CN114954501A - Omnidirectional mobile robot, its kinematics solution and control method and device - Google Patents
Omnidirectional mobile robot, its kinematics solution and control method and device Download PDFInfo
- Publication number
- CN114954501A CN114954501A CN202210762728.2A CN202210762728A CN114954501A CN 114954501 A CN114954501 A CN 114954501A CN 202210762728 A CN202210762728 A CN 202210762728A CN 114954501 A CN114954501 A CN 114954501A
- Authority
- CN
- China
- Prior art keywords
- mobile robot
- omnidirectional mobile
- caster
- control method
- deflection angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000004364 calculation method Methods 0.000 claims abstract description 8
- 238000005096 rolling process Methods 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 3
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/32—Control or regulation of multiple-unit electrically-propelled vehicles
- B60L15/38—Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
- B62D5/0463—Controlling the motor calculating assisting torque from the motor based on driver input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D63/00—Motor vehicles or trailers not otherwise provided for
- B62D63/02—Motor vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D63/00—Motor vehicles or trailers not otherwise provided for
- B62D63/02—Motor vehicles
- B62D63/04—Component parts or accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0004—In digital systems, e.g. discrete-time systems involving sampling
- B60W2050/0005—Processor details or data handling, e.g. memory registers or chip architecture
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Power Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种全向移动机器人、其运动学解算与控制方法和装置。所述解算与控制方法包括:1)解算获得所述解耦式主动万向脚轮的目标偏转角度;2)获取所述解耦式主动万向脚轮的实际偏转角度;3)计算所述目标偏转角度与实际偏转角度的偏差角度;4)当所述偏差角度的绝对值在π/2以上时,以预设时长提前使所述解耦式主动万向脚轮以预设偏转速度向所述目标偏转角度进行偏转。本发明所提供的全向移动机器人的运动学解算与控制方法通过判断需偏转的偏差角度的大小从而控制解耦式主动万向脚轮提前以预设偏转速度偏转,避免了移动机器人发生轮子突然转向,或者控制方向不准的情况,从而避免了全向移动机器人精度降低或者振动的发生。
The invention discloses an omnidirectional mobile robot, its kinematics solution and control method and device. The calculation and control method includes: 1) obtaining the target deflection angle of the decoupling active caster; 2) obtaining the actual deflection angle of the decoupling active caster; 3) calculating the The deviation angle between the target deflection angle and the actual deflection angle; 4) when the absolute value of the deviation angle is above π/2, make the decoupling active universal caster move to the desired direction at a preset deflection speed in advance for a preset period of time. Deflect according to the target deflection angle. The kinematics calculation and control method of the omnidirectional mobile robot provided by the present invention controls the decoupling active universal caster to deflect at the preset deflection speed in advance by judging the deviation angle to be deflected, thereby avoiding the sudden occurrence of the wheel of the mobile robot. Steering, or the inaccurate control direction, thus avoiding the reduction of the accuracy of the omnidirectional mobile robot or the occurrence of vibration.
Description
技术领域technical field
本发明属于机器人技术领域,涉及一种解耦式全向移动机器人,具体涉及一种全向移动机器人、其运动学解算与控制方法和装置。The invention belongs to the technical field of robots, and relates to a decoupled omnidirectional mobile robot, in particular to an omnidirectional mobile robot, a kinematics solution and control method and device thereof.
背景技术Background technique
与传统的移动移动机器人相比,解耦式全向移动机器人能够实现全向移动的功能,具有灵活度高,能在不同的狭窄的区域内移动等特点,因此在仓储物流,机械制造,军事等领域有广泛应用。Compared with the traditional mobile mobile robot, the decoupled omnidirectional mobile robot can realize the function of omnidirectional movement, has the characteristics of high flexibility, and can move in different narrow areas. It is widely used in other fields.
与传统的移动机器人不同,为实现全向运动,该类型的机器人通常是通过调整底盘上各个车轮的偏转方位来实现全向移动的,而调整底盘上的车轮的偏转方位则需要通过运动学的解算来实现。Different from traditional mobile robots, in order to achieve omnidirectional motion, this type of robot usually achieves omnidirectional movement by adjusting the deflection azimuth of each wheel on the chassis, and adjusting the deflection azimuth of the wheels on the chassis requires kinematics. solve to achieve.
对于此类机器人,进行运动学解算时,在部分位置会发生奇异现象,即从移动机器人的速度空间到关节空间映射时,关节空间存在多解的情况,如果运动学解选择不当,则会导致移动机器人发生轮子突然转向,或者控制方向不准的情况,从而导致移动机器人精度降低或者振动的发生。因此,如何避免上述现象成为了本领域亟待解决的技术问题。For this type of robot, when kinematics is solved, strange phenomena will occur in some positions, that is, when mapping from the velocity space of the mobile robot to the joint space, there are multiple solutions in the joint space. If the kinematics solution is not selected properly, it will As a result, the wheels of the mobile robot suddenly turn, or the control direction is inaccurate, resulting in the reduction of the accuracy of the mobile robot or the occurrence of vibration. Therefore, how to avoid the above phenomenon has become an urgent technical problem to be solved in the art.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明的目的在于提供一种全向移动机器人、其运动学解算与控制方法和装置。In view of the deficiencies of the prior art, the purpose of the present invention is to provide an omnidirectional mobile robot, its kinematics solution and control method and device.
为实现前述发明目的,本发明采用的技术方案包括:In order to realize the foregoing invention purpose, the technical scheme adopted in the present invention includes:
第一方面,本发明提供一种全向移动机器人的运动学解算与控制方法,所述全向移动机器人包括多个解耦式主动万向脚轮,所述运动学解算与控制方法包括:In a first aspect, the present invention provides a kinematics solution and control method for an omnidirectional mobile robot, wherein the omnidirectional mobile robot includes a plurality of decoupled active universal casters, and the kinematics solution and control method includes:
1)解算获得所述解耦式主动万向脚轮的目标偏转角度;1) Calculate and obtain the target deflection angle of the decoupled active swivel caster;
2)获取所述解耦式主动万向脚轮的实际偏转角度;2) Obtain the actual deflection angle of the decoupled active universal caster;
3)计算所述目标偏转角度与实际偏转角度的偏差角度;3) Calculate the deviation angle between the target deflection angle and the actual deflection angle;
4)当所述偏差角度的绝对值在π/2以上时,以预设时长提前使所述解耦式主动万向脚轮以预设偏转速度向所述目标偏转角度进行偏转。4) When the absolute value of the deviation angle is greater than π/2, deflect the decoupling active swivel caster to the target deflection angle at a preset deflection speed in advance for a preset period of time.
第二方面,本发明还提供一种全向移动机器人的运动学解算与控制装置,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器运行时执行上述运动学解算与控制方法的步骤。In a second aspect, the present invention also provides a kinematics solution and control device for an omnidirectional mobile robot, including a memory and a processor, wherein the memory stores a computer program, and the computer program is executed by the processor to execute the above-mentioned The steps of the kinematics solution and control method.
第三方面,本发明还提供一种全向移动机器人,包括机器人底盘、解耦式主动万向脚轮以及上述运动学解算与控制装置;In a third aspect, the present invention also provides an omnidirectional mobile robot, including a robot chassis, a decoupled active universal caster, and the above kinematics solution and control device;
所述解耦式主动万向脚轮设置于所述机器人底盘上,且能够受所述运动学解算与控制装置的控制,相对于所述机器人底盘偏转以及滚动。The decoupled active universal caster is disposed on the robot chassis, and can be controlled by the kinematics solution and control device to deflect and roll relative to the robot chassis.
基于上述技术方案,与现有技术相比,本发明的有益效果至少包括:Based on the above technical solutions, compared with the prior art, the beneficial effects of the present invention at least include:
本发明所提供的全向移动机器人的运动学解算与控制方法通过判断需偏转的偏差角度的大小从而控制解耦式主动万向脚轮提前以预设偏转速度偏转,避免了移动机器人发生轮子突然转向,或者控制方向不准的情况,从而避免了全向移动机器人精度降低或者振动的发生。The kinematics calculation and control method of the omnidirectional mobile robot provided by the present invention controls the decoupling active universal caster to deflect at the preset deflection speed in advance by judging the size of the deviation angle to be deflected, thereby avoiding the sudden occurrence of the wheel of the mobile robot. Steering, or the inaccurate control direction, thus avoiding the reduction of the accuracy of the omnidirectional mobile robot or the occurrence of vibration.
上述说明仅是本发明技术方案的概述,为了能够使本领域技术人员能够更清楚地了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。The above description is only an overview of the technical solutions of the present invention. In order to enable those skilled in the art to understand the technical means of the present application more clearly, and to implement them in accordance with the contents of the description, the following preferred embodiments of the present invention are used in conjunction with the detailed descriptions. The accompanying drawings are described below.
附图说明Description of drawings
图1是本发明一典型实施案例提供的解耦式主动万向脚轮的的结构示意图;1 is a schematic structural diagram of a decoupled active swivel caster provided by a typical implementation case of the present invention;
图2是本发明一典型实施案例提供的全向移动机器人的结构示意图;2 is a schematic structural diagram of an omnidirectional mobile robot provided by a typical implementation case of the present invention;
图3是本发明一典型实施案例提供的全向移动机器人的运动学解算与控制方法的流程示意图;3 is a schematic flowchart of a kinematics solution and control method for an omnidirectional mobile robot provided by a typical implementation case of the present invention;
附图标记说明:10、轮架;11、轴架;12、滚轮;13、转向驱动电机;14、滚动驱动电机;15、差速器;Description of reference numerals: 10, wheel frame; 11, axle frame; 12, roller; 13, steering drive motor; 14, rolling drive motor; 15, differential;
20、机器人底盘。20. Robot chassis.
具体实施方式Detailed ways
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,可以被概括为:建立解耦式全向移动机器人的逆运动学模型,该模型计算简单清晰,为后续的控制方法打好基础。在获得工作空间速度后,根据逆运动学预测出四个脚轮到达目标位置的角度;当预测的位置与实际的偏转位置相差角度大于π/2,且主动万向脚轮的转向速度在一个设定的极限范围内时,提前给主动万向脚轮偏转电机发送一个较小速度,让其提前转向,从而避免了在速度较大情况下发生偏转电机突然转向的情况,从而减少移动机器人发生突然振动的可能性。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。In view of the deficiencies in the prior art, after long-term research and a lot of practice, the inventor of this case was able to propose the technical solution of the present invention, which can be summarized as: establishing an inverse kinematics model of a decoupled omnidirectional mobile robot, the model calculation is simple and clear , to lay a solid foundation for the subsequent control methods. After obtaining the working space speed, the angle at which the four casters reach the target position is predicted according to inverse kinematics; when the angle difference between the predicted position and the actual deflection position is greater than π/2, and the steering speed of the active swivel caster is within a set When it is within the limit range, send a small speed to the deflection motor of the active universal caster in advance to make it turn in advance, so as to avoid the sudden turning of the deflection motor when the speed is high, thereby reducing the sudden vibration of the mobile robot. possibility. The technical solution, its implementation process and principle will be further explained as follows.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。Many specific details are set forth in the following description to facilitate a full understanding of the present invention. However, the present invention can also be implemented in other ways different from those described herein. Therefore, the protection scope of the present invention is not limited by the specific implementation disclosed below. example limitations.
而且,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件或方法步骤区分开来,而不一定要求或者暗示这些部件或方法步骤之间存在任何这种实际的关系或者顺序。Moreover, relational terms such as "first" and "second" etc. are only used to distinguish one component or method step of the same name from another and do not necessarily require or imply that any one of these components or method steps is required or implied. any such actual relationship or sequence exists.
首先请参见图1-图3,本发明实施例提供一种全向移动机器人的运动学解算与控制方法,所述全向移动机器人包括多个解耦式主动万向脚轮,所述运动学解算与控制方法包括如下的步骤:Referring first to FIG. 1 to FIG. 3 , an embodiment of the present invention provides a kinematics solution and control method for an omnidirectional mobile robot. The omnidirectional mobile robot includes a plurality of decoupled active universal casters. The kinematics The solution and control method includes the following steps:
1)解算获得所述解耦式主动万向脚轮的目标偏转角度。1) Calculate and obtain the target deflection angle of the decoupled active swivel caster.
2)获取所述解耦式主动万向脚轮的实际偏转角度。2) Obtain the actual deflection angle of the decoupled active swivel caster.
3)计算所述目标偏转角度与实际偏转角度的偏差角度。3) Calculate the deviation angle between the target deflection angle and the actual deflection angle.
4)当所述偏差角度的绝对值大于π/2时,提前预设时长使所述解耦式主动万向脚轮以预设偏转速度向所述目标偏转角度进行偏转,其中,所述预设时长=(所述偏差角度的绝对值-π/2)/预设偏转速度。4) When the absolute value of the deviation angle is greater than π/2, the decoupling active universal caster is deflected to the target deflection angle at a preset deflection speed by a preset time period in advance, wherein the preset Duration=(absolute value of the deviation angle-π/2)/preset deflection speed.
上述运动学解算与控制方法主要用于带有偏置的解耦式主动万向脚轮提高其运动平稳性,当然,如下述,也可以用于无偏置的解耦式主动万向脚轮,所述全向移动机器人采用至少两个解耦式主动万向脚轮,作为一些具体的应用示例,所述的运动学算法可以包括:根据带有脚轮偏置的全向移动机器人建立全向移动机器人的逆运动学模型并根据逆运动学模型解算出四个脚轮到达目标位置的角度;当计算出的理论目标位置与脚轮实际当前位置偏差大于π/2,提前给解耦式主动万向脚轮的偏转电机发送一个根据偏差方向的较小的偏转速度值。采用该预测与控制的方法可避免此类型全向移动机器人在低速时脚轮不发生偏转,而当车体运行至较高速度时偏转轮突然发生转向的情况。The above kinematics calculation and control methods are mainly used for decoupling active swivel casters with offsets to improve their motion stability. Of course, as described below, they can also be used for unbiased decoupling active swivel casters. The omnidirectional mobile robot adopts at least two decoupled active universal casters. As some specific application examples, the kinematics algorithm may include: establishing an omnidirectional mobile robot according to the omnidirectional mobile robot with caster offset According to the inverse kinematics model, the angles at which the four casters reach the target position are calculated; when the deviation between the calculated theoretical target position and the actual current position of the casters is greater than π/2, the decoupling active universal casters are given in advance. The yaw motor sends a smaller yaw speed value according to the direction of the deviation. The prediction and control method can avoid the situation that the casters of this type of omnidirectional mobile robot do not deflect at low speed, but the deflection wheels suddenly turn when the vehicle body runs to a higher speed.
当解耦式主动万向脚轮偏转到某一位置时,而此时给定的速度方向如果跟目前万向轮偏转的方向正好形成的角度为π时,此时是一个奇异点,本发明提供的解算与控制方法可让全向移动机器人的解耦式主动万向脚轮提前避开这个奇异点。When the decoupled active swivel caster is deflected to a certain position, and if the angle formed by the given speed direction and the current deflection direction of the swivel wheel is π, then it is a singular point, and the present invention provides The solution and control method of , allows the decoupled active swivel caster of the omnidirectional mobile robot to avoid this singularity in advance.
本发明提供的所述运动学解算与控制方法能够使全向移动机器人获得各种运动状态的指令后,总能保证解耦式主动万向脚轮转到全向移动机器人运动的反方向,该方法可提高移动机器人的稳定性,算法简单易实施。The kinematics solution and control method provided by the present invention can always ensure that the decoupled active universal caster rotates to the opposite direction of the motion of the omnidirectional mobile robot after the omnidirectional mobile robot obtains commands of various motion states. The method can improve the stability of the mobile robot, and the algorithm is simple and easy to implement.
在一些实施方案中,在步骤1)中可以根据所述全向移动机器人的当前位置与目标位置,利用逆运动学模型解算得到所述解耦式主动万向脚轮的目标偏转角度。In some embodiments, in step 1), according to the current position and target position of the omnidirectional mobile robot, an inverse kinematics model can be used to obtain the target deflection angle of the decoupled active swivel caster.
在一些实施方案中,所述全向移动机器人优选可以包括呈矩形设置的多个解耦式主动万向脚轮,所述逆运动学模型可以采用如下的计算方法进行解算:In some embodiments, the omnidirectional mobile robot may preferably include a plurality of decoupled active swivel casters arranged in a rectangle, and the inverse kinematics model may be solved by using the following calculation method:
利用运动学方程Using kinematic equations
获得所述目标偏转角度的求解公式Obtain the solution formula of the target deflection angle
其中,R代表所述解耦式主动万向脚轮的半径,B代表所述解耦式主动万向脚轮的偏置距离,代表所述目标偏转角度,Vx代表所述全向移动机器人在x轴方向上的移动速度,Vy代表所述移动机器人在y轴方向上的移动速度,H代表对角设置的所述解耦式主动万向脚轮的安装点间距的一半,ω是所述全向移动机器人的旋转角速度,β代表所述矩形的长宽比。Wherein, R represents the radius of the decoupled active swivel caster, B represents the offset distance of the decoupled active swivel caster, represents the target deflection angle, Vx represents the moving speed of the omnidirectional mobile robot in the x-axis direction, Vy represents the moving speed of the mobile robot in the y-axis direction, and H represents the decoupling of the diagonal setting The distance between the installation points of the type active swivel caster is half of the distance, ω is the rotational angular velocity of the omnidirectional mobile robot, and β represents the aspect ratio of the rectangle.
在一些实施方案中,所述解耦式主动万向脚轮的偏置距离B的取值范围为非负值。可以理解的,如图2所示,当所述偏置距离B的取值为正值时,例如5cm或10cm,所述的解耦式主动万向脚轮为有偏置的多自由度脚轮,当所述偏置距离B的取值为0时,所述的解耦式主动万向脚轮为无偏置的两自由度脚轮。In some embodiments, the value range of the offset distance B of the decoupled active swivel caster is a non-negative value. It can be understood that, as shown in FIG. 2, when the value of the offset distance B is a positive value, such as 5cm or 10cm, the decoupled active swivel caster is an offset multi-degree-of-freedom caster. When the value of the offset distance B is 0, the decoupled active swivel caster is an unbiased two-degree-of-freedom caster.
在一些实施方案中,如图1所示,所述解耦式主动万向脚轮的偏转角度由转向驱动电机13控制,步骤2)中,可以实时测量所述转向驱动电机13的位置角度,并基于所述位置角度计算所述实际偏转角度。该技术方案的有益效果在于,通过测量电机的运转角度或圈数等参数,间接反映所述解耦式主动万向脚轮的实际偏转角度,无需额外再利用其它的偏转角度测量组件进行测量,精简结构且测得的数据准确。当然,若因其它需求,本领域技术人员设置了额外的偏转角度测量组件进行测量,也是基于同样发明构思的技术方案,亦属于本发明的保护范围。In some embodiments, as shown in FIG. 1 , the deflection angle of the decoupled active swivel caster is controlled by the
在一些实施方案中,步骤3)中,所述偏差角度可以等于所述目标偏转角度与实际偏转角度相减。In some embodiments, in step 3), the deviation angle may be equal to the subtraction of the target deflection angle and the actual deflection angle.
请继续参见图3,在一些实施方案中,步骤4)还包括如下的步骤:Please continue to refer to Figure 3, in some embodiments, step 4) also includes the following steps:
计算所述解耦式主动万向脚轮的给定偏转速度,具体为通过运动学方程解算解耦式主动万向脚轮的给定偏转速度。Calculating the given deflection speed of the decoupled active swivel caster, specifically, calculating the given deflection speed of the decoupled active swivel caster through kinematic equations.
当所述给定偏转速度在偏转速度限值以上时,所述预设偏转速度等于所述给定偏转速度。The preset yaw speed is equal to the given yaw speed when the given yaw speed is above the yaw speed limit.
当所述给定偏转速度小于偏转速度限值时,所述预设偏转速度等于所述偏转速度限值。When the given yaw speed is less than the yaw speed limit value, the preset yaw speed is equal to the yaw speed limit value.
基于上述的技术方案,当偏差角度大于π/2时,并且此时解耦式主动万向脚轮偏转速度小于某一设定值(即所述偏转速度限值)时,解耦式主动万向脚轮会提前获得一个较小的转向速度,使得全向移动机器人的解耦式主动万向脚轮的偏转电机提前获得跟最终速度方向一致的固定速度,从而提前引导解耦式主动万向脚轮的偏转轮提前以偏转速度限值达到最终目标位置,从而避免了其运行到较高速度下突然转向的情况,提高了全向移动机器人的稳定性,减少了全向移动机器人运动过程中的振动。Based on the above technical solution, when the deviation angle is greater than π/2, and the deflection speed of the decoupled active caster is less than a certain set value (that is, the deflection speed limit), the decoupled active caster The caster will obtain a small turning speed in advance, so that the deflection motor of the decoupled active swivel caster of the omnidirectional mobile robot obtains a fixed speed consistent with the final speed direction in advance, thereby guiding the deflection of the decoupled active swivel caster in advance. The wheel reaches the final target position with the deflection speed limit in advance, thereby avoiding the situation of sudden turning when it runs to a higher speed, improving the stability of the omnidirectional mobile robot, and reducing the vibration during the motion of the omnidirectional mobile robot.
在一些实施方案中,所述偏转速度限值能够基于所述全向移动机器人的运动状态进行调节。In some embodiments, the yaw speed limit is adjustable based on the state of motion of the omnidirectional mobile robot.
在一些实施方案中,所述运动状态包括全向移动机器人的前行/左行状态切换为倒退/右行状态,全向移动机器人的前行/倒退状态切换为左行/右行等。In some implementations, the motion state includes switching the forward/left-running state of the omnidirectional mobile robot to the backward/right-running state, and switching the forward/reverse state of the omnidirectional mobile robot to left-running/right-running, etc.
在一些实施方案中,当全向移动机器人正处于向前运动状态时,突然接受到倒退运动状态的指令时,解耦式主动万向脚轮的偏转角度π刚好是奇异点,如果直接用给定较小的偏转速度控制,导致解耦式主动万向脚轮偏转的响应时间不同,造成全向移动机器人稳定性差。采用提出的控制算法,提前预判出解耦式主动万向脚轮的奇异点并给予脚轮预偏转速度避开奇异点,实现多个解耦式主动万向脚轮同步响应偏转到目标角度。In some embodiments, when the omnidirectional mobile robot is in the forward motion state and suddenly receives the instruction of the backward motion state, the deflection angle π of the decoupled active universal caster is just the singular point. The smaller deflection speed control results in different response times of the deflection of the decoupled active swivel casters, resulting in poor stability of the omnidirectional mobile robot. Using the proposed control algorithm, the singular point of the decoupled active swivel caster is predicted in advance, and the pre-deflection speed is given to the caster to avoid the singular point, so as to realize the synchronous response of multiple decoupled active swivel casters to the target angle.
基于上述各技术方案,本发明提供的的运动学解算与控制方法适用于所有采用具有滚动和转动两个自由度的全向移动机器人,且解耦式主动万向脚轮偏转角度π刚好是奇异点,如果使用现有的控制方法即通过逆运动学解算后的速度控制时,当解算的给定偏转速度较低时,导致解耦式主动万向脚轮偏转响应时间不同,造成全向移动机器人前行状态切换为倒退状态不连续,稳定性差。采用提出的控制方法可以提前判断脚轮是否运动到奇异点和给定偏转速度是否较小,实现多个解耦式主动万向脚轮同步响应偏转到指定目标位置,提高了全向移动机器人的运动平稳性和运动精度。Based on the above technical solutions, the kinematics solution and control method provided by the present invention is suitable for all omnidirectional mobile robots with two degrees of freedom of rolling and rotation, and the deflection angle π of the decoupled active universal caster is just singular Point, if the existing control method is used, that is, the speed control after inverse kinematics solution, when the calculated given deflection speed is low, the deflection response time of the decoupled active caster will be different, resulting in omnidirectional The switching of the forward state of the mobile robot to the backward state is discontinuous and the stability is poor. Using the proposed control method, it can be judged in advance whether the casters move to the singular point and whether the given deflection speed is small, so that multiple decoupled active universal casters can be synchronously responded to deflect to the designated target position, and the motion stability of the omnidirectional mobile robot is improved. Sex and movement precision.
本发明实施例还提供一种全向移动机器人的运动学解算与控制装置,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器运行时执行上述任一实施方案中的运动学解算与控制方法的步骤。An embodiment of the present invention further provides a kinematics solution and control device for an omnidirectional mobile robot, including a memory and a processor, wherein the memory stores a computer program, and the computer program executes any one of the above when the processor is run. Steps of a kinematic solution and control method in an embodiment.
继续参见图1-图2,本发明实施例还提供一种全向移动机器人,包括机器人底盘20、解耦式主动万向脚轮以及上述运动学解算与控制装置;所述解耦式主动万向脚轮设置于所述机器人底盘20上,且能够受所述运动学解算与控制装置的控制,相对于所述机器人底盘20偏转以及滚动。Continuing to refer to FIG. 1 to FIG. 2, an embodiment of the present invention further provides an omnidirectional mobile robot, including a
其中,所述的机器人底盘20可以是平面状底盘也可以是非平面状例如具有凹凸结构或具有弧面结构的底盘,当然,该全向移动机器人可以仅包括上述结构,例如用于运载货物的机器人,也可以在底盘上继续设置其他组件,例如机械手、探测器等组件以实现特定的功能。Wherein, the
在一些实施方案中,所述解耦式主动万向脚轮包括轮架10、轴架11、滚轮12、转向驱动电机13、滚动驱动电机14以及差速器15;所述轴架11的第一端转动连接于所述轮架10上,所述滚轮12通过其旋转轴转动连接于所述轴架11的第二端;所述转向驱动电机13、滚动驱动电机14以及差速器15固设于所述轮架10上,且所述转向驱动电机13、滚动驱动电机14的动力输出轴均通过所述差速器15与所述滚轮12传动连接。In some embodiments, the decoupled active swivel caster includes a
在一些实施方案中,多个所述解耦式主动万向脚轮可以在所述机器人底盘20上对称安装。In some embodiments, a plurality of the decoupled active swivel casters may be symmetrically mounted on the
在一些实施方案中,多个所述解耦式主动万向脚轮优选可以在所述机器人底盘20上呈矩形安装。In some embodiments, a plurality of the decoupled active swivel casters may preferably be installed in a rectangular shape on the
作为一些典型的应用示例,继续参见图1所示,本发明所提供的一种解耦式全向移动机器人的一个主动万向脚轮组件主要包括滚轮12,轴架11,轮架10,滚动驱动电机14,转向驱动电机13和差速器15。滚动驱动电机14和转向驱动电机13分别是两个伺服电机,两个电机控制解耦式主动万向脚轮的两个运动自由度的配合来实现整个全向移动机器人的全向移动。差速器15有着对滚轮12的滚动和转向进行解耦的作用,防止转向驱动电机13驱动滚轮12转向时滚动驱动电机14对滚轮12产生额外的滚动输出,有利于了滚轮12的滚动平稳性。As some typical application examples, continue to refer to FIG. 1 , an active universal caster assembly of a decoupled omnidirectional mobile robot provided by the present invention mainly includes a
所述的运动学解算与控制装置在结构上主要包括与滚动驱动电机14,转向驱动电机13连接的编码器,驱动器,运动控制卡,工控机。编码器用于读取滚动驱动电机14和转向驱动电机13的实际位置值;驱动器接收运动控制卡信息指令控制滚动驱动电机14和转向驱动电机13的运动;运动控制卡接收工控机中的控制算法进而传输给驱动器;工控机用于运动控制算法计算发出控制指令,以及通过驱动器和运动控制卡接受编码器的信息,其中,可以使工控机存储上述关于全向移动机器人的运动学解算与控制方法的计算机程序,并利用工控机中的处理器执行上述方法的步骤。The kinematics solution and control device mainly includes an encoder connected to the rolling
作为另一个典型的应用示例,上述技术方案中的全向移动机器人的运动学解算与控制方法优选可以采用如下的步骤得以实施:As another typical application example, the kinematics solution and control method of the omnidirectional mobile robot in the above technical solution can preferably be implemented by the following steps:
建立全向移动机器人的运动学方程,并根据当前的运动学速度指令计算出,理论的移动机器人各个解耦式主动万向脚轮的目标偏转角度。The kinematic equation of the omnidirectional mobile robot is established, and the target deflection angle of each decoupling active universal caster of the theoretical mobile robot is calculated according to the current kinematic speed command.
实时获取当前脚轮偏转电机的实际偏转角度。Obtain the actual deflection angle of the current caster deflection motor in real time.
计算两个角度之间的偏差判断偏差的大小。Calculate the deviation between the two angles to determine the magnitude of the deviation.
如二者的偏差大于π/2,且偏转轮子当前速度较小,则以设定的较小极限速度发送至偏转电机。If the deviation between the two is greater than π/2, and the current speed of the deflection wheel is small, it will be sent to the deflection motor at the set smaller limit speed.
如二者的偏差大于π/2,且当前偏转轮子速度较大,则直接将当前运动学计算出来的偏转角速度值发送至偏转电机。If the deviation between the two is greater than π/2, and the current deflection wheel speed is relatively large, the deflection angular velocity value calculated by the current kinematics is directly sent to the deflection motor.
本发明上一实施例提供的前述运动学解算与控制方法适用于所有带偏置脚轮或无偏置的解耦式全向移动机器人,当接收到任意运动控制指令后,全向移动平台能实现准确平稳的运动。特别例如是,当主动万向脚轮到达目标位置转动的角度大于π/2时,为了避免四个脚轮转向方向以及响应时间不同,提前使脚轮向同一方向,例如均朝逆时针方向偏转一个角度,这能顺利避开脚轮的奇异点;该控制方法有效的提高了全向移动机器人的运动控制精度,避免了移动机器人在高速运动下脚轮突然变向带来的振动。The aforementioned kinematics calculation and control method provided in the previous embodiment of the present invention is applicable to all decoupled omnidirectional mobile robots with offset casters or without offset. After receiving any motion control command, the omnidirectional mobile platform can Accurate and smooth movement is achieved. For example, when the angle of rotation of the active swivel casters to the target position is greater than π/2, in order to avoid different steering directions and response times of the four casters, the casters are turned in the same direction in advance, for example, they are all deflected by an angle in the counterclockwise direction. This can smoothly avoid the singular point of the caster; the control method effectively improves the motion control precision of the omnidirectional mobile robot, and avoids the vibration caused by the sudden change of the direction of the caster when the mobile robot moves at a high speed.
以上是本发明中部分较为优选的实施例的陈述,应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。The above is a statement of some preferred embodiments of the present invention. It should be understood that the above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention, and the purpose is to enable those who are familiar with the art to understand the content of the present invention and to use it accordingly. Implementation does not limit the protection scope of the present invention. All equivalent changes or modifications made according to the spirit of the present invention should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210762728.2A CN114954501A (en) | 2022-06-29 | 2022-06-29 | Omnidirectional mobile robot, its kinematics solution and control method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210762728.2A CN114954501A (en) | 2022-06-29 | 2022-06-29 | Omnidirectional mobile robot, its kinematics solution and control method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114954501A true CN114954501A (en) | 2022-08-30 |
Family
ID=82967389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210762728.2A Pending CN114954501A (en) | 2022-06-29 | 2022-06-29 | Omnidirectional mobile robot, its kinematics solution and control method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114954501A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0624251A (en) * | 1992-07-08 | 1994-02-01 | Nissan Motor Co Ltd | Integrated control device for four-wheel steering and drive power distribution |
KR20120024169A (en) * | 2010-09-06 | 2012-03-14 | 현대모비스 주식회사 | Logic of motor driven power steering for smart parking assistant system |
CN105080149A (en) * | 2014-07-16 | 2015-11-25 | 中国科学院宁波材料技术与工程研究所 | Driving power foot wheel component, omni-directional moving platform and control method thereof |
CN109506657A (en) * | 2018-12-18 | 2019-03-22 | 盐城汇金科技信息咨询服务有限公司 | A kind of automatic deviation correction track and correction localization method based on AGV |
CN110375770A (en) * | 2018-11-02 | 2019-10-25 | 北京京东尚科信息技术有限公司 | A kind of calibration method and device of position error |
CN110426959A (en) * | 2019-08-09 | 2019-11-08 | 太原科技大学 | A crawler robot control system |
CN110509991A (en) * | 2019-08-13 | 2019-11-29 | 深兰科技(上海)有限公司 | A kind of method and device adjusting revolving speed |
DE102019003591A1 (en) * | 2018-06-22 | 2019-12-24 | Sew-Eurodrive Gmbh & Co Kg | Handset and method for operating a handset |
CN112173519A (en) * | 2019-07-01 | 2021-01-05 | 上海快仓智能科技有限公司 | Control method and automatic guided vehicle |
-
2022
- 2022-06-29 CN CN202210762728.2A patent/CN114954501A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0624251A (en) * | 1992-07-08 | 1994-02-01 | Nissan Motor Co Ltd | Integrated control device for four-wheel steering and drive power distribution |
KR20120024169A (en) * | 2010-09-06 | 2012-03-14 | 현대모비스 주식회사 | Logic of motor driven power steering for smart parking assistant system |
CN105080149A (en) * | 2014-07-16 | 2015-11-25 | 中国科学院宁波材料技术与工程研究所 | Driving power foot wheel component, omni-directional moving platform and control method thereof |
DE102019003591A1 (en) * | 2018-06-22 | 2019-12-24 | Sew-Eurodrive Gmbh & Co Kg | Handset and method for operating a handset |
CN110375770A (en) * | 2018-11-02 | 2019-10-25 | 北京京东尚科信息技术有限公司 | A kind of calibration method and device of position error |
CN109506657A (en) * | 2018-12-18 | 2019-03-22 | 盐城汇金科技信息咨询服务有限公司 | A kind of automatic deviation correction track and correction localization method based on AGV |
CN112173519A (en) * | 2019-07-01 | 2021-01-05 | 上海快仓智能科技有限公司 | Control method and automatic guided vehicle |
CN110426959A (en) * | 2019-08-09 | 2019-11-08 | 太原科技大学 | A crawler robot control system |
CN110509991A (en) * | 2019-08-13 | 2019-11-29 | 深兰科技(上海)有限公司 | A kind of method and device adjusting revolving speed |
Non-Patent Citations (1)
Title |
---|
张天宇: "基于单电机脚轮的全向移动平台设计", 中国优秀硕士学位论文全文数据库 信息科技辑 (月刊), no. 02, 15 February 2022 (2022-02-15), pages 13 - 36 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112894821B (en) | Method, device and equipment for dragging and teaching control of collaborative robot based on current method | |
CN109960150B (en) | Track tracking control method for inspection robot | |
CN110053014A (en) | A kind of indoor intelligent mobile platform of view-based access control model SLAM | |
CN113788082B (en) | Reconfigurable spherical robot, control system and control method thereof | |
CN108459605A (en) | Trajectory Tracking Control method based on AGV system | |
Wang et al. | Development of an agricultural vehicle levelling system based on rapid active levelling | |
CN110244718B (en) | Intelligent patrol trolley capable of automatically avoiding obstacles | |
CN111547176A (en) | Self-balancing robot control method and system, self-balancing robot and medium | |
CN107085432A (en) | A Tracking Method of Target Trajectory for Mobile Robot | |
Wang et al. | Parking robot path-tracking system based on discrete PID algorithm | |
CN114954501A (en) | Omnidirectional mobile robot, its kinematics solution and control method and device | |
CN112904861B (en) | Two-dimensional positioning device and method for mobile robot based on passive orthogonal omni-wheel | |
Wencheng et al. | Design of chassis and kinematics research of wheeled robot | |
CN116968808A (en) | A cross-symmetrical four-wheel independent drive steering robot control method and robot | |
CN103970149B (en) | A kind of controlling angle method of two-dimensional vector governor motion | |
CN103770859B (en) | Control method for wheel train with slant steering shafts of steering wheels | |
CN105181573B (en) | A Spherical Sensor for Ground Rolling Friction Coefficient in Unstructured Environments | |
Yang et al. | Development of an Omni-Directional Wheelchair Robot | |
CN113119059B (en) | Mecanum wheel chassis control characteristic optimization method based on equal percentage characteristics | |
CN112882475A (en) | Motion control method and device of Mecanum wheel type omnibearing mobile robot | |
Savnani et al. | Modelling, Design and Control of a Four wheel Holonomic Drive | |
CN109334808A (en) | A wheeled robot and its control method | |
CN105438300B (en) | Ball shape robot and its application with double pendulum hammer | |
CN116048012B (en) | Heavy-load mecanum-wheel mobile platform suspension structure and anti-unbalanced-load motion track control method thereof | |
CN114701367B (en) | Distributed electric drive unmanned vehicle control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |