CN114991673B - 纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用 - Google Patents

纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用 Download PDF

Info

Publication number
CN114991673B
CN114991673B CN202210512093.0A CN202210512093A CN114991673B CN 114991673 B CN114991673 B CN 114991673B CN 202210512093 A CN202210512093 A CN 202210512093A CN 114991673 B CN114991673 B CN 114991673B
Authority
CN
China
Prior art keywords
boron nitride
cubic boron
drilling
micro powder
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210512093.0A
Other languages
English (en)
Other versions
CN114991673A (zh
Inventor
贺端威
周礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202210512093.0A priority Critical patent/CN114991673B/zh
Publication of CN114991673A publication Critical patent/CN114991673A/zh
Application granted granted Critical
Publication of CN114991673B publication Critical patent/CN114991673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Drilling Tools (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了纯相聚晶立方氮化硼材料在制备油气钻探和矿石开采用的高耐热性钻齿中的应用,所述高耐热性钻齿由含Co的WC硬质合金圆柱形基体及固连在所述基体上端面的纯相聚晶立方氮化硼工作层构成,所述纯相聚晶立方氮化硼工作层的耐热温度不低于1200K,维氏硬度不低于50GPa,耐磨性在低速车削时与现有商用PDC钻齿的耐磨性相当,在高速车削时耐磨性是现有商用PDC钻齿的2~3倍,其抗冲击性优于现有商用PDC钻齿的抗冲击性,因而可提高钻齿的使用寿命。

Description

纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用
技术领域
本发明属于纯相聚晶立方氮化硼材料领域,涉及纯相聚晶立方氮化硼材料的应用。
背景技术
钻齿是油气钻探和矿石开采的重要工作部件,钻齿的耐磨性、热稳定性及抗冲击性等性能是影响钻探效率、成本、安全性的重要因素,特别是在2千米以上深井钻探中,对钻齿的各项性能要求则更为苛刻。目前,运用在钻探和开采过程中对岩石进行切削、刮削和钻进的油气钻头的钻齿工作层,一般使用聚(多)晶金刚石(Polycrystalline DiamondCutter,PDC)制作,而聚(多)晶金刚石(Poly-Crystalline Diamond,PCD)材料在工业合成的过程中通常会添加铁、钴、镍等金属材料,或者碳化硅、碳化硼等非金属材料作为粘结剂或烧结助剂,因为采用粘结剂或烧结助剂可以促进金刚石间D-D键的键合,以达到降低烧结合成聚(多)晶金刚石过程的高温高压条件、提高金刚石多晶烧结体的成品率的目的。因此,普通的商用PDC的硬度约为50~70GPa,热稳定性在900K左右,更高的温度会导致金刚石层出现裂纹,以及金刚石的氧化和石墨化,从而严重影响PDC的性能和寿命。出现上述情况的原因在于:商用PDC材料中的非碳成分粘结剂或烧结助剂,其热膨胀系数和弹性系数与金刚石的热膨胀系数和弹性系数差别较大,在油气钻探的过程中,随着钻进深度持续不断的深入,钻头钻齿刃口处与岩石等会因为切削/摩擦而产生大量的热量和局部高应力,在深井的环境中,热量不能及时的排除,越积越多,从而使聚(多)晶金刚石材料所制备的钻齿发生热膨胀现象,其粘结剂或烧结助剂也会发生热膨胀,而这些粘结剂或烧结助剂与聚(多)晶金刚石具有不同的热膨胀系数,致使聚(多)晶金刚石钻齿在热膨胀的同时又会受到发生热膨胀的粘结剂或烧结助剂的挤压,从而产生微裂纹,大大缩短金刚石钻齿的使用寿命;另外,粘结剂或烧结助剂在高温的环境下又会促进聚(多)晶金刚石的石墨化,或者与聚(多)晶金刚石反应,从而影响钻齿的切削性能和耐磨性等。商用PDC通常会采用物理或化学方法(酸处理)除去粘结剂或烧结助剂,以进一步提升其切削性能、耐热性和耐磨性,但是其成本较高并且难以完全去除,并且会有污染环境的风险。
纯相聚晶立方氮化硼(PcBN)材料具有优良的综合性能,其维氏硬度可达50GPa以上,热稳定性可达1200K以上,但目前尚未发现将纯相聚(多)晶立方氮化硼材料用作高耐热性钻齿的技术公开。
发明内容
本发明的目的在于克服现有技术的不足,提供纯相聚晶立方氮化硼(PcBN)材料在制备油气钻探和矿石开采用的高耐热性钻齿中的应用,以提高油气钻探和矿石开采用钻齿的使用寿命。
本发明所述纯相聚晶立方氮化硼(PcBN)材料在制备油气钻探和矿石开采用的高耐热性钻齿中的应用,是将纯相聚晶立方氮化硼(PcBN)材料用于形成油气钻探和矿石开采用钻齿工作层。
所述高耐热性钻齿由含Co的WC硬质合金基体及固连在所述基体上端面的纯相聚晶立方氮化硼工作层构成,所述纯相聚晶立方氮化硼工作层的耐热温度不低于1200K,维氏硬度不低于50GPa,所述含Co的WC硬质合金圆柱形基体的含Co质量分数为2%~20%。
所述高耐热性钻齿的制备方法包括以下工艺步骤:
(1)将纯度为99.9wt%以上的立方氮化硼微粉进行真空热处理,真空热处理时,真空度为1×10-1~1×10-5Pa,温度为500~1300℃,处理时间为0.1~10h;
(2)将步骤(1)真空热处理后的立方氮化硼微粉放入尺寸与所制备的钻齿匹配的圆杯中,再将含Co的WC硬质合金圆柱形基体放置在立方氮化硼微粉的上面,然后把立方氮化硼微粉与所述基体压实,再将圆杯位于所述基体上方的杯壁折弯压在该基体上面进行二次压制,形成立方氮化硼微粉、含Co的WC硬质合金圆柱形基体及圆杯组成的第一种基片;
或者将步骤(1)真空热处理后的立方氮化硼微粉放入尺寸与所制备的钻齿匹配的圆杯中,然后把立方氮化硼微粉压实并覆盖圆片,再将圆杯位于立方氮化硼微粉上方的杯壁折弯压在该立方氮化硼微粉上面进行二次压制,形成立方氮化硼微粉、圆片和圆杯组成的第二种基片;
所述圆杯和圆片的制作材料为钼、铌、钽、铼或碳;
(3)将步骤(2)形成的第一种基片或第二种基片装在与静高压设备配套的高温高压装置中形成合成块,然后将所述合成块放入静高压设备中,在压力6~30GPa、温度1200~2500℃下烧结,烧结时间10~2000S,得到高耐热性钻齿的毛坯或高耐热性钻齿工作层的毛坯;
(4)将步骤(3)所得高耐热性钻齿的毛坯加工成所要求的尺寸和形状,即得到高耐热性钻齿;
或者将步骤(3)所得高耐热性钻齿工作层的毛坯加工成所要求的尺寸和形状,再与加工成所要求尺寸和形状的含Co的WC硬质合金基体上端面通过激光焊接、真空焊接、高频感应焊接或机械连接等方式进行结合,即得到高耐热性钻齿。
上述制备方法的步骤(2)中,二次压制时的压力为10~1000MPa,保压时间为1~120S。
上述制备方法中,纯度为99.9wt%以上的立方氮化硼微粉可以购买,也可以自行制备。
若自行制备,操作如下:
(1)采用爆轰法或冲击法制备纳米、亚微米或微米立方氮化硼粉体,或者采用静高压法制备纳米、亚微米或微米立方氮化硼粉体,或者采用粉碎大颗粒立方氮化硼法制备纳米、亚微米或微米立方氮化硼粉体;立方氮化硼粉体的粒径范围为5nm~100μm;
(2)对步骤(1)得到的立方氮化硼粉体通过酸处理、电解法处理或碱处理纯化,然后再用去离子水洗涤、过滤、分离、烘干即得到纯度为99.9wt%以上的立方氮化硼微粉。
本发明与现有技术相比,具有以下有益效果:
(1)本发明将纯相聚晶立方氮化硼(PcBN)材料用于形成油气钻探和矿石开采用钻齿工作层,因而所得到的钻齿具有优良的综合性能,其维氏硬度可达50GPa以上,与现有商用PDC钻齿相当,其热稳定性可达1200K以上,是现有商用PDC钻齿的1.5倍以上,其耐磨性在低速车削花岗岩时与现有商用PDC钻齿的耐磨性相当,在高速车削花岗岩时耐磨性是现有商用PDC钻齿的2~3倍,其抗冲击性优于现有商用PDC钻齿的抗冲击性。
(2)由于以纯相聚晶立方氮化硼(PcBN)材料为工作层的钻齿具有优良的综合性能,尤其是热稳定性、高速耐磨性和抗冲击性均优于现有商用PDC钻齿,因而可提高钻齿的使用寿命。
(3)本发明以纯相聚晶立方氮化硼(PcBN)材料为油气钻探和矿石开采用钻齿的工作层,以含Co的WC硬质合金为基体,其原料易于获取,制备方法简单,所用设备为常规设备,因而便于推广使用。
附图说明
图1是本发明实施例所述油气钻探和矿石开采用高耐热性钻齿的示意图,图中,1—基体,2—工作层。
图2是实施例1提供的油气钻探和矿石开采用高耐热性钻齿中纯相聚晶立方氮化硼工作层的XRD图谱。
图3是实施例1提供的油气钻探和矿石开采用高耐热性钻齿中纯相聚晶立方氮化硼工作层的维氏硬度测试示意图。
图4是现有商用油气钻探和矿石开采用钻齿中聚晶金刚石(PDC)工作层的差热分析结果图。
图5是实施例1提供的油气钻探和矿石开采用高耐热性钻齿中纯相聚晶立方氮化硼工作层的差热分析结果图。
图6是实施例1提供的油气钻探和矿石开采用钻齿及现有商用聚晶金刚石(PDC)钻齿低速切削花岗岩(线速度:90m/min,切深:0.5mm;进给速度:0.4mm/r)时后刀面磨损图,其中,a图为实施例1提供的油气钻探和矿石开采用高耐热性钻齿后刀面磨损图,b图为现有商用聚晶金刚石(PDC)钻齿后刀面磨损图。
图7是实施例1提供的油气钻探和矿石开采用钻齿及现有商用聚晶金刚石(PDC)钻齿高速切削花岗岩(线速度:240m/min,切深:0.5mm;进给速度:0.6mm/r)时后刀面磨损图,其中,a图为实施例1提供的油气钻探和矿石开采用高耐热性钻齿后刀面磨损图,b图为现有商用聚晶金刚石(PDC)钻齿后刀面磨损图。
图8是实施例1提供的油气钻探和矿石开采用钻齿及现有商用聚晶金刚石(PDC)钻齿的抗冲击性能图,其中,a图为实施例1提供的油气钻探和矿石开采用高耐热性钻齿的抗冲击性能图,b图为现有商用聚晶金刚石(PDC)钻齿的抗冲击性能图。
图9是实施例2提供的油气钻探和矿石开采用钻齿及现有商用聚晶金刚石(PDC)钻齿低速切削花岗岩(线速度:90m/min,切深:0.5mm;进给速度:0.4mm/r)时后刀面磨损图,其中,a图为实施例2提供的油气钻探和矿石开采用高耐热性钻齿后刀面磨损图,b图为现有商用聚晶金刚石(PDC)钻齿后刀面磨损图。
图10是实施例3提供的油气钻探和矿石开采用钻齿及现有商用聚晶金刚石(PDC)钻齿高速切削花岗岩(线速度:240m/min,切深:0.5mm;进给速度:0.6mm/r)时后刀面磨损图,其中,a图为实施例3提供的油气钻探和矿石开采用高耐热性钻齿后刀面磨损图,b图为现有商用聚晶金刚石(PDC)钻齿后刀面磨损图。
图11是实施例4提供的油气钻探和矿石开采用钻齿及现有商用聚晶金刚石(PDC)钻齿的抗冲击性能图,其中,a图为实施例4提供的油气钻探和矿石开采用高耐热性钻齿的抗冲击性能图,b图为现有商用聚晶金刚石(PDC)钻齿的抗冲击性能图。
具体实施方式
下面通过实施例并结合附图对本发明作进一步说明。显然,所描述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。
下述实施例中,高温高压烧结时使用的静高压设备为国产铰链式六面顶压机,型号为DS6×25MN,生产企业:张家口探矿机械厂;所用原料均通过市场购买。
实施例1
本实施例制备图1所示形状结构的油气钻探和矿石开采用高耐热性钻齿,原料立方氮化硼微粉纯度99.9wt%、晶粒尺寸1~2μm,圆柱形基体为含Co质量分数5%的WC硬质合金(牌号:YG5),直径16mm、高度11mm。
步骤如下:
(1)将立方氮化硼微粉在混料机内混合35分钟,然后将立方氮化硼微粉在真空烧结炉内进行真空热处理,处理条件:真空度9×10-3Pa,温度700C,处理时间6h,以去除微粉的团簇以及微粉中的水蒸气和氧气;
(2)将步骤(1)真空热处理后的立方氮化硼微粉放入准备好的圆形钼杯中,所述钼杯的内径16.1mm、外径17.1mm、高度14.5mm,再将含Co的WC硬质合金圆柱形基体放置在立方氮化硼微粉的上面,然后把立方氮化硼微粉与所述基体压实,再将圆形钼杯位于所述基体上方的杯壁折弯压在该基体上面进行二次压制,施压压力430MPa、保压100S,形成立方氮化硼微粉、含Co的WC硬质合金圆柱形基体及钼杯组成的第一种基片;
(3)将步骤(2)形成的第一种基片装在与静高压设备配套的高温高压装置中形成合成块,所述高温高压装置由氧化镁传压八面体、二氧化锆管片及钽管钽片构成,然后将所述合成块放入静高压设备中,在压力12GPa、温度1400℃下烧结,烧结时间300S,得到高耐热性钻齿的毛坯;
(4)将步骤(3)得到的高耐热性钻齿毛坯加工成所要求的尺寸:直径16mm,总高度13.5mm,纯相多晶立方氮化硼工作层高度2.5mm,含Co的WC硬质合金基体高度11mm,该步骤的具体操作为:先用无芯磨把高耐热性钻齿毛坯加工成接近所要求的尺寸的准钻齿,再用线切割机床加工立方氮化硼聚晶层端面,切割后在研磨机上对立方氮化硼聚晶层端面进行研磨,最后用抛光机进行抛光处理,即得到所要求尺寸的圆柱形高耐热性钻齿。
对本实施例得到的高耐热性钻齿工作层进行相组成、硬度、热稳定性、耐磨性及抗冲击性检测。相组成采用XRD分析,XRD图谱如图2所示,图2表明,工作层为纯相聚晶立方氮化硼;硬度检测维氏硬度,测试图如图3所示,工作层维氏硬度为65.1±2.3GPa;热稳定性检测采用差热分析,检测结果如图5所示,图5表明,工作层的耐热性约为1588K,是现有商用聚晶金刚石(PDC)工作层耐热性的1.8倍(如图4所示,商用PDC钻齿工作层耐热性约为869K);耐磨性检测采用车削花岗岩,如图6所示,在车削路程相同的情况下,纯相聚晶立方氮化硼钻齿在低速(切削速度90m/min)车削花岗岩时与现有商用PDC钻齿的耐磨性相当,如图7所示,在车削路程相同的情况下,纯相聚晶立方氮化硼钻齿在高速(切削速度240m/min)车削花岗岩时耐磨性是现有商用PDC钻齿耐磨性的2倍;抗冲击性检测的冲击能量为20J、冲击次数为五次,检测结果如图8所示,图8表明,纯相聚晶立方氮化硼钻齿的抗冲击性优于现有商用PDC钻齿。
实施例2
本实施例制备图1所示形状结构的油气钻探和矿石开采用高耐热性钻齿,原料立方氮化硼微粉纯度99.9wt%、晶粒尺寸3~5μm,圆柱形基体为含Co质量分数10%的WC硬质合金(牌号:YG10),直径16mm、高度9.5mm。
步骤如下:
(1)将立方氮化硼微粉在混料机内混合35分钟,然后将立方氮化硼微粉在真空烧结炉内进行真空热处理,处理条件:真空度1×10-3Pa,温度900C,处理时间3.5h,以去除微粉的团簇以及微粉中的水蒸气和氧气;
(2)将步骤(1)真空热处理后的立方氮化硼微粉放入准备好的圆形钼杯中,所述钼杯的内径16.1mm、外径17.1mm、高度5mm,然后把立方氮化硼微粉压实,再覆盖圆形钼片并将圆形钼杯位于立方氮化硼微粉上方的杯壁折弯压在该立方氮化硼微粉上面进行二次压制,施压压力560MPa、保压80S,形成立方氮化硼微粉、钼片和钼杯组成的第二种基片;
(3)将步骤(2)形成的第二种基片装在与静高压设备配套的高温高压装置中形成合成块,所述高温高压装置由氧化镁传压八面体、二氧化锆管片及钽管钽片构成,然后将所述合成块放入静高压设备中,在压力14GPa、温度1600℃下烧结,烧结时间600S,得到高耐热性钻齿工作层的毛坯;
(4)将步骤(3)得到的高耐热性钻齿工作层的毛坯加工成所要求的尺寸:直径16mm、高度4mm,该步骤的具体操作为:先用无芯磨把高耐热性钻齿毛坯工作层加工成直径16mm,再用线切割机床加工立方氮化硼聚晶层端面,切割后在研磨机上对立方氮化硼聚晶层端面进行研磨,最后用抛光机进行抛光处理,即得到所要求尺寸的圆台形高耐热性钻齿工作层;
(5)使用激光焊接技术将步骤(4)得到的钻齿工作层与含钴质量分数为10%的WC硬质合金基体(牌号:YG10,尺寸:高度9.5mm、直径16mm)焊接在一起,得到直径16mm,总高度13.5mm,工作层高度4mm,含Co的WC硬质合金基体高度9.5mm的圆柱形高耐热性钻齿。
对本实施例得到的高耐热性钻齿工作层进行相组成和耐磨性检测。相组成采用XRD分析,XRD图谱与图2相同,检测结果表明,工作层为纯相聚晶立方氮化硼;耐磨性检测采用车削花岗岩,如图9所示,在车削路程相同的情况下,纯相聚晶立方氮化硼钻齿在低速(切削速度90m/min)车削花岗岩时与现有商用PDC钻齿的耐磨性相当。
实施例3
本实施例制备图1所示形状结构的油气钻探和矿石开采用高耐热性钻齿,原料立方氮化硼微粉纯度99.9wt%、晶粒尺寸6~8μm,圆柱形基体为含Co质量分数15%的WC硬质合金(牌号:YG15),直径16mm、高度7.5mm。
步骤如下:
(1)将立方氮化硼微粉在混料机内混合35分钟,然后将立方氮化硼微粉在真空烧结炉内进行真空热处理,处理条件:真空度9×10-4Pa,温度1000C,处理时间2h,以去除微粉的团簇以及微粉中的水蒸气和氧气;
(2)将步骤(1)真空热处理后的立方氮化硼微粉放入准备好的圆形钼杯中,所述钼杯的内径16.1mm、外径17.1mm、高度14.5mm,再将含Co的WC硬质合金圆柱形基体放置在立方氮化硼微粉的上面,然后把立方氮化硼微粉与所述基体压实,再将圆形钼杯位于所述基体上方的杯壁折弯压在该基体上面进行二次压制,施压压力820MPa、保压时间40S,形成立方氮化硼微粉、含Co的WC硬质合金圆柱形基体及钼杯组成的第一种基片;
(3)将步骤(2)形成的第一种基片装在与静高压设备配套的高温高压装置中形成合成块,所述高温高压装置由氧化镁传压八面体、二氧化锆管片及钽管钽片构成,然后将所述合成块放入静高压设备中,在压力16GPa、温度1800℃下烧结,烧结时间900S,得到高耐热性钻齿的毛坯;
(4)将步骤(3)得到的高耐热性钻齿毛坯加工成所要求的尺寸:直径16mm,总高度13.5mm,纯相多晶立方氮化硼工作层高度6mm,含Co的WC硬质合金基体高度7.5mm,该步骤的具体操作为:先用无芯磨把高耐热性钻齿毛坯加工成接近所要求尺寸的准钻齿,再用线切割机床加工立方氮化硼聚晶层端面,切割后在研磨机上对立方氮化硼聚晶层端面进行研磨,最后用抛光机进行抛光处理,即得到所要求尺寸的圆柱形高耐热性钻齿。
对本实施例得到的高耐热性钻齿工作层进行相组成和耐磨性检测。相组成采用XRD分析,XRD图谱与图2相同,检测结果表明,工作层为纯相聚晶立方氮化硼;耐磨性检测采用车削花岗岩,如图10所示,在车削路程相同的情况下,纯相聚晶立方氮化硼钻齿在高速(切削速度240m/min)车削花岗岩时耐磨性是现有商用PDC钻齿耐磨性的2.5倍。
实施例4
本实施例制备图1所示形状结构的油气钻探和矿石开采用高耐热性钻齿,原料立方氮化硼微粉纯度99.9wt%、晶粒尺寸10~12μm,圆柱形基体为含Co质量分数20%的WC硬质合金(牌号:YG20),直径16mm、高度5.5mm。
步骤如下:
(1)将立方氮化硼微粉在混料机内混合35分钟,然后将立方氮化硼微粉在真空烧结炉内进行真空热处理,处理条件:真空度4×10-4Pa,温度1100C,处理时间1h,以去除微粉的团簇以及微粉中的水蒸气和氧气;
(2)将步骤(1)真空热处理后的立方氮化硼微粉放入准备好的圆形钼杯中,所述钼杯的内径16.1mm、外径17.1mm、高度9mm,然后把立方氮化硼微粉压实,再覆盖圆形钼片并将圆形钼杯位于立方氮化硼微粉上方的杯壁折弯压在该立方氮化硼微粉上面进行二次压制,施压压力960MPa、保压10S,形成立方氮化硼微粉、钼片和钼杯组成的第二种基片;
(3)将步骤(2)形成的第二种基片装在与静高压设备配套的高温高压装置中形成合成块,所述高温高压装置由氧化镁传压八面体、二氧化锆管片及钽管钽片构成,然后将所述合成块放入静高压设备中,在压力18GPa、温度2000℃下烧结,烧结时间1200S,得到高耐热性钻齿工作层的毛坯;
(4)将步骤(3)得到的高耐热性钻齿工作层的毛坯加工成所要求的尺寸:直径16mm、高度8mm,该步骤的具体操作为:先用无芯磨把高耐热性钻齿毛坯工作层加工成直径16mm,再用线切割机床加工立方氮化硼聚晶层端面,切割后在研磨机上对立方氮化硼聚晶层端面进行研磨,最后用抛光机进行抛光处理,即得到所要求尺寸的圆柱形高耐热性钻齿工作层;
(5)使用激光焊接技术将步骤(4)得到的钻齿工作层与含钴质量分数为20%的WC硬质合金基体(牌号:YG20,尺寸:高度5.5mm、直径16mm)焊接在一起,得到直径16mm,总高度13.5mm,工作层高度8mm,含Co的WC硬质合金基体高度5.5mm的圆柱形高耐热性钻齿。
对本实施例得到的高耐热性钻齿工作层进行相组成和抗冲击性检测。相组成采用XRD分析,XRD图谱与图2相同,检测结果表明,工作层为纯相聚晶立方氮化硼;抗冲击性检测的冲击能量为10J、冲击次数为20次,检测结果如图11所示,图11表明,纯相聚晶立方氮化硼钻齿的抗冲击性与现有商用PDC钻齿相同。

Claims (2)

1.纯相聚晶立方氮化硼材料在制备油气钻探和矿石开采用的高耐热性钻齿中的应用,所述高耐热性钻齿由含Co的WC硬质合金基体及固连在所述基体上端面的纯相聚晶立方氮化硼工作层构成,所述纯相聚晶立方氮化硼工作层的耐热温度不低于1200 K,维氏硬度不低于50GPa;
所述高耐热性钻齿的制备方法包括以下工艺步骤:
(1)将纯度为99.9wt%以上的立方氮化硼微粉进行真空热处理,真空热处理时,真空度为1×10-1~1×10-5 Pa,温度为500~1300 0C,处理时间为0.1~10 h;
(2)将步骤(1)真空热处理后的立方氮化硼微粉放入尺寸与所制备的钻齿匹配的圆杯中,再将含Co的WC硬质合金圆柱形基体放置在立方氮化硼微粉的上面,然后把立方氮化硼微粉与所述基体压实,再将圆杯位于所述基体上方的杯壁折弯压在该基体上面进行二次压制,形成立方氮化硼微粉、含Co的WC硬质合金圆柱形基体及圆杯组成的第一种基片;
或者将步骤(1)真空热处理后的立方氮化硼微粉放入尺寸与所制备的钻齿匹配的圆杯中,然后把立方氮化硼微粉压实并覆盖圆片,再将圆杯位于立方氮化硼微粉上方的杯壁折弯压在该立方氮化硼微粉上面进行二次压制,形成立方氮化硼微粉、圆片和圆杯组成的第二种基片;
所述圆杯和圆片的制作材料为钼、铌、钽、铼或碳;
(3)将步骤(2)形成的第一种基片或第二种基片装在与静高压设备配套的高温高压装置中形成合成块,然后将所述合成块放入静高压设备中,在压力6~30 GPa、温度1200~2500 0C下烧结,烧结时间10~2000S,得到高耐热性钻齿的毛坯或高耐热性钻齿工作层的毛坯;
(4)将步骤(3)所得高耐热性钻齿的毛坯加工成所要求的尺寸和形状,即得到高耐热性钻齿;
或者将步骤(3)所得高耐热性钻齿工作层的毛坯加工成所要求的尺寸和形状,再与加工成所要求尺寸和形状的含Co的WC硬质合金基体上端面通过激光焊接、真空焊接、高频感应焊接或机械连接的方式进行结合,即得到高耐热性钻齿。
2.根据权利要求1所述的应用,其特征在于步骤(2)中,二次压制时的压力为10~1000MPa,保压时间为1~120S。
CN202210512093.0A 2022-05-11 2022-05-11 纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用 Active CN114991673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210512093.0A CN114991673B (zh) 2022-05-11 2022-05-11 纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210512093.0A CN114991673B (zh) 2022-05-11 2022-05-11 纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用

Publications (2)

Publication Number Publication Date
CN114991673A CN114991673A (zh) 2022-09-02
CN114991673B true CN114991673B (zh) 2024-03-19

Family

ID=83026305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210512093.0A Active CN114991673B (zh) 2022-05-11 2022-05-11 纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用

Country Status (1)

Country Link
CN (1) CN114991673B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606081A (zh) * 2012-03-28 2012-07-25 吉林大学 高效耐磨抗冲击聚晶金刚石复合片
CN103028731A (zh) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 一种热压孕镶金刚石钻齿和制法及其在强研磨性硬地层的应用
RU2484888C1 (ru) * 2011-12-27 2013-06-20 Открытое акционерное общество "Научно-исследовательский институт природных, синтетических алмазов и инструмента" (ОАО "ВНИИАЛМАЗ") Способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы
CN103537699A (zh) * 2012-07-11 2014-01-29 吉林师范大学 一种聚晶立方氮化硼复合片的制备方法
CN110029942A (zh) * 2019-05-27 2019-07-19 吉林大学 适用于钻探的热稳定型聚晶金刚石复合片及其制备方法
CN112441594A (zh) * 2019-09-04 2021-03-05 四川大学 一种高性能微米晶聚晶立方氮化硼的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028731A (zh) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 一种热压孕镶金刚石钻齿和制法及其在强研磨性硬地层的应用
RU2484888C1 (ru) * 2011-12-27 2013-06-20 Открытое акционерное общество "Научно-исследовательский институт природных, синтетических алмазов и инструмента" (ОАО "ВНИИАЛМАЗ") Способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы
CN102606081A (zh) * 2012-03-28 2012-07-25 吉林大学 高效耐磨抗冲击聚晶金刚石复合片
CN103537699A (zh) * 2012-07-11 2014-01-29 吉林师范大学 一种聚晶立方氮化硼复合片的制备方法
CN110029942A (zh) * 2019-05-27 2019-07-19 吉林大学 适用于钻探的热稳定型聚晶金刚石复合片及其制备方法
CN112441594A (zh) * 2019-09-04 2021-03-05 四川大学 一种高性能微米晶聚晶立方氮化硼的制备方法

Also Published As

Publication number Publication date
CN114991673A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US10315288B2 (en) Carbonate-catalyzed polycrystalline diamond elements, methods of manufacturing the same, and applications therefor
US8057562B2 (en) Thermally stable ultra-hard polycrystalline materials and compacts
KR101123490B1 (ko) 복합 소결체 및 절삭 공구
US8622157B1 (en) Polycrystalline diamond compact (PDC) cutting element having multiple catalytic elements
EP2508636B1 (en) Polycrystalline diamond compacts and various applications
CN105840104A (zh) 一种热稳定型高抗冲击聚晶金刚石复合片及制造方法
EP0174546A2 (en) Diamond sintered body for tools and method of manufacturing the same
KR101196089B1 (ko) 다이아몬드 다결정체 및 그 제조 방법
JP2008517869A (ja) 立方晶系窒化硼素成形体
CN1171069A (zh) 复合金属陶瓷制品及其制造方法
US20080226897A1 (en) Cubic Boron Nitride Compacts
CN102606082A (zh) 金刚石复合片及其制造工艺
CN110342943A (zh) 工业压力下合成无粘结剂聚晶氮化硼块材的方法及其应用
CN111233476A (zh) 一种无粘结剂多晶金刚石材料及其制备方法
US7517588B2 (en) High abrasion resistant polycrystalline diamond composite
US7595110B2 (en) Polycrystalline diamond composite
CN114991673B (zh) 纯相聚晶立方氮化硼材料在制备高耐热性钻齿中的应用
CN110524442A (zh) 一种多孔金刚石多晶磨料及其制备方法
CN113059161B (zh) 一种聚晶金刚石复合片及其制备方法
CN110253024B (zh) 一种含有石墨烯的金刚石复合片及其制备方法
CN105672891A (zh) 一种高热稳定性聚晶金刚石复合片
US8828110B2 (en) ADNR composite
CN114014279B (zh) 一种多孔多晶立方氮化硼的制备方法
CN113968736B (zh) 一种碲触媒的多晶金刚石烧结体及其制备方法
CN112323144B (zh) 一种表面增强的聚晶金刚石复合片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant