CN114977933A - 一种多支路永磁同步电机故障重投控制方法 - Google Patents

一种多支路永磁同步电机故障重投控制方法 Download PDF

Info

Publication number
CN114977933A
CN114977933A CN202210663319.7A CN202210663319A CN114977933A CN 114977933 A CN114977933 A CN 114977933A CN 202210663319 A CN202210663319 A CN 202210663319A CN 114977933 A CN114977933 A CN 114977933A
Authority
CN
China
Prior art keywords
branch
compensation
throwing
fault
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210663319.7A
Other languages
English (en)
Inventor
刘薇
朱磊
何忠祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Original Assignee
Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC filed Critical Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Priority to CN202210663319.7A priority Critical patent/CN114977933A/zh
Publication of CN114977933A publication Critical patent/CN114977933A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种多支路永磁同步电机故障重投控制方法,在多支路永磁同步电机矢量控制的基础上,增加了重投决策控制器和在线重投补偿控制器,其中在线重投补偿控制器又包含旁支感应补偿器和反电势补偿器。本发明的控制方法使故障支路的故障消失后,能够在另一支路不停止运行的情况下,无扰动地投入运行,从而避免多支路永磁同步电机驱动系统在故障支路重投时出现动力中断或抖动,提高运行安全性和可靠性。

Description

一种多支路永磁同步电机故障重投控制方法
技术领域
本发明属于电力电子与电力传动技术领域,具体涉及一种多支路永磁同步电机故障重投控制方法。
背景技术
在电动车辆、船舶推进等领域,永磁同步电机得到广泛应用。在一些特殊应用场景,为了提高驱动或推进的可靠性,会采用多支路永磁同步电机。多支路永磁同步电机一般以三相、五相或六相为一个支路,至少有两个可独立工作的支路。
同时,每个支路都配有相应的变频器及控制系统。在一个支路故障时,另一个支路可继续运行,从而避免失去动力。在故障支路排除故障后,一般应重新投入运行。
重投分停机重投和在线重投两种方式,前者会使系统短时失去动力,后者则由于重投时会引入电压扰动,会出现电流过流、转矩波动等问题。本发明通过重投时机的自动判断及电压补偿,可实现无扰动的支路自动在线重投,从而提高系统运行的平稳性。
发明内容
为实现多支路永磁同步电机故障支路恢复后的自动在线重投,本发明提出一种多支路永磁同步电机自动重投控制方法,可有效抑制重投时的扰动。
本发明解决其技术问题所采用的技术方案是:一种多支路永磁同步电机故障重投控制方法,基于至少包含两个独立矢量控制支路的永磁同步电机矢量控制系统,所述的永磁同步电机矢量控制系统增加了一个用于产生重投指令的重投决策控制器和一个用于产生重投补偿电压的在线重投补偿控制器;所述的重投决策控制器采用故障锁存器锁存故障,以锁存的故障标志和当前故障标志确定重投支路,采集电机转速信息,并与预设的带速重投转速相减,结果为负时输出重投指令;所述的在线重投补偿控制器由旁支感应补偿器和反电势补偿器组成,二者输出的补偿电压相加后作为最终的补偿电压,叠加到重投支路的d轴电压和q轴电压上。
进一步,所述的旁支感应补偿器采集正常支路的d轴电流id、q轴电流iq和电角频率ω;用电机d轴电感Lq与iq、ω依次相乘并取反,作为d轴电压的补偿量;用电机d轴电感Ld与id、ω依次相乘,作为q轴电压的补偿量。
进一步,所述的反电势补偿器用电机的电角频率ω与永磁磁链幅值相乘,作为补偿电压幅值;用电角频率ω与角度补偿系数相乘,并与π/2相加,得到补偿角度值;用补偿电压幅值和补偿角度值进行极坐标到直角坐标的变换,得到d轴电压的补偿量和q轴电压的补偿量。
本发明的有益效果是:本发明控制方法能够自动实现多支路永磁同步电机故障支路在故障恢复后的在线重投,且能够抑制重投过程中的电流冲击和转矩波动,改善电机运行的平稳性,适用于对驱动可靠性要求较高的特种船舶电力推进、特种车辆驱动等。
附图说明
图1为应用本发明控制方法的多支路永磁同步电机控制系统;
图2为本发明重投决策控制器示意图;
图3为本发明在线重投补偿控制器示意图。
具体实施方式
结合附图,以双支路永磁同步电机为例对本发明作进一步的详细说明如下。
参照图1所示,本发明在双支路永磁同步电机两套独立的矢量控制系统中,增加一个重投决策控制器和一个在线重投补偿控制器,分别用于产生重投指令和重投补偿电压。
参照图2所示,重投决策控制器根据故障信息、支路运行状态和转速,确定重投支路、重投时机,发出重投指令:采用故障锁存器锁存故障,以锁存的故障标志和当前故障标志确定重投支路;采集电机转速信息,并与预设的带速重投转速相减,结果为负时输出重投指令。
旁支感应补偿器所产生的d轴电压的补偿量和反电势补偿器所产生的d轴电压的补偿量相加,得到最终的d轴电压的补偿量,作为待重投支路的d轴电压初始值。旁支感应补偿器所产生的q轴电压的补偿量和反电势补偿器所产生的q轴电压的补偿量相加,得到最终的q轴电压的补偿量,作为待重投支路的q轴电压初始值。
参照图3所示,在线重投补偿控制器由旁支感应补偿器和反电势补偿器组成,二者输出的补偿电压相加后作为最终的补偿电压,叠加到重投支路的d轴电压和q轴电压上:支路一故障恢复后需要重投时,旁支感应补偿器采集支路二的d轴电流id2、q轴电流iq2和电机的电角频率ω;用电机d轴电感Lq与iq2、ω依次相乘并取反,得到d轴电压的补偿量ud2;用电机d轴电感Ld与id2、ω依次相乘,得到q轴电压的补偿量uq2。
反电势补偿器用电机的电角频率ω与永磁磁链幅值λ相乘,得到补偿电压幅值us;用电角频率ω与角度补偿系数K相乘,并与π/2相加,得到补偿角度值β; 用补偿电压幅值us和补偿角度值β进行极坐标到直角坐标的变换,得到d轴电压的补偿量ud3和q轴电压的补偿量uq3。
ud2和ud3相加,得到最终的d轴电压的补偿量ud4。uq2和uq3相加,得到最终的q轴电压的补偿量uq4。支路一原电流环PI调节器输出的d轴电压和q轴电压分别为ud0和uq0。ud0与ud4相加,得到ud1,作为支路一补偿后的d轴电压。uq0与uq4相加,得到uq1,作为支路一补偿后的q轴电压。
上述实施例仅例示性说明本发明的原理及其功效,以及部分运用的实施例,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (3)

1.一种多支路永磁同步电机故障重投控制方法,基于至少包含两个独立矢量控制支路的永磁同步电机矢量控制系统,其特征在于:所述的永磁同步电机矢量控制系统还包括一个用于产生重投指令的重投决策控制器和一个用于产生重投补偿电压的在线重投补偿控制器;所述的重投决策控制器采用故障锁存器锁存故障,以锁存的故障标志和当前故障标志确定重投支路,采集电机转速信息,并与预设的带速重投转速相减,结果为负时输出重投指令;所述的在线重投补偿控制器由旁支感应补偿器和反电势补偿器组成,二者输出的补偿电压相加后作为最终的补偿电压,叠加到重投支路的d轴电压和q轴电压上。
2.根据权利要求1所述的一种多支路永磁同步电机故障重投控制方法,其特征在于,所述的旁支感应补偿器采集正常支路的d轴电流id、q轴电流iq和电角频率ω;用电机d轴电感Lq与iq、ω依次相乘并取反,作为d轴电压的补偿量;用电机d轴电感Ld与id、ω依次相乘,作为q轴电压的补偿量。
3.根据权利要求2所述的一种多支路永磁同步电机故障重投控制方法,其特征在于,所述的反电势补偿器用电机的电角频率ω与永磁磁链幅值相乘,作为补偿电压幅值;用电角频率ω与角度补偿系数相乘,并与π/2相加,得到补偿角度值;用补偿电压幅值和补偿角度值进行极坐标到直角坐标的变换,得到d轴电压的补偿量和q轴电压的补偿量。
CN202210663319.7A 2022-06-13 2022-06-13 一种多支路永磁同步电机故障重投控制方法 Pending CN114977933A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210663319.7A CN114977933A (zh) 2022-06-13 2022-06-13 一种多支路永磁同步电机故障重投控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210663319.7A CN114977933A (zh) 2022-06-13 2022-06-13 一种多支路永磁同步电机故障重投控制方法

Publications (1)

Publication Number Publication Date
CN114977933A true CN114977933A (zh) 2022-08-30

Family

ID=82960844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210663319.7A Pending CN114977933A (zh) 2022-06-13 2022-06-13 一种多支路永磁同步电机故障重投控制方法

Country Status (1)

Country Link
CN (1) CN114977933A (zh)

Similar Documents

Publication Publication Date Title
US9954393B2 (en) Power distribution systems
CN101304234B (zh) 电源转换器
US8513911B2 (en) Power converters
CN110729929B (zh) 一种双绕组永磁电机起动发电系统及其容错控制方法
Xu et al. Guaranteeing the fault transient performance of aerospace multiphase permanent magnet motor system: An adaptive robust speed control approach
CN104702186A (zh) 一种混合励磁变频交流起动发电系统及其控制方法
US20120091933A1 (en) Control apparatus for power conversion system including dc/ac converter connected between electric rotating machine and dc power source
CN102420560B (zh) 变频交流起动发电系统励磁结构及交、直流励磁控制方法
CN108400742B (zh) 一种双绕组三相电机及其控制方法
Khwan-On et al. Fault-tolerant, matrix converter, permanent magnet synchronous motor drive for open-circuit failures
Xu et al. Control of five-phase dual stator-winding induction generator with an open phase
Wang et al. Enhanced natural fault-tolerant model predictive current control in nine-phase motor drives under open-phase faults
Che et al. Fault-tolerant symmetrical six-phase induction motor drive based on feed-forward voltage compensation
Lee et al. A comprehensive review of fault-tolerant AC machine drive topologies: Inverter, control, and electric machine
Zhang et al. Adaptive voltage controller for permanent magnet synchronous motor in six-step operation
CN114977933A (zh) 一种多支路永磁同步电机故障重投控制方法
He et al. Torque ripple suppression of a five-phase induction motor under single-phase open
Elsayed et al. Open-phase fault-tolerant control approach for EV PMSM based on four-leg VSI
CN113659629B (zh) 一种同步电机化的电力电子并网装置及其控制方法
CN103532461B (zh) 一种用于平稳控制永磁同步电机低速小转矩状态切换的装置
Lu et al. Assisted power transfer for voltage balance of bipolar DC MicroGrids using inactive motor drives
CN115333419A (zh) 一种永磁同步电机的电流电压自适应控制方法及控制装置
Bodur et al. A Novel Sliding Mode Control Based on Super Twisting Reaching Law for PMSM Speed Controller with Fixed-Time Disturbance Observer
CN112865613A (zh) 一种半集中式开绕组电机驱动系统的控制方法
CN215646645U (zh) 飞机起动发电机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination