CN114959403A - 一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料 - Google Patents

一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料 Download PDF

Info

Publication number
CN114959403A
CN114959403A CN202210505550.3A CN202210505550A CN114959403A CN 114959403 A CN114959403 A CN 114959403A CN 202210505550 A CN202210505550 A CN 202210505550A CN 114959403 A CN114959403 A CN 114959403A
Authority
CN
China
Prior art keywords
temperature
magnetic material
magnetic
hall effect
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210505550.3A
Other languages
English (en)
Inventor
刘丹敏
贺莉东
徐国梁
王少博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210505550.3A priority Critical patent/CN114959403A/zh
Publication of CN114959403A publication Critical patent/CN114959403A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料,化学式为LaxNd1‑xMn2Ge2(0<x<1)。该系列磁性材料在包括室温在内的宽温域中具有大拓扑霍尔效应,且其值随温度的降低由正值变为负值,这使其有可能成为一种具有小尺寸和高密度斯格明子的磁性材料,同时其斯格明子磁畴结构的自旋方向可能随温度的变化而发生翻转,这预示着随温度的变化可形成不同的磁存储单元;此外,随着La/Nd比值的减小,其居里温度、自旋重取向温度等磁转变温度会随之升高,导致不同磁存储单元的工作温区随之变化,可以据此进行工作温区的调控。因此,该系列磁性材料是理想的磁存储和信息转换等自旋电子学器件的候选材料。

Description

一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料
技术领域
本发明涉及一种具有正值和负值大拓扑霍尔效应的磁性材料。
背景技术
斯格明子是一种具有准粒子特性的受拓扑保护且非平庸的螺旋状手性磁结构,由于其具有拓扑保护性、尺寸很小以及驱动斯格明子移动所需临界电流密度很小等特点,有望应用于低能耗、高密度以及高可靠性存储的自旋电子学器件。
斯格明子作为一种特殊的涡旋磁畴结构可与传导电子发生相互作用而产生一种电磁现象,即拓扑霍尔效应。因此,拓扑霍尔效应可作为表征斯格明子的手段且可实现单个斯格明子的电探测。通常,拓扑霍尔效应越大,斯格明子的尺寸就越小或者密度就越高,可见获得具有大拓扑霍尔效应的斯格明子材料能够促进基于拓扑霍尔效应和斯格明子的自旋存储器件的发展和应用。
近年来,人们对具有拓扑霍尔效应和斯格明子的材料进行了大量的报道。目前,研究最多的主要包括非中心对称化合物中的(Mn,Fe,Co)(Si,Ge)系列化合物、β-Mn结构的Co-Zn-Mn系列化合物和中心对称化合物中的MnNiGa、Fe3Sn2以及Gd2PdSi3等。但是这些化合物分别表现出拓扑霍尔效应小、斯格明子成相温度低且温区窄、斯格明子尺寸较大且不均匀等缺点。这些问题致使上述化合物无法满足实际器件对工作环境的要求以及高密度、高可靠性存储的需求,不利于未来基于拓扑霍尔效应和斯格明子的自旋存储技术的普及。
可见,制备出在包含室温在内的宽温域内具有大拓扑霍尔效应的、同时其磁转变温度可以进行调控的斯格明子材料,能够极大地提高斯格明子材料可应用性的研究价值,从而促进这种低能耗、高密度和高可靠性自旋存储技术迈向实际应用。
发明内容
本发明的目的是提供一种磁转变温度可调控的、在宽温域内(包含室温)具有正值和负值大拓扑霍尔效应的可能存在斯格明子的磁性材料,其化学式为LaxNd1-xMn2Ge2(0<x<1)。
本发明所涉及的单晶磁性材料,优选地,0<x<1。
单晶磁性材料采用助溶剂法制备。
本发明所涉及的多晶磁性材料,优选地,0<x<1。
本发明还提供了一种宽温域内(包含室温)具有正值和负值大拓扑霍尔效应多晶磁性材料的制备方法,包括以下步骤:
步骤一:在氩气保护的手套箱内按照成分比例将La、Nd、Mn和Ge装入氧化铝坩埚中;
步骤二:利用悬浮熔炼设备进行进行5-7次的熔融固化,得到铸锭样品;
步骤三:利用球磨机对铸锭样品进行破碎,得到粉末样品;
步骤四:在手套箱内将粉末样品装入石墨模具中;
步骤五:将装好粉末样品的石墨模具装入SPS烧结炉中,并抽真空至6~8Pa后开始烧结,按照60~70K min-1的升温速率升温至1233K,同时调节烧结压力至30MPa恒定不变,随后在目标温度下保温10min,当温度降至室温后便可得到致密的块体样品。
本发明主要具有以下特色:
1、成功制备出直径为20mm、厚度为3mm的均质且致密的烧结体LaxNd1-xMn2Ge2(0<x<1)多晶磁性材料。此外,按照上述配比和制备工艺可以重复制备出该材料。
2、成功制备出毫米级大小的多种配比的单晶磁性材料LaxNd1-xMn2Ge2(0<x<1)。此外,按照上述配比和制备工艺可以重复制备出该材料。
3、该材料在宽温域内(包含室温)具有正值和负值的大拓扑霍尔效应,这使其有可能成为一种具有小尺寸和高密度斯格明子的磁性材料,同时其斯格明子的自旋方向可能随温度的变化而发生翻转,这预示着随温度的变化可形成不同的磁存储单元;此外,随着La/Nd比值的减小,其居里温度、自旋重取向温度等磁转变温度会随之升高,导致不同磁存储单元的工作温区随之变化,可以据此进行工作温区的调控。上述结果有助于加快基于拓扑霍尔效应和斯格明子的自旋存储器件迈向实际应用的步伐。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是利用物性测量系统PPMS的VSM选件进行磁性测量得到的本发明实施例1-3的磁化强度与温度关系曲线(M-T曲线),(a)La0.25Nd0.75Mn2Ge2;(b)La0.5Nd0.5Mn2Ge2;(c)La0.75Nd0.25Mn2Ge2
图2是本发明实施例4的室温X射线衍射精修图谱;
图3是利用物性测量系统PPMS的VSM选件进行磁性测量得到的本发明实施例4的磁化强度与温度关系曲线(M-T曲线)(a)和利用物性测量系统PPMS的MFP选件进行电输运性测量得到的零磁场下的纵向电阻率ρxx随温度的变化曲线(b);
图4是本发明实施例4在不同温度下磁阻MR随磁场的变化曲线(a)和不同温度下霍尔电阻率ρxy随磁场的变化曲线(b);
图5是本发明实施例4在不同温度下霍尔电阻率ρxy(图中EXP指实验所测数据,即霍尔电阻率)、计算的R0H+SAρ2 xxM和拓扑霍尔电阻率ρT xy随磁场的变化曲线,其中Hm和Hc分别是拓扑霍尔效应达到最大时的磁场和拓扑霍尔效应消失的临界磁场,(a)130K和(b)250K;
图6是本发明实施例4在不同温度下拓扑霍尔电阻率ρT xy随磁场的变化曲线(a)和不同温度下最大拓扑霍尔电阻率随磁场的变化曲线(b)。
具体实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明作进一步详细说明。
在如下实施例中,发明人分别测量了所得到的样品的室温X射线衍射精修图谱、磁化强度-温度曲线、零磁场下的纵向电阻率-温度曲线、磁阻-磁场曲线、霍尔电阻-磁场曲线和拓扑霍尔电阻-磁场曲线,观察到了大的拓扑霍尔电阻率和其值随温度降低由正值变为负值以及随La元素含量增多该系列化合物的磁转变温度随之减小等现象。
实施例1
本实施例利用铟助溶剂法制备了化学式为La0.25Nd0.75Mn2Ge2的单晶磁性材料。按照摩尔比La:Nd:Mn:Ge:In=0.25:0.75:2:2:20进行配料,接着装入带石英棉塞的氧化铝坩埚中密封在石英管中。利用马弗炉以4℃/min的速度加热到1100℃,然后在1100℃下保温12h,之后以4℃/h的速度冷却到700℃。在此温度下,迅速从马弗炉中取出石英管,并用离心机甩出铟助熔剂,得到片状的La0.25Nd0.75Mn2Ge2单晶材料。
利用物性测量系统PPMS的VSM选件对样品进行在H=0.1T下磁场沿不同方向的磁性测量,得到了样品的磁化强度-温度关系曲线,如图1(a)所示。结果显示,在400K以下,随着温度减小,该化合物经历多次磁转变,转变温度分别被标记为TC=327K、Tt=202K、自旋重取向转变温度TSR=181K和Nd亚晶格的磁矩值大幅度增大的温度TNd=18K,该化合物依次经历了反铁磁(AFl)→倾斜铁磁(Fmc)→锥形铁磁(Fmiab)→锥形铁磁与Nd有序共存(Fmiac+FmNd)等三次磁转变。
实施例2
本实施例利用铟助溶剂法制备了化学式为La0.5Nd0.5Mn2Ge2的单晶磁性材料。按照摩尔比La:Nd:Mn:Ge:In=0.5:0.5:2:2:20进行配料,接着装入带石英棉塞的氧化铝坩埚中密封在石英管中。利用马弗炉以4℃/min的速度加热到1100℃,然后在1100℃下保温12h,之后以4℃/h的速度冷却到700℃。在此温度下,迅速从马弗炉中取出石英管,并用离心机甩出铟助熔剂,得到片状的La0.5Nd0.5Mn2Ge2单晶材料。
利用物性测量系统PPMS的VSM选件对样品进行在H=0.1T下磁场沿不同方向的磁性测量,得到了样品的磁化强度-温度关系曲线,如图1(b)所示。结果显示,在400K以下,随着温度减小,该化合物经历多次磁转变,转变温度分别被标记为TC=326K、Tt=172K、自旋重取向转变温度TSR=142K和Nd亚晶格的磁矩值大幅度增大的温度TNd=16K,该化合物依次经历了反铁磁(AFl)→倾斜铁磁(Fmc)→锥形铁磁(Fmiab)→锥形铁磁与Nd有序共存(Fmiac+FmNd)等三次磁转变。
实施例3
本实施例利用铟助溶剂法制备了化学式为La0.75Nd0.25Mn2Ge2的单晶磁性材料。按照摩尔比La:Nd:Mn:Ge:In=0.75:0.25:2:2:20进行配料,接着装入带石英棉塞的氧化铝坩埚中密封在石英管中。利用马弗炉以4℃/min的速度加热到1100℃,然后在1100℃下保温12h,之后以4℃/h的速度冷却到700℃。在此温度下,迅速从马弗炉中取出石英管,并用离心机甩出铟助熔剂,得到片状的La0.75Nd0.25Mn2Ge2单晶材料。
利用物性测量系统PPMS的VSM选件对样品进行在H=0.1T下磁场沿不同方向的磁性测量,得到了样品的磁化强度-温度关系曲线,如图1(c)所示。结果显示,在400K以下,随着温度减小,该化合物经历多次磁转变,转变温度分别被标记为TC=323K、Tt=119K、自旋重取向转变温度TSR=78K和Nd亚晶格的磁矩值大幅度增大的温度TNd=17K,该化合物依次经历了反铁磁(AFl)→倾斜铁磁(Fmc)→锥形铁磁(Fmiab)→锥形铁磁与Nd有序共存(Fmiac+FmNd)等三次磁转变。
实施例4
本实施例制备出化学式为La0.5Nd0.5Mn2Ge2的在宽温域内(包含室温)具有正值和负值大拓扑霍尔效应的磁性材料,其制备方法按照以下具体步骤进行:
(1)在Ar气保护的手套箱中,以99.9%的La和Nd金属块、99.99%的Mn和Ge金属块为原材料,按照La:Nd:Mn:Ge=0.5:0.5:2:2的配方进行配料,按照稀土金属、Mn和Ge的顺序混合后装入Al2O3坩埚中;
(2)将已经称量好装有原材料的Al2O3坩埚放入悬浮熔炼设备的水冷铜坩埚中,并进行密封。采用Ar气对熔炼设备进行三次的洗气处理后,对样品进行5次的熔融固化,以获得成分均匀的La0.5Nd0.5Mn2Ge2化合物;
(3)在Ar气保护的手套箱中,将熔炼好的La0.5Nd0.5Mn2Ge2铸锭粗略破碎后装入球磨罐,并密封好。接着放入球磨机中进行破碎,最终得到球磨粉末样品;
(4)在Ar气保护的手套箱中将球磨粉末样品分离出来装入石墨模具中;
(5)将装好粉末样品的石墨模具装入SPS烧结炉中,并抽真空至7Pa后开始烧结,按照65K min-1的升温速率升温至1233K,同时调节烧结压力至30MPa恒定不变,随后在目标温度下保温10min,当温度降至室温后便可得到致密的块体样品;
(6)将上述致密块材样品用线切割机切割后再进行机械打磨成长4mm×宽2.5mm×厚0.13mm形状的测试样品。
测量所得样品的相关特性,首先对上述铸锭样品和烧结样品进行X射线衍射测试,得到如图2所示的精修图谱,可以看到本实施例样品为体心四方层状结构的La0.5Nd0.5Mn2Ge2化合物,空间群为I4/mmm。接着利用物性测量系统PPMS的VSM选件对样品进行在H=0.05T外场条件下场冷(FC)和零场冷(ZFC)的磁性测量,得到了样品的磁化强度~温度关系曲线,如图3(a)所示。结果显示,场冷却过程中,在400K以下,随着温度降低,该化合物经历多次磁转变,转变温度分别被标记为TC=320K、Tt=160K、自旋重取向转变温度TSR=150K和Nd亚晶格的磁矩值大幅度增大的温度TNd=20K,该化合物依次经历了反铁磁(AFl)→倾斜铁磁(Fmc)→锥形铁磁(Fmiab)→锥形铁磁与Nd有序共存(Fmiac+FmNd)等三次磁转变,同样零场冷却过程中也经历了多次磁转变。同时,还利用物性测量系统PPMS的MFP选件对样品进行了电输运性测量,如图3(b)所示为La0.5Nd0.5Mn2Ge2化合物在零磁场下的纵向电阻率ρxx随温度的变化曲线。可以看出,随着温度降低,纵向电阻率ρxx在不断减小,这说明该化合物具有金属导电特性。300K时,其纵向电阻率ρxx约为200μΩcm,这有助于电流驱动斯格明子。还可以看到,由于在居里温度附近发生了AFl→Fmc磁转变导致纵向电阻率ρxx在324.9K处的突然减小。
根据不同温度下的纵向电阻率ρxx计算了该化合物的磁阻MR,如图4(a)所示。由图可知,在10到350K之间和低磁场(-1.5T<H<1.5T)下,该化合物的MR~H曲线展现出了峰、平原、隆起、谷和肩等一系列的连续特征。这些特征与已发现斯格明子材料中所观察到的现象非常相似,暗示了La0.5Nd0.5Mn2Ge2化合物中可能存在斯格明子。图4(b)为La0.5Nd0.5Mn2Ge2化合物在不同温度下霍尔电阻率ρxy随磁场的变化曲线。可以看出,随着温度升高,该化合物的霍尔电阻率ρxy逐渐增大,当温度达到275K以后又减小,这是因为在此温度附近该化合物发生了AFl→Fmc磁转变。同时,还可以看到在低磁场下霍尔电阻率曲线出现微弱的隆起,这是存在拓扑霍尔效应的典型特征。
在拓扑霍尔效应和斯格明子存在的情况下,总的霍尔效应可用式ρxy=R0H+RSM+ρT xy=R0H+SAρ2 xxM+ρT xy描述。由式可知利用实验测得的总的霍尔电阻率ρxy减去计算得到的R0H+SAρ2 xxM便可以得到该化合物的拓扑霍尔电阻率ρT xy,如图5所示就是部分温度下霍尔电阻率ρxy值、计算的R0H+SAρ2 xxM值和拓扑霍尔电阻率ρT xy值。图中的Hm和Hc分别是拓扑霍尔效应达到最大时的磁场和拓扑霍尔效应消失的临界磁场。图6(a)和(b)为La0.5Nd0.5Mn2Ge2化合物在不同温度下拓扑霍尔电阻率ρT xy和最大拓扑霍尔电阻率随磁场的变化曲线。由图可知,在TC以下,该化合物在10-150K间的拓扑霍尔效应为负值,在170-325K间为正值,其正值可在250K时达到最大为0.65μΩ·cm;负值的绝对值可在130K时达到最大为0.25μΩ·cm,这说明在该化合物中拓扑霍尔效应存在于很宽的温区中,这也预示着该化合物中的斯格明子可以在很宽的温区稳定存在,并且可以通过温度变化对拓扑霍尔效应正负值进行调控,从而可能改变斯格明子的自旋方向。可见,La0.5Nd0.5Mn2Ge2化合物非常有可能是一种具有小尺寸高密度且自旋方向可变的斯格明子材料。
上述结果表明,本发明高效的制备出能够在室温附近存在、在低磁场范围出现并在宽工作温区内具有正值和负值大拓扑霍尔效应的、以及随着La/Nd比值减小其磁转变温度随之升高的磁性材料,该材料非常有可能具有斯格明子且其自旋方向可随温度发生翻转,这预示着随温度的变化可形成不同的磁存储单元,且不同磁存储单元的工作温区随La/Nd比值变化而发生改变。因此这可以增加研究斯格明子材料的体系,从而促进这种基于拓扑霍尔效应和斯格明子的低能耗、高密度和高可靠性自旋存储技术迈向实际应用。
任何根据本发明的技术方案及其发明构思加以等同替换或改变的方法,都应涵盖在本发明的保护范围内。

Claims (4)

1.一种在宽温域内具有正值和负值大拓扑霍尔效应的磁性材料,为单晶磁性材料或多晶磁性材料,LaxNd1-xMn2Ge2,其中0<x<1。
2.根据权利要求1中所述多晶磁性材料,其中,La:Nd:Mn:Ge=0.5:0.5:2:2。
3.制备如权利要求1中所述磁性材料的方法,其特征在于,多晶磁性材料的制备包括以下步骤:
步骤一:在氩气保护的手套箱内按照成分比例将La、Nd、Mn和Ge装入氧化铝坩埚中;
步骤二:利用悬浮熔炼设备进行5-7次的熔融固化,得到铸锭样品;
步骤三:利用球磨机对铸锭样品进行破碎,得到粉末样品;
步骤四:在手套箱内将粉末样品装入石墨模具中;
步骤五:
将装好粉末样品的石墨模具装入SPS烧结炉中,并抽真空至6~8Pa后开始烧结,按照60~70K min-1的升温速率升温至1233K,同时调节烧结压力至30MPa恒定不变,随后在目标温度下保温10min,当温度降至室温后便可得到致密的块体样品。
4.根据权利要求1所述的磁性材料对斯格明子的观察或在自旋存储器件中的用途。
CN202210505550.3A 2022-05-10 2022-05-10 一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料 Pending CN114959403A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210505550.3A CN114959403A (zh) 2022-05-10 2022-05-10 一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210505550.3A CN114959403A (zh) 2022-05-10 2022-05-10 一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料

Publications (1)

Publication Number Publication Date
CN114959403A true CN114959403A (zh) 2022-08-30

Family

ID=82981186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210505550.3A Pending CN114959403A (zh) 2022-05-10 2022-05-10 一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料

Country Status (1)

Country Link
CN (1) CN114959403A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321415A (ja) * 1995-05-25 1996-12-03 Res Inst Electric Magnetic Alloys 永久磁石および製造法ならびに医療用具
JPH10289810A (ja) * 1997-04-15 1998-10-27 Hitachi Metals Ltd 永久磁石材料
CN111074129A (zh) * 2019-12-05 2020-04-28 杭州电子科技大学 一种稀土基磁性斯格明子材料、制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321415A (ja) * 1995-05-25 1996-12-03 Res Inst Electric Magnetic Alloys 永久磁石および製造法ならびに医療用具
JPH10289810A (ja) * 1997-04-15 1998-10-27 Hitachi Metals Ltd 永久磁石材料
CN111074129A (zh) * 2019-12-05 2020-04-28 杭州电子科技大学 一种稀土基磁性斯格明子材料、制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. EMRE ET AL.: "Investigation of the nature of the unusual magnetic behavior of La0.65Nd0.35Mn2Si2 compound by neutron diffraction study", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *
G. VENTURINI ET AL.: "X-ray single crystal refinements on some RT2Ge2 compounds", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
SHAOBO WANG ET AL.: "Giant Topological Hall Effect and Superstable Spontaneous Skyrmions below 330 K in a Centrosymmetric Complex NoncollinearFerromagnet NdMn2Ge2", 《ACS APPLIED MATERIALS & INTERFACES》 *

Similar Documents

Publication Publication Date Title
Sefat et al. Structure and anisotropic properties of BaFe 2− x Ni x As 2 (x= 0, 1, and 2) single crystals
Zhao et al. Crystal growth and characterization of cuprous ferrite (CuFeO2)
Morosan et al. Sharp switching of the magnetization in Fe 1∕ 4 Ta S 2
Huh et al. Magnetism and electron transport of MnyGa (1< y< 2) nanostructures
Ahmed et al. Enhancement of electric and magnetic properties of Mn–Zn ferrite by Ni–Ti ions substitution
CN105950941B (zh) 一种磁性斯格明子材料
Eraky et al. Transport properties of Ti–Ni spinel ferrites
Tsay et al. Magnetic, magnetostrictive, and AC impedance properties of manganese substituted cobalt ferrites
Luo et al. Effect of Cu ion substitution on structural and dielectric properties of Ni–Zn ferrites
Johari et al. Synthesis and room-temperature ferromagnetism of pure and Cu-doped SnO2 nanowires grown by thermal evaporation
Neu et al. Two-phase high-performance Nd–Fe–B powders prepared by mechanical milling
Liu et al. Effect of Mn and Zn binary Co-substitution on structure and magnetic properties of cobalt ferrites
Kaczorowski et al. Kondo lattice behavior and magnetic ordering in CeRh 2 Si
Renosto et al. Evidence of unconventional superconductivity in the Ni-doped NbB2 system
Varalaxmi et al. Structural, magnetic, DC–AC electrical conductivities and thermo electric studies of MgCuZn Ferrites for microinductor applications
Anas et al. Impact of Nano-Sized Diluted Magnetic Semiconductors Addition on (Cu, Tl) 1234 Superconducting Phase
CN114959403A (zh) 一种宽温域内具有正值和负值大拓扑霍尔效应的磁性材料
Togano et al. Critical properties of a dense polycrystalline (Ba, K) Fe2As2 superconductor prepared by a combined process of melting and deformation
Thamizhavel et al. Anisotropic magnetic properties of Ce Ag 2 Ge 2 single crystals
Ahamed et al. Powder processing and characterisation of a quinary Ni-Mn-Co-Sn-Cu Heusler alloy
Yu et al. Enhancement of thermoelectric properties by fluorine doping in LaO1− xFxBiPbS3
Sedeek et al. Observation of strong ferromagnetism in the half-heusler compound cotisb system
Sawicki et al. Structural, magnetic and electrical properties of Nd 3+-doped PbWO 4 ceramic materials
CN109576530B (zh) 一种巨交换偏置Mn基合金及其制备方法和应用
Grivel A simple method for preparing superconducting FeSe pellets without sealing in evacuated silica tubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220830

RJ01 Rejection of invention patent application after publication