CN114989622A - A kind of isocyanate/silk fibroin composite film and preparation method thereof - Google Patents
A kind of isocyanate/silk fibroin composite film and preparation method thereof Download PDFInfo
- Publication number
- CN114989622A CN114989622A CN202210836245.2A CN202210836245A CN114989622A CN 114989622 A CN114989622 A CN 114989622A CN 202210836245 A CN202210836245 A CN 202210836245A CN 114989622 A CN114989622 A CN 114989622A
- Authority
- CN
- China
- Prior art keywords
- silk fibroin
- isocyanate
- aqueous solution
- composite film
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108010022355 Fibroins Proteins 0.000 title claims abstract description 170
- 239000012948 isocyanate Substances 0.000 title claims abstract description 93
- 150000002513 isocyanates Chemical class 0.000 title claims abstract description 93
- 239000002131 composite material Substances 0.000 title claims abstract description 68
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 84
- 239000007864 aqueous solution Substances 0.000 claims abstract description 75
- 239000008367 deionised water Substances 0.000 claims abstract description 57
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 57
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 241000255789 Bombyx mori Species 0.000 claims abstract description 24
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims abstract description 24
- 239000001110 calcium chloride Substances 0.000 claims abstract description 24
- 229910001628 calcium chloride Inorganic materials 0.000 claims abstract description 24
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims abstract description 22
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000013638 trimer Substances 0.000 claims abstract description 21
- 239000000243 solution Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000009835 boiling Methods 0.000 claims abstract description 12
- 239000000741 silica gel Substances 0.000 claims abstract description 12
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 12
- 238000005266 casting Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims description 38
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 24
- 238000000502 dialysis Methods 0.000 claims description 19
- 238000012546 transfer Methods 0.000 claims description 16
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 11
- 239000006228 supernatant Substances 0.000 claims description 10
- 239000002202 Polyethylene glycol Substances 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000004090 dissolution Methods 0.000 claims description 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 14
- 238000005452 bending Methods 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 5
- 238000002834 transmittance Methods 0.000 abstract description 4
- 230000007547 defect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 80
- 238000012360 testing method Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 235000008708 Morus alba Nutrition 0.000 description 4
- 240000000249 Morus alba Species 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- KIQKWYUGPPFMBV-UHFFFAOYSA-N diisocyanatomethane Chemical compound O=C=NCN=C=O KIQKWYUGPPFMBV-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- SERHXTVXHNVDKA-UHFFFAOYSA-N pantolactone Chemical compound CC1(C)COC(=O)C1O SERHXTVXHNVDKA-UHFFFAOYSA-N 0.000 description 1
- 229940115458 pantolactone Drugs 0.000 description 1
- SIEVQTNTRMBCHO-UHFFFAOYSA-N pantolactone Natural products CC1(C)OC(=O)CC1O SIEVQTNTRMBCHO-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2389/00—Characterised by the use of proteins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34924—Triazines containing cyanurate groups; Tautomers thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
技术领域technical field
本发明属于复合薄膜的制备领域,具体涉及一种异氰酸酯/丝素蛋白复合薄膜及其制备方法。The invention belongs to the field of preparation of composite films, in particular to an isocyanate/silk fibroin composite film and a preparation method thereof.
背景技术Background technique
桑蚕丝作为一种环境友好型的生物质材料,是桑蚕在吐丝时形成的结构性蛋白质连续长纤维,具有来源广泛、成本低廉、可加工性能优异和可持续发展与利用的特点。近年来,通过选用适当的盐溶液体系,即能将单一形态的桑蚕丝制备成丝素蛋白水溶液,并由此再加工形成了丝素蛋白纳米纤维、复合膜、水凝胶和气凝胶等多种多样的形态结构,满足了不同领域的应用需求。其中,丝素蛋白薄膜具有制备工艺简单高效、可大规模生产等特点,在柔性基底材料等领域显示出了巨大的市场应用前景。相较于传统高分子复合材料作为基底存在着资源不可再生、难以生物降解、易造成废弃物的堆积等不足,丝素蛋白薄膜则具有可持续发展和绿色环保等一系列独特优势。然而,目前将桑蚕丝再加工生产的过程中,往往会破坏桑蚕丝原有的结构,导致制备得到丝素蛋白薄膜力学性能劣化,难以满足其多领域和高性能的实际应用需求。此外,丝素蛋白薄膜在潮湿等复杂环境中,存在着遇水后干燥呈脆性的不足,进一步使其实际应用受到限制。因此,如何进一步提高丝素蛋白薄膜材料的力学性能以及改善其遇水后干燥呈脆性的弊端,是目前亟待克服的技术问题。As an environmentally friendly biomass material, mulberry silk is a structural protein continuous long fiber formed by silkworms during silk spinning. It has the characteristics of wide source, low cost, excellent processability and sustainable development and utilization. In recent years, by selecting an appropriate salt solution system, a single form of mulberry silk can be prepared into a silk fibroin aqueous solution, and then processed to form silk fibroin nanofibers, composite membranes, hydrogels and aerogels. A variety of morphological structures meet the application needs of different fields. Among them, silk fibroin film has the characteristics of simple and efficient preparation process and large-scale production, and has shown huge market application prospects in the field of flexible substrate materials. Compared with traditional polymer composite materials as substrates, there are disadvantages such as non-renewable resources, difficult biodegradation, and easy accumulation of waste. Silk fibroin films have a series of unique advantages such as sustainable development and green environmental protection. However, in the current process of reprocessing mulberry silk, the original structure of mulberry silk is often destroyed, resulting in the deterioration of the mechanical properties of the prepared silk fibroin film, and it is difficult to meet its practical application requirements in multiple fields and high performance. In addition, the silk fibroin film has the disadvantage of being brittle after drying in contact with water in complex environments such as humidity, which further limits its practical application. Therefore, how to further improve the mechanical properties of silk fibroin thin film materials and improve the disadvantages of drying and brittleness after encountering water are technical problems that need to be overcome urgently.
综上所述,丝素蛋白薄膜具有制备工艺简单高效、可大规模生产、可持续发展和绿色环保等特点,显示出了巨大的市场发展和应用前景。然而,目前通过丝素蛋白水溶液制备得到的丝素蛋白薄膜,存在着力学性能劣化、遇水后干燥呈脆性等弊端,使其实际应用受到极大的阻碍,是当前难以克服的技术问题。To sum up, silk fibroin film has the characteristics of simple and efficient preparation process, large-scale production, sustainable development and green environmental protection, showing huge market development and application prospects. However, the silk fibroin film prepared by the silk fibroin aqueous solution currently has disadvantages such as deterioration of mechanical properties and brittleness after drying in contact with water, which greatly hinders its practical application and is a technical problem that is difficult to overcome at present.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的第一目的是提供一种异氰酸酯/丝素蛋白复合薄膜;In view of the shortcomings of the above-mentioned prior art, the first object of the present invention is to provide a kind of isocyanate/silk fibroin composite film;
本发明的第二目的是提供一种异氰酸酯/丝素蛋白复合薄膜的制备方法。The second object of the present invention is to provide a preparation method of an isocyanate/silk fibroin composite film.
为实现上述目的,本发明提供一种合成泛酸内酯的方法,包括如下步骤:To achieve the above object, the present invention provides a method for synthesizing pantolactone, comprising the steps:
一种异氰酸酯/丝素蛋白复合薄膜,以重量份数计,所述复合薄膜原料组成包括有:异氰酸酯0.3-0.9份,丝素蛋白9.1-9.7份。An isocyanate/silk fibroin composite film, in parts by weight, the raw material composition of the composite film includes: 0.3-0.9 parts of isocyanate and 9.1-9.7 parts of silk fibroin.
进一步地,所述复合薄膜原料组成包括有:异氰酸酯0.7份,丝素蛋白9.3份,所述复合薄膜的厚度为13.8μm,最大拉伸强度为38.2MPa。Further, the raw material composition of the composite film includes: 0.7 parts of isocyanate and 9.3 parts of silk fibroin, the thickness of the composite film is 13.8 μm, and the maximum tensile strength is 38.2 MPa.
进一步地,所述异氰酸酯为六亚甲基二异氰酸酯三聚体,其分子量为168.19。Further, the isocyanate is hexamethylene diisocyanate trimer, and its molecular weight is 168.19.
进一步地,具体步骤如下:Further, the specific steps are as follows:
1)将桑蚕茧经过碱性去离子水煮沸脱胶、氯化钙/乙醇/去离子水体系溶解、透析与浓缩,得到丝素蛋白水溶液;1) the silkworm cocoons are boiled and degummed in alkaline deionized water, dissolved in a calcium chloride/ethanol/deionized water system, dialyzed and concentrated to obtain a silk fibroin aqueous solution;
2)将六亚甲基二异氰酸酯三聚体逐滴加入步骤1)中的丝素蛋白水溶液,并在水浴中均匀搅拌,得到异氰酸酯/丝素蛋白混合水溶液;2) adding hexamethylene diisocyanate trimer dropwise to the silk fibroin aqueous solution in step 1), and uniformly stirring in a water bath to obtain an isocyanate/silk fibroin mixed aqueous solution;
3)将步骤2)中的异氰酸酯/丝素蛋白混合水溶液超声分散后,再通过“溶液浇铸”法转移至硅胶模具中,在恒温干燥箱中制备异氰酸酯/丝素蛋白复合薄膜。3) After ultrasonically dispersing the isocyanate/silk fibroin mixed aqueous solution in step 2), transfer it to a silica gel mold by a "solution casting" method, and prepare an isocyanate/silk fibroin composite film in a constant temperature drying oven.
进一步地,步骤1)中所述得到丝素蛋白水溶液的具体步骤如下:Further, the specific steps of obtaining the silk fibroin aqueous solution described in step 1) are as follows:
碱性去离子水煮沸脱胶:取桑蚕茧15-20份,加入到浓度为2-4wt%、浴比为1:50的碳酸钠水溶液中;然后在100℃条件下,将其煮沸脱胶15-30min并更换碳酸钠水溶液3-4次,进一步在室温条件下用去离子水充分洗涤置于50℃的恒温干燥箱中干燥12-24h,得到已脱胶桑蚕茧;Alkaline deionized water boiling and degumming: take 15-20 parts of silkworm cocoons and add them to an aqueous sodium carbonate solution with a concentration of 2-4wt% and a liquor ratio of 1:50; 30min and replace the sodium carbonate aqueous solution 3-4 times, further wash with deionized water at room temperature and place it in a constant temperature drying oven at 50°C for 12-24h to obtain degummed silkworm cocoons;
氯化钙/乙醇/去离子水体系溶解:将已脱胶桑蚕茧置于摩尔比为1:2:8的氯化钙/乙醇/去离子水体系中,在50-70℃的恒温水浴锅中搅拌1.5-3h,得到丝素蛋白/氯化钙/乙醇/去离子水溶液,然后将其转移至离心试管,在转速为6000-12000r/min的离心机中离心10-20min,收集上清液至烧杯;Dissolution in calcium chloride/ethanol/deionized water system: put the degummed silkworm cocoons in a calcium chloride/ethanol/deionized water system with a molar ratio of 1:2:8, in a constant temperature water bath at 50-70°C Stir for 1.5-3h to obtain silk fibroin/calcium chloride/ethanol/deionized water solution, then transfer it to a centrifuge tube, centrifuge for 10-20min in a centrifuge with a rotating speed of 6000-12000r/min, and collect the supernatant to beaker;
透析与浓缩:将上清液转移至截留分子量为8000-14000Da的透析袋中,在去离子水中透析4-6天,然后将其转移至浓度为10-20wt%的聚乙二醇水溶液中反透析1-3h,得到丝素蛋白水溶液。Dialysis and concentration: transfer the supernatant to a dialysis bag with a molecular weight cut-off of 8000-14000Da, dialyze it in deionized water for 4-6 days, and then transfer it to a polyethylene glycol aqueous solution with a concentration of 10-20wt% for reaction. Dialyzed for 1-3h to obtain silk fibroin aqueous solution.
进一步地,碱性去离子水煮沸脱胶:桑蚕茧15份、碳酸钠水溶液浓度为2wt%、煮沸脱胶4次、煮沸脱胶时间为20min、恒温干燥箱温度为50℃、干燥时间为18h;Further, boiling and degumming with alkaline deionized water: 15 parts of silkworm cocoons, the concentration of sodium carbonate aqueous solution is 2wt%, the boiling and degumming time is 4 times, the boiling and degumming time is 20min, the temperature of the constant temperature drying box is 50°C, and the drying time is 18h;
氯化钙/乙醇/去离子水体系溶解:恒温水浴锅温度为60℃、搅拌时间为2h、离心机转速为8000r/min、离心时间为15min;The calcium chloride/ethanol/deionized water system is dissolved: the temperature of the constant temperature water bath is 60℃, the stirring time is 2h, the speed of the centrifuge is 8000r/min, and the centrifugation time is 15min;
透析与浓缩:透析时间为6天、聚乙二醇水溶液浓度为15wt%、反透析时间为2h。Dialysis and concentration: the dialysis time was 6 days, the polyethylene glycol aqueous solution concentration was 15wt%, and the reverse dialysis time was 2h.
进一步地,步骤2)中所述得到异氰酸酯/丝素蛋白混合水溶液的具体步骤如下:Further, the specific steps of obtaining the isocyanate/silk fibroin mixed aqueous solution described in step 2) are as follows:
采用胶头滴管将0.3-0.9份六亚甲基二异氰酸酯三聚体逐滴加入至9.7-9.1份且浓度为2.5-5.5wt%的丝素蛋白的水溶液中,六亚甲基二异氰酸酯三聚体与丝素蛋白的质量比为分别为3-9wt%,然后在30-50℃的恒温水浴锅中搅拌0.5-2h。0.3-0.9 parts of hexamethylene diisocyanate trimer was added dropwise to 9.7-9.1 parts of silk fibroin aqueous solution with a concentration of 2.5-5.5 wt% using a glue tip dropper, hexamethylene diisocyanate tri- The mass ratio of the polymer to the silk fibroin is 3-9 wt % respectively, and then the mixture is stirred for 0.5-2 h in a constant temperature water bath at 30-50° C.
进一步地,所述六亚甲基二异氰酸酯三聚体为0.7份、丝素蛋白为9.3份、丝素蛋白水溶液的浓度为4.5wt%、六亚甲基二异氰酸酯三聚体与丝素蛋白的质量比为7wt%、恒温水浴锅的温度为30℃、搅拌时间为1h。Further, the hexamethylene diisocyanate trimer is 0.7 parts, the silk fibroin is 9.3 parts, the concentration of the silk fibroin aqueous solution is 4.5 wt %, and the hexamethylene diisocyanate trimer and the silk fibroin are 0.7 parts. The mass ratio is 7wt%, the temperature of the constant temperature water bath is 30°C, and the stirring time is 1h.
进一步地,步骤3)中所述制备异氰酸酯/丝素蛋白复合薄膜的具体步骤如下:Further, the specific steps of preparing the isocyanate/silk fibroin composite film described in step 3) are as follows:
在功率为100W条件下将异氰酸酯/丝素蛋白混合水溶液超声分散0.5-1h后,取1.10-2.30份该混合水溶液转移至3cm×5cm的硅胶模具中,然后将其放置在50-80℃条件下的恒温干燥箱中干燥12-24h,可在模具底部形成一层透明状薄膜,即异氰酸酯/丝素蛋白复合薄膜。After ultrasonically dispersing the mixed aqueous solution of isocyanate/silk fibroin for 0.5-1 h at a power of 100W, transfer 1.10-2.30 parts of the mixed aqueous solution to a 3cm×5cm silica gel mold, and then place it at 50-80°C Drying in a constant temperature drying oven for 12-24 hours can form a transparent film at the bottom of the mold, that is, an isocyanate/silk fibroin composite film.
进一步地,所述超声功率为100W、超声分散时间为0.5h、异氰酸酯/丝素蛋白混合水溶液为1.70份、恒温干燥箱温度为70℃、干燥时间为12h。Further, the ultrasonic power is 100W, the ultrasonic dispersion time is 0.5h, the isocyanate/silk fibroin mixed aqueous solution is 1.70 parts, the temperature of the constant temperature drying oven is 70°C, and the drying time is 12h.
采用以上方案,本发明具有如下有益效果:Adopt above scheme, the present invention has following beneficial effect:
1、本发明公开了一种异氰酸酯/丝素蛋白复合薄膜的制备方法,解决了传统丝素蛋白薄膜材料力学性能不足的技术问题,本发明通过将桑蚕茧经过碱性去离子水煮沸脱胶、氯化钙/乙醇/去离子水体系溶解、透析与浓缩,制备得到丝素蛋白水溶液;将异氰酸酯(六亚甲基二异氰酸酯三聚体)与丝素蛋白水溶液均匀混合,得到异氰酸酯/丝素蛋白混合水溶液;然后采用“溶液浇铸”法将异氰酸酯/丝素蛋白混合水溶液转移至硅胶模具中制备成异氰酸酯/丝素蛋白复合薄膜,其厚度为13.8μm、透光率为95.8%、热分解温度为282.4℃、最大拉伸强度为38.2Mpa,本发明具有步骤简单、易操作、简单易行、成本低廉和可大规模化生产等优点。1. The present invention discloses a preparation method of an isocyanate/silk fibroin composite film, which solves the technical problem of insufficient mechanical properties of traditional silk fibroin film materials. The calcium chloride/ethanol/deionized water system is dissolved, dialyzed and concentrated to prepare a silk fibroin aqueous solution; the isocyanate (hexamethylene diisocyanate trimer) is uniformly mixed with the silk fibroin aqueous solution to obtain an isocyanate/silk fibroin mixture Aqueous solution; then the isocyanate/silk fibroin mixed aqueous solution was transferred to a silica gel mold by the "solution casting" method to prepare an isocyanate/silk fibroin composite film with a thickness of 13.8 μm, a light transmittance of 95.8%, and a thermal decomposition temperature of 282.4 ℃, the maximum tensile strength is 38.2Mpa, and the invention has the advantages of simple steps, easy operation, simplicity, low cost and large-scale production.
2、相较于纯丝素蛋白薄膜,本发明所制得的异氰酸酯/丝素蛋白复合薄膜的拉伸强度提高了约205.6%,有效地改善了现有丝素蛋白薄膜材料力学性能劣化的技术难题,实现了丝素蛋白高强复合薄膜材料的制备,能够满足其作为柔性基底材料的高力学性能实际应用要求。2. Compared with the pure silk fibroin film, the tensile strength of the isocyanate/silk fibroin composite film prepared by the present invention is increased by about 205.6%, which effectively improves the existing technology of deteriorating the mechanical properties of silk fibroin film materials. Therefore, the preparation of silk fibroin high-strength composite film material was realized, which can meet the practical application requirements of high mechanical properties as a flexible substrate material.
3、本发明解决了传统丝素蛋白薄膜材料遇水后干燥呈脆性的技术问题,本发明通过异氰酸酯(六亚甲基二异氰酸酯三聚体)与丝素蛋白复合策略技术方案,将异氰酸酯(六亚甲基二异氰酸酯三聚体)与丝素蛋白水溶液均匀混合并采用“溶液浇铸”法将其制备成异氰酸酯/丝素蛋白复合薄膜,该异氰酸酯/丝素蛋白复合薄膜显示出遇水干燥后韧性好和反复弯曲性能优异等特点,有望作为柔性基底材料满足潮湿等复杂环境下的应用需求,本发明解决了现有丝素蛋白薄膜水后干燥呈脆性的技术问题,进一步拓展了其使用方式与应用领域。3. The present invention solves the technical problem that the traditional silk fibroin film material is brittle after drying in contact with water. The present invention adopts the technical scheme of compounding isocyanate (hexamethylene diisocyanate trimer) and silk fibroin, and combines isocyanate (hexamethylene diisocyanate trimer) with silk fibroin. Methylene diisocyanate trimer) and silk fibroin aqueous solution were uniformly mixed and prepared into isocyanate/silk fibroin composite film by "solution casting" method. The isocyanate/silk fibroin composite film showed toughness after drying in water. It is expected to be used as a flexible base material to meet application requirements in complex environments such as humidity. The present invention solves the technical problem that the existing silk fibroin film is brittle after drying in water, and further expands its use and field of application.
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。Other advantages, objects, and features of the present invention will be set forth in the description that follows, and will be apparent to those skilled in the art based on a study of the following, to the extent that is taught in the practice of the present invention.
附图说明Description of drawings
图1为本发明的异氰酸酯/丝素蛋白复合薄膜的制备流程。Fig. 1 is the preparation process of the isocyanate/silk fibroin composite film of the present invention.
图2为本发明的异氰酸酯/丝素蛋白复合薄膜的表面形貌。Figure 2 is the surface morphology of the isocyanate/silk fibroin composite film of the present invention.
图3为本发明的异氰酸酯/丝素蛋白复合薄膜的截面形貌与厚度。Figure 3 is the cross-sectional morphology and thickness of the isocyanate/silk fibroin composite film of the present invention.
图4为本发明的异氰酸酯/丝素蛋白复合薄膜与丝素蛋白薄膜的透光率和热稳定性能。Figure 4 shows the light transmittance and thermal stability of the isocyanate/silk fibroin composite film and silk fibroin film of the present invention.
图5为本发明的异氰酸酯/丝素蛋白复合薄膜与丝素蛋白薄膜的力学性能。Figure 5 shows the mechanical properties of the isocyanate/silk fibroin composite film and the silk fibroin film of the present invention.
图6为本发明的异氰酸酯/丝素蛋白复合薄膜与丝素蛋白薄膜浸没于去离子水测试对比图。FIG. 6 is a comparison diagram of the isocyanate/silk fibroin composite film of the present invention and the silk fibroin film immersed in deionized water.
图7为本发明的异氰酸酯/丝素蛋白复合薄膜与丝素蛋白薄膜浸没于去离子水并烘干后弯曲测试对比图。FIG. 7 is a comparison diagram of the bending test after the isocyanate/silk fibroin composite film of the present invention and the silk fibroin film are immersed in deionized water and dried.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的进行详细的描述,但实施例并不对本发明作任何形式的限定,除非特别说明,本发明所涉及的试剂、方法和设备为本技术领域常规试剂、方法和设备。The present invention will be described in detail below in conjunction with the accompanying drawings and examples, but the examples do not limit the present invention in any form. Unless otherwise specified, the reagents, methods and equipment involved in the present invention are conventional reagents and methods in the technical field. and equipment.
实施例1:异氰酸酯/丝素蛋白复合薄膜的制备Example 1: Preparation of isocyanate/silk fibroin composite film
制备流程如图1所示;The preparation process is shown in Figure 1;
产品1:具体步骤如下:Product 1: The specific steps are as follows:
1)将桑蚕茧经过碱性去离子水煮沸脱胶、氯化钙/乙醇/去离子水体系溶解、透析与浓缩,制备得到丝素蛋白水溶液;1) the silkworm cocoons are boiled and degummed in alkaline deionized water, dissolved in a calcium chloride/ethanol/deionized water system, dialyzed and concentrated to prepare a silk fibroin aqueous solution;
碱性去离子水煮沸脱胶:取桑蚕茧15份,加入到浓度为2wt%、浴比为1:50的碳酸钠水溶液中;然后,在100℃条件下,将其煮沸脱胶4次(每次均更换碳酸钠水溶液并煮沸脱胶20min);进一步在室温条件下用去离子水充分洗涤置于50℃的恒温干燥箱中干燥18h,得到已脱胶桑蚕茧;Alkaline deionized water boiling and degumming: take 15 parts of silkworm cocoons and add them to an aqueous sodium carbonate solution with a concentration of 2wt% and a liquor ratio of 1:50; Replace the sodium carbonate aqueous solution and boil and degumming for 20min); further wash with deionized water at room temperature and place it in a constant temperature drying oven at 50 ° C and dry for 18h to obtain degummed silkworm cocoons;
氯化钙/乙醇/去离子水体系溶解:将上述已脱胶桑蚕茧置于氯化钙/乙醇/去离子水体系(摩尔比为1:2:8)中,在60℃的恒温水浴锅中搅拌2h,得到丝素蛋白/氯化钙/乙醇/去离子水溶液;然后,将其转移至离心试管,在转速为8000r/min的离心机中离心15min,收集上清液至烧杯;Dissolving in calcium chloride/ethanol/deionized water system: put the above degummed silkworm cocoons in a calcium chloride/ethanol/deionized water system (molar ratio of 1:2:8), in a constant temperature water bath at 60°C Stir for 2h to obtain silk fibroin/calcium chloride/ethanol/deionized water solution; then, transfer it to a centrifuge test tube, centrifuge it in a centrifuge with a rotational speed of 8000r/min for 15min, and collect the supernatant into a beaker;
透析与浓缩:将上述上清液转移至截留分子量为8000-14000Da的透析袋中,在去离子水中透析6天;然后,将其转移至浓度为15wt%的聚乙二醇水溶液中反透析2h,得到丝素蛋白水溶液;Dialysis and concentration: the above supernatant was transferred to a dialysis bag with a molecular weight cut-off of 8000-14000 Da, and dialyzed in deionized water for 6 days; then, it was transferred to a polyethylene glycol aqueous solution with a concentration of 15wt% for reverse dialysis for 2h , to obtain a silk fibroin aqueous solution;
2)将步骤1)中的丝素蛋白水溶液配制成浓度为4.5wt%后,在30℃的恒温水浴锅中均匀搅拌1h,进一步得到丝素蛋白水溶液;2) After preparing the silk fibroin aqueous solution in step 1) to a concentration of 4.5 wt %, uniformly stirring for 1 hour in a constant temperature water bath at 30° C. to further obtain a silk fibroin aqueous solution;
3)将步骤2)中的丝素蛋白水溶液超声分散后,再通过“溶液浇铸”法转移至硅胶模具中,在恒温干燥箱中制备成丝素蛋白薄膜;3) After ultrasonically dispersing the silk fibroin aqueous solution in step 2), transfer it to a silica gel mold by a "solution casting" method, and prepare a silk fibroin film in a constant temperature drying oven;
在功率为100W条件下将丝素蛋白水溶液超声分散0.5h后,取1.6份该丝素蛋白水溶液转移至3cm×5cm的硅胶模具中;然后,将其放置在70℃条件下的恒温干燥箱中干燥12h,可在模具底部形成一层透明状薄膜,即丝素蛋白薄膜。After ultrasonically dispersing the silk fibroin aqueous solution for 0.5 h at a power of 100 W, 1.6 parts of the silk fibroin aqueous solution were transferred to a 3cm×5cm silica gel mold; then, placed in a constant temperature drying box at 70°C After drying for 12 hours, a transparent film, namely silk fibroin film, can be formed at the bottom of the mold.
产品2:具体步骤如下:Product 2: The specific steps are as follows:
1)将桑蚕茧经过碱性去离子水煮沸脱胶、氯化钙/乙醇/去离子水体系溶解、透析与浓缩,制备得到丝素蛋白水溶液;1) the silkworm cocoons are boiled and degummed in alkaline deionized water, dissolved in a calcium chloride/ethanol/deionized water system, dialyzed and concentrated to prepare a silk fibroin aqueous solution;
碱性去离子水煮沸脱胶:取桑蚕茧15份,加入到浓度为2wt%、浴比为1:50的碳酸钠水溶液中;然后,在100℃条件下,将其煮沸脱胶4次(每次均更换碳酸钠水溶液并煮沸脱胶20min);进一步在室温条件下用去离子水充分洗涤置于50℃的恒温干燥箱中干燥18h,得到已脱胶桑蚕茧;Alkaline deionized water boiling and degumming: take 15 parts of silkworm cocoons and add them to an aqueous sodium carbonate solution with a concentration of 2wt% and a liquor ratio of 1:50; Replace the sodium carbonate aqueous solution and boil and degumming for 20min); further wash with deionized water at room temperature and place it in a constant temperature drying oven at 50 ° C and dry for 18h to obtain degummed silkworm cocoons;
氯化钙/乙醇/去离子水体系溶解:将上述已脱胶桑蚕茧置于氯化钙/乙醇/去离子水体系(摩尔比为1:2:8)中,在60℃的恒温水浴锅中搅拌2h,得到丝素蛋白/氯化钙/乙醇/去离子水溶液;然后,将其转移至离心试管,在转速为8000r/min的离心机中离心15min,收集上清液至烧杯;Dissolving in calcium chloride/ethanol/deionized water system: put the above degummed silkworm cocoons in a calcium chloride/ethanol/deionized water system (molar ratio of 1:2:8), in a constant temperature water bath at 60°C Stir for 2h to obtain silk fibroin/calcium chloride/ethanol/deionized water solution; then, transfer it to a centrifuge test tube, centrifuge it in a centrifuge with a rotational speed of 8000r/min for 15min, and collect the supernatant into a beaker;
透析与浓缩:将上述上清液转移至截留分子量为8000-14000Da的透析袋中,在去离子水中透析6天;然后,将其转移至浓度为15wt%的聚乙二醇水溶液中反透析2h,得到丝素蛋白水溶液;Dialysis and concentration: the above supernatant was transferred to a dialysis bag with a molecular weight cut-off of 8000-14000 Da, and dialyzed in deionized water for 6 days; then, it was transferred to a polyethylene glycol aqueous solution with a concentration of 15wt% for reverse dialysis for 2h , to obtain a silk fibroin aqueous solution;
2)将异氰酸酯(六亚甲基二异氰酸酯三聚体)逐滴加入步骤1)中的丝素蛋白水溶液,并在水浴中均匀搅拌,得到异氰酸酯/丝素蛋白混合水溶液;2) adding isocyanate (hexamethylene diisocyanate trimer) dropwise to the silk fibroin aqueous solution in step 1), and uniformly stirring in a water bath to obtain an isocyanate/silk fibroin mixed aqueous solution;
采用胶头滴管将0.7份异氰酸酯(六亚甲基二异氰酸酯三聚体)分别逐滴加入至含有9.3份的丝素蛋白的水溶液中,且丝素蛋白水溶液的浓度为4.5wt%、异氰酸酯(六亚甲基二异氰酸酯三聚体)与丝素蛋白的质量比为7wt%;然后,在30℃的恒温水浴锅中均匀搅拌1h;0.7 parts of isocyanate (hexamethylene diisocyanate trimer) was added dropwise to the aqueous solution containing 9.3 parts of silk fibroin using a glue tip dropper, and the concentration of the silk fibroin aqueous solution was 4.5 wt %, isocyanate ( The mass ratio of hexamethylene diisocyanate trimer) to silk fibroin is 7wt%; then, uniformly stir for 1h in a constant temperature water bath at 30°C;
3)将步骤2)中的异氰酸酯/丝素蛋白混合水溶液超声分散后,再通过“溶液浇铸”法转移至硅胶模具中,在恒温干燥箱中制备成异氰酸酯/丝素蛋白复合薄膜;3) after ultrasonically dispersing the isocyanate/silk fibroin mixed aqueous solution in step 2), transfer it to a silica gel mold by a "solution casting" method, and prepare an isocyanate/silk fibroin composite film in a constant temperature drying oven;
在功率为100W条件下将异氰酸酯/丝素蛋白混合水溶液超声分散0.5h后,取1.6份该异氰酸酯/丝素蛋白混合水溶液转移至3cm×5cm的硅胶模具中;然后,将其放置在70℃条件下的恒温干燥箱中干燥12h,可在模具底部形成一层透明状薄膜,即异氰酸酯/丝素蛋白复合薄膜。After ultrasonically dispersing the mixed aqueous solution of isocyanate/silk fibroin for 0.5 h under the condition of 100W power, 1.6 parts of the mixed aqueous solution of isocyanate/silk fibroin was transferred to a 3cm×5cm silica gel mold; then, it was placed at 70°C After drying for 12h in a constant temperature drying oven, a transparent film, ie isocyanate/silk fibroin composite film, can be formed on the bottom of the mold.
产品3:具体步骤如下:Product 3: The specific steps are as follows:
1)将桑蚕茧经过碱性去离子水煮沸脱胶、氯化钙/乙醇/去离子水体系溶解、透析与浓缩,制备得到丝素蛋白水溶液;1) the silkworm cocoons are boiled and degummed in alkaline deionized water, dissolved in a calcium chloride/ethanol/deionized water system, dialyzed and concentrated to prepare a silk fibroin aqueous solution;
碱性去离子水煮沸脱胶:取桑蚕茧20份,加入到浓度为4wt%、浴比为1:50的碳酸钠水溶液中;然后,在100℃条件下,将其煮沸脱胶3次(每次均更换碳酸钠水溶液并煮沸脱胶30min);进一步在室温条件下用去离子水充分洗涤置于50℃的恒温干燥箱中干燥12h,得到已脱胶桑蚕茧;Alkaline deionized water boiling and degumming: take 20 parts of silkworm cocoons and add them to a sodium carbonate aqueous solution with a concentration of 4wt% and a liquor ratio of 1:50; Replace the sodium carbonate aqueous solution and boil and degumming for 30min); further fully wash with deionized water at room temperature and place it in a constant temperature drying oven at 50 ° C and dry for 12h to obtain degummed silkworm cocoons;
氯化钙/乙醇/去离子水体系溶解:将上述已脱胶桑蚕茧置于氯化钙/乙醇/去离子水体系(摩尔比为1:2:8)中,在50℃的恒温水浴锅中搅拌3h,得到丝素蛋白/氯化钙/乙醇/去离子水溶液;然后,将其转移至离心试管,在转速为6000r/min的离心机中离心20min,收集上清液至烧杯;Dissolving in calcium chloride/ethanol/deionized water system: put the above degummed silkworm cocoons in a calcium chloride/ethanol/deionized water system (molar ratio of 1:2:8), in a constant temperature water bath at 50°C Stir for 3h to obtain silk fibroin/calcium chloride/ethanol/deionized water solution; then, transfer it to a centrifuge test tube, centrifuge it in a centrifuge with a rotating speed of 6000r/min for 20min, and collect the supernatant into a beaker;
透析与浓缩:将上述上清液转移至截留分子量为8000-14000Da的透析袋中,在去离子水中透析4天;然后,将其转移至浓度为10wt%的聚乙二醇水溶液中反透析3h,得到丝素蛋白水溶液;Dialysis and concentration: the above supernatant was transferred to a dialysis bag with a molecular weight cut-off of 8000-14000 Da, and dialyzed in deionized water for 4 days; then, transferred to a polyethylene glycol aqueous solution with a concentration of 10wt% for reverse dialysis for 3h , to obtain a silk fibroin aqueous solution;
2)将异氰酸酯(六亚甲基二异氰酸酯三聚体)逐滴加入步骤1)中的丝素蛋白水溶液,并在水浴中均匀搅拌,得到异氰酸酯/丝素蛋白混合水溶液;2) adding isocyanate (hexamethylene diisocyanate trimer) dropwise to the silk fibroin aqueous solution in step 1), and uniformly stirring in a water bath to obtain an isocyanate/silk fibroin mixed aqueous solution;
采用胶头滴管将0.9份异氰酸酯(六亚甲基二异氰酸酯三聚体)分别逐滴加入至含有9.1份的丝素蛋白的水溶液中,且丝素蛋白水溶液的浓度分别为4.5wt%、异氰酸酯(六亚甲基二异氰酸酯三聚体)与丝素蛋白的质量比为9wt%;然后,在50℃的恒温水浴锅中均匀搅拌2h;0.9 parts of isocyanate (hexamethylene diisocyanate trimer) was added dropwise to the aqueous solution containing 9.1 parts of silk fibroin using a glue tip dropper, and the concentrations of the aqueous solution of silk fibroin were 4.5 wt%, isocyanate The mass ratio of (hexamethylene diisocyanate trimer) to silk fibroin is 9wt%; then, uniformly stir in a constant temperature water bath at 50°C for 2h;
3)将步骤2)中的异氰酸酯/丝素蛋白混合水溶液超声分散后,再通过“溶液浇铸”法转移至硅胶模具中,在恒温干燥箱中制备成异氰酸酯/丝素蛋白复合薄膜;3) after ultrasonically dispersing the isocyanate/silk fibroin mixed aqueous solution in step 2), transfer it to a silica gel mold by a "solution casting" method, and prepare an isocyanate/silk fibroin composite film in a constant temperature drying oven;
在功率为100W条件下将异氰酸酯/丝素蛋白混合水溶液超声分散1h后,取2.3份该异氰酸酯/丝素蛋白混合水溶液转移至3cm×5cm的硅胶模具中;然后,将其放置在80℃条件下的恒温干燥箱中干燥18h,可在模具底部形成一层透明状薄膜,即异氰酸酯/丝素蛋白复合薄膜。After ultrasonically dispersing the mixed aqueous solution of isocyanate/silk fibroin for 1 hour under the condition of power of 100W, 2.3 parts of the mixed aqueous solution of isocyanate/silk fibroin were transferred to a 3cm×5cm silica gel mold; then, placed at 80°C After drying for 18h in a constant temperature drying oven, a transparent film, that is, an isocyanate/silk fibroin composite film, can be formed on the bottom of the mold.
实施例2:异氰酸酯/丝素蛋白复合薄膜的表面形貌、截面形貌与尺寸及力学性能测试Example 2: Surface morphology, cross-sectional morphology, size and mechanical properties of isocyanate/silk fibroin composite film
1、实验材料1. Experimental materials
以实施例1中产品2的条件下所制备得到的丝素蛋白薄膜与异氰酸酯/丝素蛋白复合薄膜、纯丝素蛋白薄膜。The silk fibroin film, the isocyanate/silk fibroin composite film, and the pure silk fibroin film prepared under the conditions of
2、实验方法2. Experimental method
2.1表面形貌、截面形貌与尺寸2.1 Surface morphology, cross-sectional morphology and size
在25℃条件下进行,采用的是飞纳中国扫描电子显微镜进行异氰酸酯/丝素蛋白复合薄膜的表面形貌、截面形貌观察与截面尺寸测量。It was carried out at 25 °C, and the surface morphology, cross-sectional morphology observation and cross-sectional size measurement of the isocyanate/silk fibroin composite film were carried out using a Feiner China scanning electron microscope.
2.2力学性能测试2.2 Mechanical property test
在25℃、初始夹距为1cm、拉伸速率为10mm/min、异氰酸酯/丝素蛋白复合薄膜与纯丝素蛋白薄膜样品尺寸均为3cm×l cm的条件下进行,采用的是日本岛津AGS-XShimadzu万能材料拉伸试验机;It was carried out under the conditions of 25 °C, an initial clamping distance of 1 cm, a stretching rate of 10 mm/min, and the sample size of the isocyanate/silk fibroin composite film and the pure silk fibroin film were both 3 cm × 1 cm. AGS-XShimadzu universal material tensile testing machine;
断裂伸长率(ετ,%)按照如下公式计算:The elongation at break (ε τ , %) is calculated according to the following formula:
ετ—断裂伸长率(%);ε τ - elongation at break (%);
L0—初始夹距(mm);L 0 —Initial clamping distance (mm);
L—样品断裂时夹距(mm);L—clamping distance when the sample breaks (mm);
拉伸强度(δτ,MPa)按照如下公式计算:The tensile strength (δ τ , MPa) is calculated according to the following formula:
δτ—拉伸强度(MPa);δ τ —tensile strength (MPa);
F—断裂应力(N);F—fracture stress (N);
b—样品宽度(mm);b—sample width (mm);
d—样品厚度(mm)。d—sample thickness (mm).
3、实验结果3. Experimental results
由图2、图3可知,异氰酸酯/丝素蛋白复合薄膜呈无色透明状,其表面形貌为平整且致密结构,截面结构略显粗糙且厚度为13.8μm;It can be seen from Figure 2 and Figure 3 that the isocyanate/silk fibroin composite film is colorless and transparent, its surface morphology is smooth and dense, the cross-sectional structure is slightly rough, and the thickness is 13.8 μm;
由图4a可知,在波长为300-800nm范围内,异氰酸酯/丝素蛋白复合薄膜的透光率高达95.8%;由图4b可知,纯丝素蛋白薄膜的起始分解温度为244.4℃,而异氰酸酯/丝素蛋白复合薄膜的热分解温度约为282.4℃,大幅提升了38℃;It can be seen from Figure 4a that in the wavelength range of 300-800 nm, the light transmittance of the isocyanate/silk fibroin composite film is as high as 95.8%; The thermal decomposition temperature of the /silk fibroin composite film is about 282.4°C, a significant increase of 38°C;
由图5可知,纯丝素蛋白薄膜的最大拉伸强度约为12.5Mpa,而异氰酸酯/丝素蛋白复合薄膜的最大拉伸强度约为38.2MPa,大幅提高了205.6%,显示出了优异的拉伸强度。It can be seen from Figure 5 that the maximum tensile strength of pure silk fibroin film is about 12.5Mpa, while the maximum tensile strength of isocyanate/silk fibroin composite film is about 38.2MPa, which is greatly increased by 205.6%, showing excellent tensile strength. tensile strength.
实施例3:异氰酸酯/丝素蛋白复合薄膜与丝素蛋白薄膜浸没于去离子水及其烘干后弯曲性能测试的对比实验Example 3: Comparative experiment of isocyanate/silk fibroin composite film and silk fibroin film immersed in deionized water and the bending performance test after drying
1、实验材料1. Experimental materials
以实施例1中产品2的条件下所制备得到的丝素蛋白薄膜与异氰酸酯/丝素蛋白复合薄膜、纯丝素蛋白薄膜。The silk fibroin film, the isocyanate/silk fibroin composite film, and the pure silk fibroin film prepared under the conditions of
2、实验方法2. Experimental method
2.1浸没于去离子水2.1 Immersion in deionized water
在25℃条件下,将裁剪成适当尺寸的纯丝素蛋白薄膜与异氰酸酯/丝素蛋白复合薄膜均浸没于25mL的去离子水中,观察并记录两者的宏观差异。At 25°C, both the pure silk fibroin film and the isocyanate/silk fibroin composite film cut into appropriate sizes were immersed in 25 mL of deionized water, and the macroscopic differences between the two were observed and recorded.
2.2弯曲性能测试2.2 Bending performance test
将上述2.1浸没于去离子水测试中的纯丝素蛋白薄膜与异氰酸酯/丝素蛋白复合薄膜均在25mL的去离子水中浸渍0.5h后,在70℃条件下的恒温干燥箱中干燥12h;然后,采用白色塑料镊子对烘干后的纯丝素蛋白薄膜与异氰酸酯/丝素蛋白复合薄膜分别进行反复弯曲性能测试。Both the pure silk fibroin film and the isocyanate/silk fibroin composite film immersed in the deionized water test in 2.1 above were immersed in 25 mL of deionized water for 0.5 h, and then dried in a constant temperature drying oven at 70 °C for 12 h; then , The pure silk fibroin film after drying and the isocyanate/silk fibroin composite film were respectively tested for repeated bending performance with white plastic tweezers.
3、实验结果3. Experimental results
由图6可知,纯丝素蛋白薄膜浸没于去离子水中会发生卷曲现象,然而异氰酸酯/丝素蛋白复合薄膜浸没于去离子水中未发生卷曲现象;It can be seen from Figure 6 that the pure silk fibroin film will curl when immersed in deionized water, but the isocyanate/silk fibroin composite film will not curl when immersed in deionized water;
由图7可知,在去离子水中浸渍并烘干后,纯丝素蛋白薄膜呈易脆、易碎性,不具有弯曲性能,然而异氰酸酯/丝素蛋白复合薄膜仍然保持着高强度、韧性好等特点,具有反复弯曲性能;It can be seen from Figure 7 that after being immersed in deionized water and dried, the pure silk fibroin film is brittle, brittle, and has no bending properties. However, the isocyanate/silk fibroin composite film still maintains high strength and good toughness. Features, with repeated bending performance;
综上,本发明制备的异氰酸酯/丝素蛋白复合薄膜有效地解决了现有丝素蛋白薄膜力学性能较差的技术问题,改善了现有丝素蛋白薄膜遇水后干燥呈易脆、易碎性的不足,使其有望作为柔性基底材料满足高力学性能和潮湿等复杂环境下的应用需求。To sum up, the isocyanate/silk fibroin composite film prepared by the present invention effectively solves the technical problem of poor mechanical properties of the existing silk fibroin film, and improves the brittleness and brittleness of the existing silk fibroin film after drying in contact with water. Due to the lack of properties, it is expected to be used as a flexible substrate material to meet the application requirements in complex environments such as high mechanical properties and humidity.
最后用说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行同等替换。凡在本发明的精神和原则之内,所作的任何修改、同等替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be noted that the above is only the preferred embodiments of the present invention, and is not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, the The technical solutions described in the foregoing embodiments may be modified, or some of the technical features thereof may be equivalently replaced. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210836245.2A CN114989622B (en) | 2022-07-15 | 2022-07-15 | A kind of isocyanate/silk fibroin composite film and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210836245.2A CN114989622B (en) | 2022-07-15 | 2022-07-15 | A kind of isocyanate/silk fibroin composite film and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114989622A true CN114989622A (en) | 2022-09-02 |
CN114989622B CN114989622B (en) | 2023-03-03 |
Family
ID=83022441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210836245.2A Active CN114989622B (en) | 2022-07-15 | 2022-07-15 | A kind of isocyanate/silk fibroin composite film and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114989622B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115998892A (en) * | 2023-02-24 | 2023-04-25 | 浙江工业大学 | Tumor-targeted regenerated silk fibroin drug delivery system and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102634041A (en) * | 2011-12-27 | 2012-08-15 | 林向进 | Preparation method of silk fibroin/ polyurethane composite hydrogel, and application thereof |
CN106265129A (en) * | 2016-09-21 | 2017-01-04 | 大连工业大学 | A kind of fibroin albumen alginate composite membrane and its preparation method and application |
CN106543744A (en) * | 2016-11-25 | 2017-03-29 | 江苏爱西施科技服务咨询股份有限公司 | A kind of preparation method of fibroin albumen and polyurethane mixture film |
CN108582904A (en) * | 2018-03-16 | 2018-09-28 | 中塑新材料科技(杭州)有限公司 | A kind of uvioresistant Obstruct membrane and preparation method thereof |
CN111821514A (en) * | 2020-08-06 | 2020-10-27 | 苏州大学 | A kind of silk fibroin sericin composite membrane and preparation method thereof |
CN113278294A (en) * | 2021-05-28 | 2021-08-20 | 西南大学 | Kevlar nanofiber/regenerated silk fibroin composite film and preparation method thereof |
-
2022
- 2022-07-15 CN CN202210836245.2A patent/CN114989622B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102634041A (en) * | 2011-12-27 | 2012-08-15 | 林向进 | Preparation method of silk fibroin/ polyurethane composite hydrogel, and application thereof |
CN106265129A (en) * | 2016-09-21 | 2017-01-04 | 大连工业大学 | A kind of fibroin albumen alginate composite membrane and its preparation method and application |
CN106543744A (en) * | 2016-11-25 | 2017-03-29 | 江苏爱西施科技服务咨询股份有限公司 | A kind of preparation method of fibroin albumen and polyurethane mixture film |
CN108582904A (en) * | 2018-03-16 | 2018-09-28 | 中塑新材料科技(杭州)有限公司 | A kind of uvioresistant Obstruct membrane and preparation method thereof |
CN111821514A (en) * | 2020-08-06 | 2020-10-27 | 苏州大学 | A kind of silk fibroin sericin composite membrane and preparation method thereof |
CN113278294A (en) * | 2021-05-28 | 2021-08-20 | 西南大学 | Kevlar nanofiber/regenerated silk fibroin composite film and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115998892A (en) * | 2023-02-24 | 2023-04-25 | 浙江工业大学 | Tumor-targeted regenerated silk fibroin drug delivery system and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114989622B (en) | 2023-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108610512B (en) | A kind of cellulose/layered boron nitride high dielectric nanocomposite film and preparation method thereof | |
CN104693464B (en) | A kind of preparation method of lignin nano-cellulose enhancing polymeric lactic acid compound film | |
CN112795035B (en) | A kind of cellulose/aramid nanofiber composite membrane and its preparation method and application | |
CN109370133B (en) | Method for reinforcing polymethyl methacrylate by cellulose | |
CN109134897A (en) | Nano-chitosan/polyvinyl alcohol compound film preparation method and its laminated film obtained and application | |
CN113603972B (en) | Preparation method of rigid particle/plant fiber/polypropylene composite material | |
CN109734842A (en) | A kind of transparent conductive flexible bacterial cellulose composite material and preparation method thereof | |
CN107033562A (en) | Root of kudzu vine nano-cellulose fiber polylactic acid plastic film and preparation method thereof | |
CN108948614A (en) | A kind of lignin/polyvinyl alcohol composite material and preparation method thereof | |
CN108795018A (en) | A kind of preparation method of polyurethane/fibrination functional configurations memory high molecular material | |
CN114989622B (en) | A kind of isocyanate/silk fibroin composite film and preparation method thereof | |
CN110194886A (en) | A kind of preparation method of bamboo fiber-based degradable environment-friendly material | |
CN108164947A (en) | A kind of preparation method of waste and old cotton crystallite/lactic acid composite material | |
CN117024895A (en) | Self-repairing light high-strength composite material and preparation method thereof | |
CN106590179B (en) | A kind of CNC/PEG composite coating and preparation method thereof | |
CN116217969A (en) | Bacterial cellulose composite hydrogel and preparation method thereof | |
CN110964297A (en) | Modification method of degradable plastic packaging material | |
CN110093041A (en) | A kind of acetylated modification fibroin/bacteria cellulose compound water congealing glue film and preparation method thereof | |
CN101507904B (en) | A kind of composite ultrafiltration membrane and preparation method thereof | |
CN110903606B (en) | Plant oil-based composite material and preparation method thereof | |
CN111253603B (en) | A kind of microcrystalline cellulose reinforced biaxially oriented polylactic acid film and preparation method thereof | |
CN101168603A (en) | A kind of soybean protein isolate/cellulose mixed solution and its preparation method and application | |
CN104530672B (en) | A kind of preparation method of siliceous micrometer fibers toughness reinforcing PHBV composite | |
CN108034205A (en) | A kind of preparation method of peanut shell fibre modification polylactic acid | |
CN101168602A (en) | A kind of zein/cellulose mixed solution and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |