,步骤S1中,所述混合配料按重量份计,包括以下组分:5-10份捕集剂、1-5份酸性熔剂、1-5份碱性熔剂和1-3份还原剂所述混合配料与所述待测样品的质量比为5-10:1。Further, in step S1, the mixed ingredients, in parts by weight, include the following components: 5-10 parts of collector, 1-5 parts of acidic flux, 1-5 parts of alkaline flux and 1-3 parts of reducing agent The mass ratio of the mixed ingredients to the sample to be tested is 5-10:1.
所述捕集剂包括密陀僧(PbO)、黄丹(Pb2O3)、红丹(Pb3O4)、醋酸铅、碱式碳酸铅、铅粒、铅粉、硝酸铅或硫酸铅中的任意一种;Described collecting agent comprises any one in mitosang (PbO), yellow dan (Pb2O3), red dan (Pb3O4), lead acetate, basic lead carbonate, lead particle, lead powder, lead nitrate or lead sulfate;
所述酸性熔剂包括硼酸、无水硼砂、二氧化硅、玻璃粉、石英砂或石英粉中的任意一种;The acidic flux includes any one of boric acid, anhydrous borax, silicon dioxide, glass powder, quartz sand or quartz powder;
所述碱性熔剂包括碳酸钠、碳酸钾、氧化钙或石灰中的任意一种;Described alkaline flux comprises any one in sodium carbonate, potassium carbonate, calcium oxide or lime;
所述还原剂包括面粉、小麦粉、荞麦粉、玉米粉、淀粉、蔗糖、动物纤维、活性炭或木炭粉中的任意一种;The reducing agent includes any one of flour, wheat flour, buckwheat flour, corn flour, starch, sucrose, animal fiber, activated carbon or charcoal powder;
进一步的,所述混合配料还包括保护剂;所述保护剂包括银、碲或铅中的任意一种。Further, the mixed ingredients further include a protective agent; the protective agent includes any one of silver, tellurium or lead.
值得注意的是,如在配料中加入碳酸钾,由于该熔剂熔点低,熔体很快铺散于瓷碟中,很容易使部分铅粒不集中而提前氧化损失掉,故碳酸钾少加或不加。It is worth noting that if potassium carbonate is added to the ingredients, due to the low melting point of the flux, the melt quickly spreads in the porcelain plate, and it is easy to make some lead particles not concentrated and lost in advance due to oxidation. Therefore, add less potassium carbonate or do not add.
进一步的,步骤S2中,所述的试金器皿需事先在高温炉中预热至950-1050℃,预热的目的是避免盛有试料的凉的瓷坩埚入炉后,因热胀冷缩而炸裂。Further, in step S2, the test utensils need to be preheated to 950-1050°C in a high temperature furnace in advance. The purpose of preheating is to prevent the cold porcelain crucible containing the test material from being cooled due to thermal expansion after entering the furnace. Shrink and burst.
进一步的,步骤S2中,所述的试金器皿为底部平坦的蝶形器皿。Further, in step S2, the test gold vessel is a butterfly vessel with a flat bottom.
进一步的,所述的蝶形器皿为蝶形瓷皿、蝶形坩埚、小瓷碟或瓷坩埚盖;优选为瓷坩埚盖,因为瓷坩埚盖的底部最为平坦。Further, the butterfly-shaped vessel is a butterfly-shaped porcelain dish, a butterfly-shaped crucible, a small porcelain plate or a porcelain crucible cover; preferably a porcelain crucible cover, because the bottom of the porcelain crucible cover is the flattest.
根据样品用量的增加或减少,所述蝶形器皿的规格可以适当加大或减小,如,用于10g样品测定的蝶形器皿,高度为2cm左右,5g样品可以直接在150~200mL的瓷坩埚盖上进行。According to the increase or decrease of the sample dosage, the size of the butterfly vessel can be appropriately increased or decreased. For example, the butterfly vessel used for the measurement of 10g samples has a height of about 2cm, and the 5g samples can be directly placed in 150-200mL porcelain Cover the crucible.
传统的粘土坩埚,内部较深,有利于铅粒在下沉过程中捕集贵金属,有利于熔渣和扣的分离,同时避免熔融过程中铅被氧化,但是针对含高硫的样品,硫无法在熔融过程中排除,硫能充当还原剂,导致配料中还原剂过量,一部分硫会进入渣中,一部分硫会进入铅扣,影响后续灰吹。因此,在采用黏土坩埚测定高硫样品时,处理方法是提前焙烧样品,或者加入硝酸钾氧化多余的硫,但这样还需要计算样品还原力,增加分析了步骤,且铅扣的大小不易控制。The traditional clay crucible has a deep interior, which is conducive to the capture of precious metals by the lead particles during the sinking process, the separation of the slag and the buckle, and at the same time to prevent the lead from being oxidized during the melting process. Excluded in the melting process, sulfur can act as a reducing agent, resulting in excessive reducing agent in the ingredients, part of the sulfur will enter the slag, and part of the sulfur will enter the lead button, affecting the subsequent ash blowing. Therefore, when using clay crucibles to measure high-sulfur samples, the treatment method is to bake the samples in advance, or add potassium nitrate to oxidize the excess sulfur, but this also requires the calculation of the reducing power of the samples, which increases the analysis steps, and the size of the lead buttons is not easy to control.
采用上述蝶形瓷皿,氧化产生的熔渣向四周扩散,有利于铅熔珠在熔渣中裸露出来,使铅熔珠更加充分接触氧气,促进氧化灰吹的正向进行,可以把剩余的铅灰吹到最少,甚至可以完全除铅。By adopting the above butterfly-shaped ceramic dish, the slag produced by oxidation spreads around, which is beneficial for the lead molten beads to be exposed in the molten slag, so that the lead molten beads are more fully contacted with oxygen, and the positive progress of the oxidation ash blowing can be promoted, and the remaining lead can be removed. Ash blowing to a minimum, and even complete lead removal.
进一步的,步骤S2中,所述集中的方法为:打开炉门,将所述铅粒摇至集中。Further, in step S2, the concentration method is as follows: open the furnace door and shake the lead pellets to concentration.
进一步的,步骤S2中,所述集中的方法还可以为:继续关闭炉门保温直至所述铅粒集中。Further, in step S2, the concentration method may also be: continue to close the furnace door to keep warm until the lead particles are concentrated.
进一步的,步骤S2中,所述合粒的粒径为1-2mm。Further, in step S2, the particle size of the composite particles is 1-2 mm.
进一步的,步骤S3中,所述消解的方法为:Further, in step S3, the method of described digestion is:
将所述合粒清洗并烘干,然后转移至密闭消解罐中,加入硝酸,于120-150℃电热板上预消解30-60min,然后加入王水,待剧烈反应停止后封闭消解罐,于180-240℃烘箱中消解60-360min,待冷却后取出,转移至50mL的容量瓶中,用水定容,摇匀,静置。The granules were washed and dried, then transferred to a closed digestion tank, added with nitric acid, pre-digested on a 120-150 ℃ electric hot plate for 30-60 min, and then added with aqua regia, and after the violent reaction stopped, the digestion tank was closed, and Digest in an oven at 180-240°C for 60-360min, take out after cooling, transfer to a 50mL volumetric flask, dilute to volume with water, shake well, and let stand.
进一步的,步骤S3中,所述测定的方法包括滴定法、分光光度法和仪器分析法。Further, in step S3, the determination method includes a titration method, a spectrophotometric method and an instrumental analysis method.
值得注意的是,本方法的原理为:1.炉门关闭后进行还原反应,还原剂将氧化铅还原成金属铅从而捕集贵金属,2.打开炉门灰吹时,待空气中氧进入后,高温下将金属铅氧化成氧化铅,氧化铅具有强碱性和强氧化性,能够进一步参与样品中脉石的造渣,同时将进入铅扣中的杂质(镍、铜等)氧化排入渣中,硫、砷、锑等氧化成气体挥发。因此氧化铅既为捕集剂,又是氧化剂和造渣剂,熔融和灰吹一体完成。It is worth noting that the principle of this method is: 1. After the furnace door is closed, the reduction reaction is carried out, and the reducing agent reduces the lead oxide to metal lead to capture the precious metal; 2. When the furnace door is opened for ash blowing, after the oxygen in the air enters, Metal lead is oxidized to lead oxide at high temperature. Lead oxide has strong alkalinity and strong oxidizing property, which can further participate in the slag formation of gangue in the sample, and at the same time, the impurities (nickel, copper, etc.) entering the lead button are oxidized and discharged into the slag. , sulfur, arsenic, antimony, etc. are oxidized into gas volatilization. Therefore, lead oxide is not only a collector, but also an oxidant and a slag-forming agent, and the melting and ash blowing are integrated.
本发明的有益效果是:The beneficial effects of the present invention are:
1.本发明不采用专门的试金坩埚和灰皿,无需提前测试样品还原力,结合坩埚试金法还原性熔炼富集和氧化灰吹的优点,集试金还原熔炼与氧化灰吹为一体,先将试样和配料混合后在蝶形瓷皿中还原熔炼,然后利用打开炉门后进入的空气进行氧化性熔炼,通过氧化铅来氧化进入铅中的铜、镍等贱金属,让铜、镍等贱金属溶于渣中,同时硫被氧化,生成低价的氧化物挥发到空气中,部分直接氧化成硫酸盐进入熔渣。分析方法简单,试金速度快,灰吹损失少。1. The present invention does not use special test gold crucibles and ash dishes, and does not need to test the reducing power of samples in advance. Combined with the advantages of reductive smelting and enrichment and oxide ash blowing in the crucible testing method, the test gold reduction smelting and oxide ash blowing are integrated. After the sample and ingredients are mixed, they are reduced and smelted in a butterfly-shaped ceramic dish, and then oxidative smelting is carried out by using the air that enters after opening the furnace door, and the base metals such as copper and nickel entering the lead are oxidized by lead oxide, so that copper, nickel, etc. The base metals are dissolved in the slag, and at the same time, the sulfur is oxidized, and the low-priced oxides are volatilized into the air, and some of them are directly oxidized into sulfates into the slag. The analysis method is simple, the gold test speed is fast, and the ash blowing loss is small.
2.本发明采用简单的蝶形瓷皿或瓷坩埚盖等作为试金器皿,由于蝶形瓷皿的凹面小,铅熔珠很容易暴露于空气中,从而直接进入实质性的氧化灰吹。相比于现有技术中试样要进行还原力测试等繁琐步骤才能确定配料,本方法能使复杂的试金配料过程简化为一种统一的配料,无需专门对硫、铜、镍等杂质进行排除。分析成本降低,分析时间缩短,结果准确可靠。2. The present invention adopts a simple butterfly-shaped porcelain dish or a porcelain crucible cover as the gold test utensil. Because the concave surface of the butterfly-shaped porcelain dish is small, the lead molten beads are easily exposed to the air, thereby directly entering the substantial oxidized ash. Compared with the prior art, the sample needs to be subjected to tedious steps such as reducing power test to determine the batching. This method can simplify the complex test batching process into a unified batching, and it is not necessary to specially carry out impurities such as sulfur, copper, and nickel. exclude. The analysis cost is reduced, the analysis time is shortened, and the results are accurate and reliable.
3.本发明不同于传统的析取皿试金法,析取皿法仅为氧化性熔炼,主要用于组分相对单一的含贵金属冶金产品或粗铅提纯,针对组成复杂的硫化矿样,析取皿法因取样少(小于3g),代表性差,单纯利用氧化熔炼并不能较好地分解矿样。本发明结合还原熔炼与氧化灰吹为一体,能够较好地溶解组成复杂的硫化矿样,本法的称样量相对更大,氧化铅用量相对更低,环境影响相对更小。3. the present invention is different from the traditional extraction dish gold test method, the extraction dish method is only for oxidative smelting, mainly used for relatively single component containing precious metal metallurgical products or crude lead purification, for complex sulfide ore samples, Due to the small sampling (less than 3g) and poor representativeness of the extraction dish method, the ore sample cannot be decomposed well by simply using oxidation smelting. The invention combines reduction smelting and oxidized ash blowing into one, and can better dissolve sulfide ore samples with complex composition.
4.现有标准方法没有关于铜镍硫化矿中金铂钯含量的分析方法,而本发明建立了火试金富集-电感耦合等离子体质谱测定铜镍硫化矿中金铂钯的分析方法。4. The existing standard method does not have an analysis method for the content of gold, platinum and palladium in copper-nickel sulfide ore, but the present invention establishes an analysis method for gold, platinum and palladium in copper-nickel sulfide ore by fire assay gold enrichment-inductively coupled plasma mass spectrometry.
附图说明Description of drawings
图1为所述瓷坩埚盖的俯视照片;Fig. 1 is the top view photograph of described porcelain crucible lid;
图2为所述瓷坩埚盖的侧视照片;Fig. 2 is the side view photograph of described porcelain crucible lid;
图3为所述蝶形瓷皿的俯视照片;Fig. 3 is the top view photograph of described butterfly-shaped porcelain dish;
图4为所述蝶形瓷皿的侧视照片;Fig. 4 is the side view photograph of described butterfly-shaped porcelain dish;
图5为采用所述瓷坩埚盖进行灰吹时的照片(为方便拍摄,拍摄时取出高温炉)。FIG. 5 is a photo of using the porcelain crucible cover for ash blowing (for the convenience of shooting, the high-temperature furnace is taken out during shooting).
具体实施方式Detailed ways
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。The technical solutions of the present invention are further described in detail below with reference to the accompanying drawings, but the protection scope of the present invention is not limited to the following.
实施例1Example 1
取铜镍硫化矿国家一级标准物质GBW07195进行准确度验证,具体方法如下(对GBW07196、GBW07197、GBW07198采用同样的方法测定):Take the national first-class standard material GBW07195 of copper-nickel sulfide ore for accuracy verification. The specific method is as follows (the same method is used for GBW07196, GBW07197 and GBW07198):
1)试金配料1) Assay ingredients
称取5g样品,按样品熔剂质量比(1:7)加入混合配料,混匀,加入10g/L硝酸银3滴,将混合配料用纸包成团状。Weigh 5g of the sample, add the mixed ingredients according to the mass ratio of the sample flux (1:7), mix well, add 3 drops of 10g/L silver nitrate, and wrap the mixed ingredients into a dough with paper.
2)熔融与灰吹2) Melting and soot blowing
将纸团放入已在950℃的高温炉中预热30min的试金器皿中,待纸团碳化后,关闭炉门,保温10min,打开炉门,此时氧化铅被还原成小铅粒散漂于熔渣上方,将铅粒小心摇至集中为一铅扣(或关闭炉门继续保温直至铅粒集中),将温度降至900℃,铅扣直接在试金器皿中氧化灰吹为一小合粒(2mm),取出,冷却,锤出合粒。Put the paper ball into a test vessel that has been preheated in a high temperature furnace of 950℃ for 30min. After the paper ball is carbonized, close the furnace door, keep the temperature for 10 minutes, and open the furnace door. At this time, the lead oxide is reduced to small lead particles. Drift on the top of the slag, carefully shake the lead particles until they are concentrated into a lead button (or close the furnace door and continue to keep warm until the lead particles are concentrated), reduce the temperature to 900 ° C, and blow the lead button directly in the test utensil to oxidize the ash to a small size. Combine the granules (2mm), take out, cool, and hammer out the combined granules.
3)合粒消解3) Synthetic digestion
将合粒用蒸馏水清洗3次并烘干,将合粒移入密闭消解罐中,加入3mL硝酸,于控温电热板上140℃预消解40min,随后向密闭消解罐中加入5mL王水,放置半小时待剧烈反应停止,封闭消解罐,置于烘箱中于200℃消解150min,关闭烘箱电源,待冷却后,取出,开盖用水转移至50mL的容量瓶中,用水稀释至刻度,摇匀,静置。根据含量稀释不同倍数待测。The combined granules were washed with distilled water 3 times and dried. The combined granules were moved into a closed digestion tank, 3 mL of nitric acid was added, and pre-digested on a temperature-controlled electric hot plate at 140 °C for 40 min, then 5 mL of aqua regia was added to the closed digestion tank, and placed for half When the violent reaction stops within an hour, close the digestion tank, place it in an oven for digestion at 200 °C for 150 min, turn off the power of the oven, take it out after cooling, open the lid and transfer it to a 50 mL volumetric flask with water, dilute to the mark with water, shake well, and let it stand still. set. Dilute different times according to the content to be tested.
4)标准溶液4) Standard solution
单元素标准储备溶液(1000mg/L),购自国家有色金属及电子材料分析测试中心,均为有证标准物质。混合标准溶液由上述单元素标准储备溶液逐级稀释混合配制而成,分别为混合标准溶液A(金、铂、钯的质量浓度均为10μg/mL)和混合溶液B(金、铂、钯的质量浓度均为250ng/mL)。分别移取0mL、0.1mL、0.4mL、1.0mL混合溶液B和0.1mL、0.25mL、1.0mL混合标准溶液A于7个50mL容量瓶中,依次加入少量水,3.5mL硝酸,混匀后,加入4.5mL盐酸,稀释至刻度,混匀。金铂钯标准工作溶液的质量浓度均为0ng/mL、0.50ng/mL、2.0ng/mL、5.0ng/mL、20.0ng/mL、50.0ng/mL、200.0ng/mL。Single element standard stock solution (1000mg/L), purchased from National Nonferrous Metals and Electronic Materials Analysis and Testing Center, are certified reference materials. The mixed standard solution is prepared by diluting and mixing the above single-element standard stock solution step by step, which are respectively mixed standard solution A (the mass concentrations of gold, platinum, and palladium are all 10 μg/mL) and mixed solution B (the mass concentrations of gold, platinum, and palladium are all 10 μg/mL). The mass concentration is 250ng/mL). Pipette 0mL, 0.1mL, 0.4mL, 1.0mL of mixed solution B and 0.1mL, 0.25mL, 1.0mL of mixed standard solution A into seven 50mL volumetric flasks, add a small amount of water and 3.5mL of nitric acid in turn, and after mixing, Add 4.5mL hydrochloric acid, dilute to volume, and mix. The mass concentrations of gold platinum palladium standard working solutions were 0ng/mL, 0.50ng/mL, 2.0ng/mL, 5.0ng/mL, 20.0ng/mL, 50.0ng/mL, and 200.0ng/mL.
5)仪器测定5) Instrument measurement
使用调谐液调谐仪器各项指标,使灵敏度、氧化物、双电荷、背景值、分辨率等各项指标达到测定要求后,编辑测定方法、选择测定元素及内部元素,采用三通管接入内标溶液,依次对标准溶液、空白溶液、待测液进行测定。若测定结果超出标准曲线的测定范围,应将试样溶液稀释后再测定。所选金、铂、钯及内部元素测定质量数如表1所示。Use the tuner to tune the indicators of the instrument, so that the sensitivity, oxide, double charge, background value, resolution and other indicators meet the measurement requirements, edit the measurement method, select the measurement elements and internal elements, and use a three-way pipe to connect the internal elements. The standard solution, the blank solution, and the solution to be tested are measured in sequence. If the measurement result exceeds the measurement range of the standard curve, the sample solution should be diluted before measurement. The selected mass numbers of gold, platinum, palladium and internal elements are shown in Table 1.
表1Table 1
6)结果计算6) Result calculation
金、铂和钯含量的计算公式如下:The gold, platinum and palladium content is calculated as follows:
式中:w为金、铂或钯的质量分数,ng/g;ρ1为从校准曲线上查得待测试液中金、铂或钯的质量浓度,ng/mL;ρ0为从校准曲线上查得空白试液中金、铂或钯的质量浓度,ng/mL;V为待测试液总体积,mL;m为称取试样质量,g。In the formula: w is the mass fraction of gold, platinum or palladium, ng/g; ρ1 is the mass concentration of gold, platinum or palladium in the liquid to be tested obtained from the calibration curve, ng/mL; ρ0 is obtained from the calibration curve Obtain the mass concentration of gold, platinum or palladium in the blank test solution, ng/mL; V is the total volume of the solution to be tested, mL; m is the weight of the weighed sample, g.
将实验测得的测定值与标准认定值进行对比,结果如表2所示:The measured value measured by the experiment is compared with the standard certified value, and the results are shown in Table 2:
表2Table 2
实施例2Example 2
选取两件铜镍硫化矿原矿样品,其中1#(Cu 0.86%、镍1.07%、硫3.85%),2#(Cu0.46%、镍0.81%、硫2.77%),分别采用不同方法来对比验证本发明的准确度,本发明方法的详细操作步骤同实施例1(部分如温度、反应时间等参数根据具体情况有略微调整),实验结果见表3:Two copper-nickel sulfide ore samples were selected, including 1# (Cu 0.86%, nickel 1.07%, sulfur 3.85%) and 2# (Cu 0.46%, nickel 0.81%, sulfur 2.77%), and different methods were used for comparison. Verify the accuracy of the present invention, the detailed operation steps of the inventive method are with embodiment 1 (some parameters such as temperature, reaction time are slightly adjusted according to specific circumstances), and the experimental results are shown in Table 3:
表3table 3
其中,SN/T 4501.3-2017是中华人民共和国出入境检验检疫行业标准中的镍精矿化学分析方法;硝石法参照文献文献“一种含硫金精矿的火试金方法试验研究及改进,梁玉省等,2016,世界有色金属”进行实验。由实验数据可知,本发明方法测定的金铂钯的含量与现有技术测定方法测得的数据相差不大,具有较高的准确性,但是明显操作更为简单容易,可以用于实际生产。Among them, SN/T 4501.3-2017 is the chemical analysis method of nickel concentrate in the entry-exit inspection and quarantine industry standard of the People's Republic of China; the saltpeter method refers to the literature "Experimental Research and Improvement of Fire Assay Method for Sulfur-Containing Gold Concentrate, Liang Yusheng et al., 2016, "World Nonferrous Metals" conduct experiments. It can be known from the experimental data that the content of gold, platinum and palladium measured by the method of the present invention is not much different from the data measured by the prior art measurement method, and has higher accuracy, but the operation is obviously simpler and easier, and can be used for actual production.
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The foregoing are only preferred embodiments of the present invention, and it should be understood that the present invention is not limited to the forms disclosed herein, and should not be construed as an exclusion of other embodiments, but may be used in various other combinations, modifications, and environments, and Modifications can be made within the scope of the concepts described herein, from the above teachings or from skill or knowledge in the relevant field. However, modifications and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all fall within the protection scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210576453.3A CN114993969A (en) | 2022-05-25 | 2022-05-25 | Method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by fire assay method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210576453.3A CN114993969A (en) | 2022-05-25 | 2022-05-25 | Method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by fire assay method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114993969A true CN114993969A (en) | 2022-09-02 |
Family
ID=83029694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210576453.3A Pending CN114993969A (en) | 2022-05-25 | 2022-05-25 | Method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by fire assay method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114993969A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117025960A (en) * | 2023-07-21 | 2023-11-10 | 江西三和金业有限公司 | Treatment process for recovering noble metal from graphite gold-containing material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106501044A (en) * | 2016-11-25 | 2017-03-15 | 甘肃出入境检验检疫局检验检疫综合技术中心 | Fire assaying dispensing, the method for quantitatively determining of precious metal element and pre-treating method |
CN107340203A (en) * | 2017-07-28 | 2017-11-10 | 西部矿业股份有限公司 | The assay method of silver content in a kind of zinc anode sludge |
CN108680565A (en) * | 2018-08-14 | 2018-10-19 | 西部矿业股份有限公司 | The method for measuring platinum palladium content in nickel ores using inductively coupled plasma atomic emission |
CN113376145A (en) * | 2021-08-16 | 2021-09-10 | 北矿检测技术有限公司 | Method for measuring amount of palladium in copper matte |
CN113740324A (en) * | 2021-09-06 | 2021-12-03 | 紫金铜业有限公司 | Detection method for determining gold, silver, platinum and palladium in gold separation slag |
CN113834709A (en) * | 2021-09-22 | 2021-12-24 | 中国地质科学院矿产综合利用研究所 | Plasma mass spectrum/spectrum determination method for noble metal in bismuth gold test enrichment geological sample |
CN114152489A (en) * | 2021-11-16 | 2022-03-08 | 河南省岩石矿物测试中心 | Platinum-palladium-gold gray blowing method in black rock by taking tellurium and silver as protective agent |
-
2022
- 2022-05-25 CN CN202210576453.3A patent/CN114993969A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106501044A (en) * | 2016-11-25 | 2017-03-15 | 甘肃出入境检验检疫局检验检疫综合技术中心 | Fire assaying dispensing, the method for quantitatively determining of precious metal element and pre-treating method |
CN107340203A (en) * | 2017-07-28 | 2017-11-10 | 西部矿业股份有限公司 | The assay method of silver content in a kind of zinc anode sludge |
CN108680565A (en) * | 2018-08-14 | 2018-10-19 | 西部矿业股份有限公司 | The method for measuring platinum palladium content in nickel ores using inductively coupled plasma atomic emission |
CN113376145A (en) * | 2021-08-16 | 2021-09-10 | 北矿检测技术有限公司 | Method for measuring amount of palladium in copper matte |
CN113740324A (en) * | 2021-09-06 | 2021-12-03 | 紫金铜业有限公司 | Detection method for determining gold, silver, platinum and palladium in gold separation slag |
CN113834709A (en) * | 2021-09-22 | 2021-12-24 | 中国地质科学院矿产综合利用研究所 | Plasma mass spectrum/spectrum determination method for noble metal in bismuth gold test enrichment geological sample |
CN114152489A (en) * | 2021-11-16 | 2022-03-08 | 河南省岩石矿物测试中心 | Platinum-palladium-gold gray blowing method in black rock by taking tellurium and silver as protective agent |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117025960A (en) * | 2023-07-21 | 2023-11-10 | 江西三和金业有限公司 | Treatment process for recovering noble metal from graphite gold-containing material |
CN117025960B (en) * | 2023-07-21 | 2024-06-07 | 江西三和金业有限公司 | Treatment process for recovering noble metal from graphite gold-containing material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Erdey | Gravimetric Analysis: International Series of Monographs on Analytical Chemistry, Vol. 7 | |
CN110735045B (en) | A method for pyrolysis reduction and smelting of bismuth to enrich platinum group metals in waste automobile exhaust catalyst | |
CN108680565B (en) | Method for measuring platinum and palladium content in nickel ore by using inductively coupled plasma emission spectrum | |
CN107014766A (en) | Gold, Palladium deter-mination method in a kind of decopper(ing) slag of copper anode mud wet processing process | |
CN110530850B (en) | A method for accurately detecting the contents of platinum, palladium and rhodium in waste automobile exhaust catalysts | |
CN103575609B (en) | Method for analyzing gold in liquid gold water | |
CN113834709B (en) | Plasma mass spectrum/spectrum determination method for enriching noble metals in geological sample by bismuth test | |
CN103926372A (en) | Method for measuring content of silver in high-bismuth material | |
CN102706860A (en) | Chemical analysis method of rhodium content | |
CN111982888A (en) | Detection method for measuring gold and platinum in concentration test liquid sample | |
CN102253072A (en) | Pyrometallurgical ensaying method for controlling quality of lead button | |
CN114993969A (en) | Method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by fire assay method | |
CN103115886A (en) | Method for analyzing gold in tin and tin alloy waste | |
CN113376145A (en) | Method for measuring amount of palladium in copper matte | |
CN114152489B (en) | Platinum-palladium-gold gray blowing method in black rock by taking tellurium-silver as protective agent | |
Ni et al. | Matrix-matched multi-external standards combined internal standard calibration strategy for the simultaneous determination of ultra-trace Au, Pt and Pd in geochemical samples by LA-ICP-MS after lead fire assay preconcentration | |
CN111896530A (en) | Analysis method for measuring total iron content in blast furnace cloth bag dedusting ash | |
CN113466215B (en) | Method for simultaneously determining contents of gold, silver, platinum and palladium in low nickel matte and application | |
Vinci | Analytical Chemistry of Beryllium | |
CN107238578A (en) | A kind of silver determination method in decopper(ing) slag of copper anode mud wet processing process | |
RU2288288C1 (en) | Method of assay determination of content of gold in ores and in products of their processing | |
Hoffman et al. | Fire assay for platinum | |
RU2365644C1 (en) | Method of identification of noble metals in sulfide ores and their processing products | |
CN116660085A (en) | Method for detecting gold and silver content in basic copper carbonate | |
CN118854062A (en) | A method for reducing and recovering valuable metals in low-grade copper-containing solid waste materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |