CN114946247A - 用于能力降低的用户设备的下行链路跳频通信 - Google Patents

用于能力降低的用户设备的下行链路跳频通信 Download PDF

Info

Publication number
CN114946247A
CN114946247A CN202080093045.1A CN202080093045A CN114946247A CN 114946247 A CN114946247 A CN 114946247A CN 202080093045 A CN202080093045 A CN 202080093045A CN 114946247 A CN114946247 A CN 114946247A
Authority
CN
China
Prior art keywords
pdsch
narrowband
nbs
bandwidth
control information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080093045.1A
Other languages
English (en)
Inventor
魏超
陈万士
P·P·L·洪
徐慧琳
雷静
戴晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN114946247A publication Critical patent/CN114946247A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

能力降低的用户设备(UE)使用跳频来改进下行链路(DL)覆盖。具体地,UE可以接收在宽带部分中的多个窄带之间使用跳频的物理下行链路共享信道(PDSCH)。窄带的带宽不大于UE的最大无线通信带宽。

Description

用于能力降低的用户设备的下行链路跳频通信
技术领域
概括而言,下文描述的技术涉及无线通信系统,并且更具体地,下文描述的技术涉及在无线通信系统中使用跳频的下行链路通信。
背景技术
无线通信系统被广泛地部署以提供各种电信服务,诸如电话、视频、数据、消息传送和广播。典型的无线通信系统可以采用能够通过共享可用的系统资源来支持与多个用户的通信的多址技术。这样的多址技术的示例包括码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统和时分同步码分多址(TD-SCDMA)系统。
已经在各种电信标准中采用这些多址技术,以提供使得不同的无线设备能够在城市、国家、地区以及甚至全球级别上进行通信的公共协议。新的电信标准是5G新无线电(NR)。5G NR是由第三代合作伙伴计划(3GPP)发布的移动宽带演进的一部分,以满足与时延、可靠性、安全性、可扩展性(例如,与物联网(IoT)一起)相关联的新要求以及其它要求。5G NR的一些方面可以是基于4G长期演进(LTE)标准的。存在对5G NR技术的进一步改进的需求。这样的改进还可以适用于其它多址技术以及采用这些技术的电信标准。
发明内容
为了提供对本公开内容的一个或多个方面的基本理解,下文给出了这样的方面的简要概述。该概述不是对本公开内容的全部预期特征的详尽概述,并且既不旨在标识本公开内容的全部方面的关键或重要元素,也不旨在描绘本公开内容的任何或全部方面的范围。其唯一目的是用简化的形式呈现本公开内容的一个或多个方面的一些概念,作为稍后给出的更加详细的描述的前序。
本公开内容的一个方面提供了一种用于无线通信的装置。所述装置包括:处理器;通信地耦合到所述处理器的收发机;以及通信地耦合到所述处理器的存储器。所述处理器被配置为:经由所述收发机,接收用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息。所述处理器还被配置为:经由所述收发机,基于所述FH控制信息来接收在多个窄带(NB)之间使用跳频的所述PDSCH。所述多个NB中的每个NB的带宽不大于所述装置的最大无线通信带宽。
本公开内容的另一方面提供了一种用于无线通信的装置。所述装置包括:处理器;通信地耦合到所述处理器的收发机;以及通信地耦合到所述处理器的存储器。所述处理器被配置为:经由所述收发机,向用户设备(UE)发送用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息。所述处理器还被配置为:经由所述收发机,基于所述FH控制信息来向所述UE发送在多个窄带(NB)之间使用跳频的所述PDSCH。所述多个NB中的每个NB的带宽不大于所述UE的最大无线通信带宽。
本公开内容的另一方面提供了一种用于在用户设备(UE)处的无线通信的方法。所述UE接收用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息。所述UE还基于所述FH控制信息来接收在多个窄带(NB)之间使用跳频的所述PDSCH。所述多个NB中的每个NB的带宽不大于所述UE的最大无线通信带宽。
本公开内容的另一方面提供了一种用于在调度实体处的无线通信的方法。所述调度实体向用户设备(UE)发送用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息。所述调度实体还基于所述FH控制信息来向所述UE发送在多个窄带(NB)之间使用跳频的所述PDSCH。所述多个NB中的每个NB的带宽不大于所述UE的最大无线通信带宽。
在阅读下文的具体实施方式之后,本发明的这些和其它方面将变得更加充分地理解。在结合附图阅读本发明的特定、示例性实施例的下文的描述之后,其它方面、特征和实施例对于本领域技术人员来说将变得显而易见。虽然下文可能关于某些实施例和附图论述了特征,但是全部实施例可以包括本文所论述的有利特征中的一个或多个特征。换句话说,虽然可能将一个或多个实施例论述为具有某些有利特征,但是这样的特征中的一个或多个特征还可以根据本文所论述的各个实施例来使用。以类似的方式,虽然下文可能将示例性实施例论述为设备、系统或者方法实施例,但是应当理解的是,这样的示例性实施例可以在各种设备、系统和方法中实现。
附图说明
图1是根据本公开内容的一些方面的无线通信系统的示意说明。
图2是根据本公开内容的一些方面的无线接入网络的示例的概念性说明。
图3是根据本公开内容的一些方面的利用正交频分复用(OFDM)的空中接口中的无线资源的组织的示意说明。
图4是示出根据本公开内容的一些方面的在下行链路通信中使用跳频的PDSCH的第一示例的图。
图5是示出根据本公开内容的一些方面的在下行链路通信中使用跳频的PDSCH的第二示例的图。
图6是示出根据本公开内容的一些方面的用于配置使用跳频的PDSCH的示例性信号流的图。
图7是示出使用窄带跳频的示例性PDSCH传输的图。
图8是示出用于使用跳频的PDSCH传输的示例性窄带和子带对齐的图。
图9是示出根据本公开内容的一些方面的用于处理广播PDSCH和窄带PDSCH之间的重叠的示例性方法的流程图。
图10是示出根据本公开内容的一些方面的用于发送使用跳频的PDSCH的示例性过程的流程图。
图11是概念性地示出根据本公开内容的一些方面的用于调度实体的硬件实现方式的示例的框图。
图12是示出根据本公开内容的一些方面的用于接收使用跳频PDSCH的示例性过程的流程图。
图13是概念性地示出根据本公开内容的一些方面的用于被调度实体的硬件实现方式的示例的框图。
图14是示出NB和子带对齐的示例的图。
具体实施方式
下文结合附图阐述的具体实施方式旨在作为各种配置的描述,而并非旨在表示可以在其中实践本文所描述的概念的唯一配置。为了提供对各个概念的全面理解,具体实施方式包括特定细节。然而,对于本领域技术人员将显而易见的是,可以在没有这些特定细节的情况下实践这些概念。在一些实例中,以框图形式示出了公知的结构和组件,以便避免模糊这样的概念。
虽然在本申请中通过对一些示例的说明来描述了各方面和实施例,但是本领域技术人员将理解的是,在许多不同的排列和场景中可以产生额外的实现方式和用例。本文中描述的创新可以跨越许多不同的平台类型、设备、系统、形状、尺寸、封装排列来实现。例如,实施例和/或用途可以经由集成芯片实施例和其它基于非模块组件的设备(例如,终端用户设备、运载工具、通信设备、计算设备、工业设备、零售/购买设备、医疗设备、支持AI的设备等等)来产生。虽然一些示例可能是或可能不是专门针对用例或应用的,但是可以存在所描述的创新的各种各样的适用范围。实现方式可以具有从芯片级或模块化组件到非模块化、非芯片级实现方式的范围,并且进一步到并入所描述的创新的一个或多个方面的聚合式、分布式或OEM设备或系统。在一些实际设置中,并入所描述的方面和特征的设备必然还可以包括用于所要求保护和描述的实施例的实现方式和实践的额外组件和特征。例如,对无线信号的发送和接收必然包括用于模拟和数字目的的多个组件(例如,包括天线、RF链、功率放大器、调制器、缓冲器、处理器、交织器、加法器/累加器等的硬件组件)。期望的是,本文中描述的创新可以在具有不同尺寸、形状和构造的各种设备、芯片级组件、系统、分布式排列、终端用户设备等中实践。
5G新无线(NR)网络可以向具有不同能力的各种设备提供服务,例如增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)、超可靠低时延通信(URLLC)等。在一些应用和用例中,不要求峰值能力。因此,5G NR网络应当以更高效和成本有效的方式可扩展以及可部署,以支持具有不同能力的设备。例如,能力降低(reduced capability)的用户设备(UE)可以具有有限的带宽支持和较低的峰值吞吐量、时延和可靠性要求。能力降低的UE的一些示例是可穿戴设备、工业无线传感器网络和监视相机。
本公开内容的各方面提供了在5G NR网络中的下行链路通信中使用跳频的各种装置、方法和系统。在一些示例中,5G NR设备可以在发送物理下行链路共享信道(PDSCH)时使用跳频方法来提高分集增益以及恢复针对与高级设备(例如,智能电话)相比具有降低的能力的设备的下行链路覆盖。
遍及本公开内容所给出的各种概念可以跨越各种各样的电信系统、网络架构和通信标准来实现。现在参考图1,举例而言而非进行限制,参考无线通信系统100示出了本公开内容的各个方面。无线通信系统100包括三个交互域:核心网102、无线接入网络(RAN)104和用户设备(UE)106。借助于无线通信系统100,UE 106可能能够执行与外部数据网络110(诸如(但不限于)互联网)的数据通信。
RAN 104可以实现任何一个或多个适当的无线通信技术以向UE 106提供无线接入。例如,RAN104可以根据第三代合作伙伴计划(3GPP)新无线电(NR)规范(经常被称为5G)来操作。再如,RAN 104可以根据5G NR和演进的通用陆地无线接入网络(eUTRAN)标准的混合(经常被称为LTE)来操作。3GPP将该混合RAN称为下一代RAN或NG-RAN。当然,可以在本公开内容的范围内利用许多其它示例。
如图所示,RAN 104包括多个基站108。广泛来讲,基站是无线接入网络中的负责一个或多个小区中的去往或者来自UE的无线电发送和接收的网络元素。在不同的技术、标准或上下文中,本领域技术人员可以将基站不同地称为基站收发机站(BTS)、无线基站、无线收发机、收发机功能、基本服务集(BSS)、扩展服务集(ESS)、接入点(AP)、节点B(NB)、演进节点B(eNB)、gNodeB(gNB)、或者某种其它适当的术语。
无线接入网络104还被示为支持针对多个移动装置的无线通信。在3GPP标准中,移动装置可以被称为用户设备(UE)106,但是本领域技术人员还可以将其称为移动站(MS)、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户站、接入终端(AT)、移动终端、无线终端、远程终端、手机、终端、用户代理、移动客户端、客户端或者某种其它适当的术语。UE可以是向用户提供对网络服务的接入的装置(例如,移动装置)。
在本文档中,“移动”装置未必需要具有移动的能力,以及其可以是静止的。术语移动装置或者移动设备广泛地指代各种各样的设备和技术。UE可以包括多个硬件结构组件,其大小、形状被改变为以及被排列为有助于通信;这样的组件可以包括相互电耦合的天线、天线阵列、RF链、放大器、一个或多个处理器等。例如,移动装置的一些非限制性示例包括移动台、蜂窝(小区)电话、智能电话、会话发起协议(SIP)电话、膝上型计算机、个人计算机(PC)、笔记本、上网本、智能本、平板设备、个人数字助理(PDA)和各种各样的嵌入式系统,例如,对应于“物联网”(IoT)。另外,移动装置可以是汽车或其它运输工具、远程传感器或致动器、机器人或机器人式设备、卫星无线电单元、全球定位系统(GPS)设备、对象跟踪设备、无人机、多旋翼直升机、四旋翼直升机、远程控制设备、诸如眼镜、可穿戴照相机、虚拟现实设备、智能手表、健康或健身跟踪器、数字音频播放器(例如,MP3播放器)、照相机、游戏控制台等等的消费者设备和/或可穿戴设备。另外,移动装置可以是数字家庭或智能家庭设备,诸如家庭音频、视频和/或多媒体设备、电器、自动售货机、智能照明、家庭安全系统、智能仪表等等。另外,移动装置可以是智能能量装置、安全设备、太阳能电池板或太阳能阵列、控制电力(例如,智能电网)、照明、水等的市政基础设施设备;工业自动化和企业设备;物流控制器;农业设备;军事防御装备、车辆、飞机、船舶和兵器等等。另外,移动装置可以提供连接的医药或远程医疗支持(例如,远程医疗保健)。远程医疗设备可以包括远程医疗监控设备和远程医疗管理设备,其通信可以相对于其它类型的信息而言被给予优先处理或者优先接入,例如,在针对关键服务数据的传输的优先接入,和/或针对关键服务数据的传输的相关QoS方面。
RAN 104与UE 106之间的无线通信可以被描述为利用空中接口。在空中接口上的从基站(例如,基站108)到一个或多个UE(例如,UE 106)的传输可以被称为下行链路(DL)传输。根据本公开内容的某些方面,术语下行链路可以指代源自调度实体(下文进一步描述的;例如,基站108)处的点到多点传输。描述该方案的另一种方式可以是使用术语广播信道复用。从UE(例如,UE 106)到基站(例如,基站108)的传输可以被称为上行链路(UL)传输。根据本公开内容的另外的方面,术语上行链路可以指代源自被调度实体(下文进一步描述的;例如,UE 106)处的点到点传输。
在一些示例中,可以调度对空中接口的接入,其中,调度实体(例如,基站108)在其服务区域或小区之内的一些或者全部设备和装置之间分配用于通信的资源。在本公开内容中,如下文所进一步论述的,调度实体可以负责调度、指派、重新配置和释放用于一个或多个被调度实体的资源。就是说,对于被调度的通信,UE 106(其可以是被调度实体)可以使用由调度实体108分配的资源。
基站108不是可以充当调度实体的唯一实体。即,在一些示例中,UE可以充当调度实体,调度用于一个或多个被调度实体(例如,一个或多个其它UE)的资源。
如图1所示,调度实体108可以向一个或多个被调度实体106广播下行链路业务112。广泛来讲,调度实体108是负责在无线通信网络中调度业务(包括下行链路业务112,以及在一些示例中,包括从一个或多个被调度实体106到调度实体108的上行链路业务116)的节点或设备。在另一方面,被调度实体106是从无线通信网络中的另一实体(例如,调度实体108)接收下行链路控制信息114(包括但不限于调度信息(例如,准许)、同步或时序信息、或其它控制信息)的节点或设备。在一些示例中,被调度实体106可以使用跳频来发送上行链路业务116。在一些示例中,调度实体可以使用跳频来发送下行链路业务112。
通常,基站108可以包括用于与无线通信系统的回程部分120的通信的回程接口。回程120可以提供基站108与核心网102之间的链路。此外,在一些示例中,回程网络可以提供相应的基站108之间的互连。可以采用各种类型的回程接口,诸如直接物理连接、虚拟网络、或使用任何适当的传输网络的回程接口。
核心网102可以是无线通信系统100的一部分,以及可以独立于在RAN 104中使用的无线接入技术。在一些示例中,核心网102可以是根据5G标准(例如,5GC)来配置的。在其它示例中,核心网102可以是根据4G演进分组核心(EPC)或任何其它适当的标准或配置来配置的。
图2是根据一些方面的无线接入网络(RAN)200的示例的概念性说明。在一些示例中,RAN200可以与上文描述的以及在图1中示出的RAN 104相同。可以将RAN 200所覆盖的地理区域划分成蜂窝区域(小区),用户设备(UE)可以基于从一个接入点或基站广播的标识来唯一地识别这些蜂窝区域(小区)。图2示出了宏小区202、204和206以及小型小区208,它们中的每一者可以包括一个或多个扇区(未示出)。扇区是小区的子区域。一个小区中的全部扇区由相同的基站进行服务。扇区内的无线链路可以通过属于该扇区的单个逻辑标识来识别。在划分成扇区的小区中,小区内的多个扇区可以通过多组天线来形成,其中每个天线负责与该小区的一部分中的UE进行通信。
在图2中,在小区202和204中示出了两个基站210和212;以及将第三基站214示出为用于控制小区206中的远程无线头端(RRH)216。就是说,基站可以具有集成天线,或者可以通过馈线电缆连接到天线或RRH。在所示出的示例中,小区202、204和126可以被称为宏小区,这是由于基站210、212和214支持具有较大尺寸的小区。此外,在小型小区208(例如,微小区、微微小区、毫微微小区、家庭基站、家庭节点B、家庭演进型节点B等)中示出了基站218,其中小型小区208可以与一个或多个宏小区重叠。在该示例中,小区208可以被称为小型小区,这是由于基站218支持具有相对较小尺寸的小区。可以根据系统设计以及组件约束来进行小区尺寸改变。
要理解的是,无线接入网络200可以包括任何数量的无线基站和小区。此外,可以部署中继节点,以扩展给定小区的大小或覆盖区域。基站210、212、214、218针对任何数量的移动装置提供去往核心网的无线接入点。在一些示例中,基站210、212、214和/或218可以与上文描述的以及在图1中示出的基站/调度实体108相同。
图2还包括四翼飞行器或无人机220,其可以被配置为充当基站。即,在一些示例中,小区可能未必是静止的,以及小区的地理区域可以根据移动基站(例如,四翼飞行器220)的位置而移动。
在RAN 200中,小区可以包括可以与每个小区的一个或多个扇区进行通信的UE。此外,每个基站210、212、214、218和220可以被配置为向相应小区中的全部UE提供去往核心网络102(参见图1)的接入点。例如,UE 222和224可以与基站210进行通信;UE 226和228可以与基站212进行通信;UE 230和232可以通过RRH 216的方式与基站214进行通信;UE 234可以与基站218进行通信;以及UE 236可以与移动基站220进行通信。在一些示例中,UE 222、224、226、228、230、232、234、236、238、240和/或242可以与上文描述以及在图1中示出的UE/被调度实体106相同。UE可以使用跳频来与基站或小区进行通信。
在一些示例中,移动网络节点(例如,四翼飞行器220)可以被配置为用作UE。例如,四翼飞行器220可以通过与基站210进行通信来在小区202中进行操作。
在RAN 200的另外的方面中,可以在UE之间使用侧行链路(sidelink)信号,而无需依赖于来自基站的调度或控制信息。例如,两个或更多个UE(例如,UE 226和UE 228)可以使用对等(P2P)或者侧行链路信号227来彼此通信,而无需通过基站(例如,基站212)中继该通信。在另外的示例中,UE 238被示为与UE 240和242进行通信。这里,UE 238可以用作调度实体或者主侧行链路设备,以及UE 240和242可以用作被调度实体或者非主(例如,辅助)侧行链路设备。在另一示例中,UE可以用作设备到设备(D2D)、对等(P2P)或者运载工具到运载工具(V2V)网络中和/或网状网络中的调度实体。在网状网络示例中,UE 240和242除了与调度实体238进行通信之外,还可以可选地相互直接通信。因此,在具有对时间频率资源的被调度接入并且具有蜂窝配置、P2P配置或网状配置的无线通信系统中,调度实体和一个或多个被调度实体可以利用所调度的资源进行通信。
在各种实现方式中,无线接入网络200中的空中接口可以利用经许可频谱、非许可频谱或者共享频谱。经许可频谱通常借助于移动网络运营商从政府监管机构购买许可证,来提供对频谱的一部分的独占使用。非许可频谱提供对频谱的一部分的共享使用,而不需要政府准许的许可证。虽然通常仍然需要遵守一些技术规则来接入非许可频谱,但是一般来说,任何运营商或设备都可以获得接入。共享频谱可以落在经许可频谱与非许可频谱之间,其中,可能需要一些技术规则或限制来接入该频谱,但是该频谱仍然可以由多个运营商和/或多个RAT共享。例如,一部分经许可频谱的许可证持有者可以提供许可共享接入(LSA),以与其它方(例如,具有适当的被许可人确定的条件以获得接入)共享该频谱。
无线接入网络200中的空中接口可以利用一种或多种双工算法。双工指代点到点通信链路,其中两个端点可以在两个方向上彼此通信。全双工意指两个端点可以同时地彼此通信。半双工意指每次仅有一个端点可以向另一端点发送信息。在无线链路中,全双工信道通常依赖于对发射机和接收机的物理隔离以及适当的干扰消除技术。经常通过利用频分双工(FDD)或时分双工(TDD)来实现针对无线链路的全双工仿真。在FDD中,在不同方向上的传输在不同的载波频率处进行操作。在TDD中,在给定信道上在不同方向上的传输是使用时分复用来彼此分开的。也就是说,在一些时间处,信道专用于在一个方向上的传输,而在其它时间处,信道专用于在另一方向上的传输,其中方向可以非常快速地变化(例如,每时隙变化若干次)。
无线接入网络200中的空中接口还可以利用一种或多种复用和多址算法来实现各个设备的同时通信。例如,5G NR规范提供针对从UE 222和224到基站210的UL传输的多址,以及利用具有循环前缀(CP)的正交频分复用(OFDM)对从基站210到一个或多个UE 222和224的DL传输的复用。另外,对于UL传输,5G NR规范提供针对具有CP的离散傅里叶变换扩频OFDM(DFT-s-OFDM)(还被称为单载波FDMA(SC-FDMA))的支持。然而,在本公开内容的范围内,复用和多址不限于上文的方案,以及可以是利用时分多址(TDMA)、码分多址(CDMA)、频分多址(FDMA)、稀疏码多址(SCMA)、资源扩展多址(RSMA)或者其它适当的多址方案来提供的。此外,可以利用时分复用(TDM)、码分复用(CDM)、频分复用(FDM)、正交频分复用(OFDM)、稀疏码复用(SCM)或者其它适当的复用方案来提供对从基站210到UE 222和224的DL传输的复用。
将参考在图3中示意性地示出的OFDM波形来描述本公开内容的各个方面。本领域技术人员应当理解的是,本公开内容的各个方面可以以与本文中以下所描述的基本相同的方式应用于DFT-s-OFDMA波形。也就是说,虽然为了清楚起见,本公开内容的一些示例可能关注于OFDM链路,但是应当理解的是,相同的原理也可以应用于DFT-s-OFDMA波形。
在本公开内容内,帧指代用于无线传输的10ms的持续时间,其中每个帧由均为1ms的10个子帧组成。在给定载波上,可以在UL中存在一个帧集合,以及在DL中存在另一帧集合。现在参照图3,示出了示例性DL子帧302的展开视图,其显示了OFDM资源网格304。然而,如本领域技术人员将易于认识到的,取决于任何数量的因素,用于任何特定应用的PHY传输结构可以与此处描述的示例不同。此处,时间在水平方向上,以OFDM符号为单位;以及频率在垂直方向上,以子载波或音调为单位。
资源网格304可以用于示意性地表示用于给定天线端口的时间频率资源。即,在具有多个可用的天线端口的MIMO实现方式中,对应的多个资源网格304可以是可用于通信的。资源网格304被划分成多个资源元素(RE)306。RE(其是1个载波×1个符号)是时间频率网格的最小离散部分,并且包含表示来自物理信道或信号的数据的单个复值。根据在特定实现方式中使用的调制,每个RF可以表示一个或多个比特的信息。在一些示例中,RE的块可以被称为物理资源块(PRB)或者更简单地称为资源块(RB)308,其包含频域中的任何适当数量的连续子载波。在一个示例中,RB可以包括12个子载波,数量与所使用的数字方案(numerology)无关。在一些示例中,根据数字方案,RB可以包括时域中的任何适当数量的连续OFDM符号。在本公开内容内,假设单个RB(诸如RB 308)完全对应于通信的单个方向(对于给定设备而言,指发送或接收方向)。
UE通常仅利用资源网格304的子集。RB可以是可以被分配给UE的资源的最小单元。因此,针对UE调度的RB越多,并且针对空中接口所选择的调制方案越高,那么针对UE的数据速率就越高。UE可以针对下行链路通信使用第一RB集合以及针对上行链路通信使用第二RB集合。
在该示图中,RB 308被示为占用少于子帧302的整个带宽,其中在RB 308上面和下面示出了一些子载波。在给定的实现方式中,子帧302可以具有与任何数量的一个或多个RB308相对应的带宽。此外,在该示图中,虽然RB 308被示为占用少于子帧302的整个持续时间,但是这仅是一个可能的示例。
每个子帧302(例如,1ms子帧)可以由一个或多个相邻时隙组成。在图3中示出的示例中,一个子帧302包括四个时隙310,作为说明性示例。在一些示例中,时隙可以是根据具有给定的循环前缀(CP)长度的指定数量的OFDM符号来定义的。例如,时隙可以包括具有标称CP的7或14个OFDM符号。另外的示例可以包括具有更短持续时间(例如,1、2、4或7个OFDM符号)的微时隙。在一些情况下,这些微时隙可以是占用被调度用于针对相同或不同UE的正在进行的时隙传输的资源来发送的。
时隙310中的一个时隙310的展开视图示出了时隙310包括控制区域312和数据区域314。通常,控制区域312可以携带控制信道(例如,PDCCH),以及数据区域314可以携带数据信道(例如,物理下行链路共享信道(PDSCH)或物理上行链路共享信道(PUSCH))。在各个示例中,时隙可以包含全部DL、全部UL、或者至少一个DL部分和至少一个UL部分。图3中示出的简单结构在本质上仅是示例性的,以及可以利用不同的时隙结构,以及不同的时隙结构可以包括控制区域和数据区域中的每一种区域中的一个或多个区域。
尽管在图3中未示出,但是RB 308内的各个RE 306可以被调度为携带一个或多个物理信道,包括控制信道、共享信道、数据信道等。RB 308内的其它RE 306也可以携带导频或参考信号。这些导频或参考信号可以提供接收设备执行对应信道的信道估计,这可以实现RB 308内的控制和/或数据信道的相干解调/检测。
在DL传输中,发送设备(例如,调度实体108)可以向一个或多个被调度实体106分配一个或多个RE 306(例如,在控制区域312内)以携带DL控制信息114,DL控制信息114包括通常携带源自于较高层的信息的一个或多个DL控制信道(诸如物理广播信道(PBCH)、物理下行链路控制信道(PDCCH)等)。此外,DL RE可以被分配以携带通常不携带源自于较高层的信息的DL物理信号。这些DL物理信号可以包括:主同步信号(PSS);辅同步信号(SSS);解调参考信号(DM-RS);相位跟踪参考信号(PT-RS);信道状态信息参考信号(CSI-RS);等等。PDCCH可以携带用于小区中的一个或多个UE的下行链路控制信息(DCI)。这可以包括但不限于用于DL和UL传输的功率控制命令、调度信息、准许和/或对RE的指派。在一些示例中,PDCCH可以携带PDSCH的跳频控制信息。
在UL传输中,发送设备(例如,被调度实体106)可以利用一个或多个RE 306来携带UL控制信息118(UCI)。UCI可以经由去往调度实体108的一个或多个UL控制信道(诸如物理上行链路控制信道(PUCCH)、物理随机接入信道(PRACH)等)从较高层发起。进一步地,UL RE可以携带通常不携带源自于较高层的信息的UL物理信号,诸如解调参考信号(DM-RS)、相位跟踪参考信号(PT-RS)、探测参考信号(SRS)等。在一些示例中,控制信息118可以包括调度请求(SR),即,针对调度实体108调度上行链路传输的请求。这里,响应于在控制信道118上发送的SR,调度实体108可以发送可以调度用于上行链路分组传输的资源的下行链路控制信息114。
UL控制信息还可以包括混合自动重传请求(HARQ)反馈,诸如确认(ACK)或否定确认(NACK)、信道状态信息(CSI)或任何其它适合的UL控制信息。HARQ是本领域技术人员公知的技术,其中可以在接收侧例如利用诸如校验和(checksum)或者循环冗余校验(CRC)的任何适合的完整性校验机制来检查分组传输的完整性的准确性。如果确认了传输的完整性,则可以发送ACK,而如果未确认,则可以发送NACK。响应于NACK,发送设备可以发送HARQ重传,其可以实现追加合并、增量冗余等。
除了控制信息之外,(例如,在数据区域414内的)一个或多个RE 306还可以被分配用于用户数据或业务数据。这样的业务可以被携带在一个或多个业务信道(诸如,对于DL传输,物理下行链路共享信道(PDSCH);或者对于UL传输,物理上行链路共享信道(PUSCH))上。
上文描述并且在图1-3中所示的信道或载波不一定是可以在调度实体108和被调度实体106之间使用的全部信道或载波,并且本领域的普通技术人员将认识到,除了所示的信道或载波之外,还可以使用其它信道或载波,诸如其它业务、控制和反馈信道。
上文描述的这些物理信道通常被复用并且被映射到传输信道,以用于在介质访问控制(MAC)层处进行处理。传输信道携带被称为传输块(TB)的信息块。传输块大小(TBS)(其可以对应于信息的比特数量)可以是基于调制和编码方案(MCS)和RB数量的受控参数。
在示例性5G NR网络中,UL通信(例如,PUSCH和PUCCH)可以跳频。两个示例性跳频模式是时隙内跳变和时隙间跳变。在时隙内跳变中,UL通信可以在被调度的PUSCH/PUCCH符号的时隙内跳变。在时隙间跳变中,UL通信可以针对在具有时隙聚合的PUSCH/PUCCH每个时隙进行跳变。在PUSCH时隙间跳变示例中,基于绝对时隙索引,起始RB可以在奇数编号的时隙中偏移达多个RB,其中偏移是在下行链路控制信息(DCI)中指示的。DCI是调度PDSCH或PUSCH的特殊的控制信息集合。在PUCCH时隙间跳变示例中,调度实体(例如,基站)可以使用无线资源控制(RRC)信令来配置两个起始PRB,一个用于奇数编号的时隙,并且另一个用于偶数编号的时隙。在本公开内容的一些方面中,跳频可以被应用于PDSCH,如下文更详细地描述的。
在本公开内容的一些方面中,与高级设备或完全能力设备(例如,智能电话)相比,5G NR UE可能具有降低的能力。NR轻型UE是具有降低的能力的设备的一个示例。例如,NR轻型UE可以具有与被调度频带的全带宽相比更窄的最大支持带宽(例如,对于频带N78来说,对于15kHz而言,为50MHz,而对于30/60kHz,为100MHz)。示例性NR轻型UE可以仅支持被调度频带或带宽部分(BWP)中的10MHz或20MHz带宽。BWP是可用时间频率资源(例如,图3中的OFDM资源网格304)之间的连续PRB的子集。UE可以在上行链路中被配置有一个或多个BWP,以及在下行链路中被配置有一个或多个BWP。通常,UL中的一个BWP和DL中的一个BWP在给定时间处是活动的。BWP配置参数包括数字方案、频率位置、带宽大小和控制资源集(CORESET)。与高级UE(例如,智能电话)相比,NR轻型UE可能具有较少的接收(Rx)天线。因此,由于用于分集接收的降低的带宽支持和/或较少的天线,NR轻型UE可能遭受潜在的覆盖减少。在本公开内容的一些方面中,NR轻型UE可以使用跳频来改进DL覆盖。具体地,UE可以将DL跳频用于PDSCH来提高DL分集增益。
图4是示出根据本公开内容的一些方面的在DL通信中使用跳频的PDSCH的第一示例的图。除了用于NR轻型UE的活动BWP 404之外,调度实体(例如,gNB或基站)还可以配置一个或多个伴随(companion)BWP(例如,伴随BWP 402)。伴随BWP和活动BWP可以被称为窄BWP,其具有比由NR轻型UE或能力降低的UE支持的最大通信带宽更窄的带宽。在图4中所示的示例中,PDSCH(由数字1指示)在活动BWP 404和伴随BWP 402之间跳变以提高分集增益。在一些示例中,调度实体可以例如使用无线资源控制(RRC)和/或DCI来显式地配置BWP。在一些示例中,UE可以基于一些预先确定的规则和/或借助于先前从调度实体接收的一些RRC配置来隐式地推导BWP配置。在一个示例中,信息元素(例如,“locationAndBandwidth”)可以可选地被配置用于指示伴随BWP,其可以具有与活动BWP相同的子载波间隔,但是处于不同的频域位置。
图5是示出根据本公开内容的一些方面的在DL通信中使用跳频的PDSCH的第二示例的图。调度实体(例如,gNB或基站)可以在活动宽BWP 510中配置一个或多个窄带(NB)(例如,在图5中所示的NB 502、NB 504、NB 506和NB 508)。每个NB具有与比由NR轻型UE或能力降低的UE支持的最大带宽更窄的带宽。活动宽BWP具有大于由NR轻型UE等支持的最大带宽的带宽。在传输期间,PDSCH可以在NB之间跳变。例如,第一PDSCH(由图5中的数字#1指示)在NB 502和NB 506之间跳变。类似地,第二PDSCH(由数字#2指示)在NB 504和NB 508之间跳变。在一些示例中,调度实体可以显式地配置NB,例如,使用RRC和/或DCI。在一些示例中,UE可以基于一些预先确定的规则和/或借助于先前从调度实体接收的一些RRC配置来隐式地推导窄带配置。每个NB可以被定义为连续子带集合或资源块组(RBG),其具有不大于由UE支持的最大带宽的总频率跨度。在5G NR中,可以仅针对频域定义RB。每个RBG是连续资源块(RB)集合,其具有取决于带宽部分中的PRB总数的可配置大小。类似地,子带被定义为连续PRB,其具有取决于带宽部分中的PRB总数的可配置大小。NB的配置对于共享具有大于由UE支持的最大带宽的带宽的相同宽BWP的全部UE来说可以是公共的。在该示例中,BWP 510包括四个不重叠的NB(例如,NB502、504、506和508),以及每个NB在RBG或子带的数量上具有固定大小。在一个示例中,取决于BWP的大小,子带可以包括4、8、16或32个PRB。NB在功能上可以类似于关于图4描述的伴随BWP。在一些方面中,网络可以使用宽BWP来支持高级UE和能力降低的UE的共存,因为宽BWP还可以支持高级UE(其与能力降低的UE相比具有更宽的支持带宽)的带宽。
图6是示出根据本公开内容的一些方面的用于配置使用跳频的PDSCH的示例性信号流的图。无线通信系统可以包括如在图1-3中所示的UE 602和基站(BS)604。基站604可以使用RRC和/或DCI信令606来将UE 602配置为将跳频用于PDSCH。基站604可以在PDCCH中发送DCI。在一个示例中,基站604可以将UE 602配置为将一个或多个伴随BWP用于PDSCH跳频,如上文关于图4所描述的。在另一示例中,基站604可以将UE 602配置为将宽BWP内的多个窄带(NB)用于PDSCH跳频,如上文关于图5所描述的。例如,RRC和/或DCI信令606可以提供用于使用伴随BWP或NB来配置PDSCH跳频的信息。然后,UE 602可以利用伴随/宽BWP或NB从基站604接收使用跳频的PDSCH。
对于PDSCH跳频配置,频域资源分配(FDRA)可以包括起始NB索引和NB内的资源指派。在一个示例中,配置信息可以包括X比特的NB索引,其中X是由宽BWP内的NB的数量来确定的。NB索引标识宽BWP内的对应NB。配置信息还可以包括用于由NB索引标识的NB内的资源分配的
Figure BDA0003743462260000091
数量的比特,其中,
Figure BDA0003743462260000092
是NB的大小(例如,带宽)。例如,资源分配比特可以指示被分配用于PDSCH的RB。在一些情况下,如果起始NB与可以是用于PDCCH的NB的活动NB或锚NB相同,则X可以是零比特。
在一些示例中,当除了能力降低的UE之外,相同的搜索空间还用于向高级UE(例如,支持宽载波带宽或全载波带宽的UE)发送广播PDCCH时,对于用于公共搜索空间(CSS)的DCI格式(例如,DCI格式1_0)而言可能需要FDRA大小对齐,以减少所需要的PDCCH开销和/或盲解码数量。对于FDRA对齐,可以添加一个或多个零填充比特作为FDRA字段的MSB(最高有效比特),以及可以将FDRA字段的比特大小增加到
Figure BDA0003743462260000093
其是由宽BWP的大小确定的,并且具有用于高级UE的资源分配的FDRA字段的相同大小。对于能力降低的UE,用于NB跳变的资源分配可以是由FDRA字段的
Figure BDA0003743462260000094
个LSB(最低有效比特)比特给定的。对于用于UE特定搜索空间(USS)的DCI格式(例如,DCI格式1_1),FDRA字段的大小为
Figure BDA0003743462260000095
个比特,即,没有零填充比特被添加到FDRA字段。
在本公开内容的一些方面中,用于PDSCH的NB跳变可以是由RRC半静态地配置的(利用或不利用通过DCI的动态激活/去激活)。在一个示例中,当使用DCI激活时,由于虚拟资源块(VRB)到物理资源块(PRB)的交织映射未被应用于例被配置有宽BWP的带宽受限的UE(例如,NR轻型UE等),因此能力降低的UE可以将DCI中的VRB到PRB映射字段重新解释为或重新目的化(repurpose)为跳频(FH)标志,例如,如上文关于图5所描述的。
在本公开内容的一个方面中,PDSCH-NB跳变配置可以包括跳变时间间隔thop和跳变频率偏移fhop或最大跳变数量Nhop。为了小区间干扰协调的益处,这些参数对于共享相同BWP的全部UE可以是公共的。基于上述配置,用于跳频PDSCH传输的NB可以通过以下方式来确定:
Figure BDA0003743462260000096
其中,
Figure BDA0003743462260000097
是由DCI指示的窄带,并且i是时隙索引,并且
Figure BDA0003743462260000098
是BWP中的窄带数量。
在本公开内容的一些方面中,两个NB之间的PDSCH跳频可以在连续跳变之间具有时间间隙,以及时间间隙可以取决于UE能力和BWP中的NB位置。在一些情况下,如果需要的话,时间间隙可以是特定于BWP的。例如,时间间隙可以取决于UE的RF返回时间和UE的支持的最大通信带宽。
图7是示出使用NB跳频的示例性两个PDSCH传输的图。具有NB跳变的第一PDSCH传输可以从活动或默认NB 702(图7中的NB #1)开始。UE可以监测活动或默认NB中的PDCCH/DCI。在这种情况下,定义时隙级别PDSCH调度延迟的时域调度参数K0不会由于NB跳变而改变。例如,当K0为0时,PDSCH 704在与PDCCH(DCI)相同的时隙中从基于PDSCH的时域资源分配(TDRA)的符号开始。TDRA可以被实现为包括多个条目的查找表。TDRA指示时隙中的PDSCH的起始符号和长度。当第二PDSCH传输706被调度为从除了激活或默认NB 702以外的NB708(图7中的NB#3)开始时,可以在K0之上引入额外的符号级别延迟。例如,第二PDSCH传输706可以基于额外延迟来推迟几个符号。在这种情况下,TDRA表的配置不必要考虑NB跳变。对TDRA表没有限制,以及对于非跳变情况,可以实现完全的调度灵活性。在一个示例中,可以基于UE RF返回时间来固定额外的延迟值。替代地,延迟值可以是确保所延迟的PDSCH不早于UE已经完成将其RF链重新配置为使用不同的NB的时间开始的值。例如,延迟值可以基于所指示的PDCCH到PDSCH时间偏移与UE的RF返回时间之间的差来变化。作为另一示例,延迟值可以是确保所延迟的PDSCH仍然保持在由参数K0定义的时隙内的值。
在本公开内容的一些方面中,对额外延迟的使用还可以取决于由PDSCH参数K0确定的PDCCH到PDSCH时间偏移、PDSCH的TDRA和PDSCH映射类型。PDSCH具有两种不同类型的映射,被称为类型A和类型B。这些类型是通过DMRS位置和PDSCH起始符号来表征的。对于PDSCH映射类型A,PDSCH起始符号被限制为时隙的前几个符号(例如,符号0-3)。因此,通过额外的符号延迟来推迟PDSCH传输并非总是可能的。对于PDSCH映射类型B,PDSCH起始符号比类型A更灵活。例如,在正常CP长度的情况下,PDSCH起始符号可以在符号0-12内,或者在扩展CP长度的情况下,PDSCH起始符号可以在符号0-10内。例如,对于PDSCH映射类型B,如果PDCCH到PDSCH时间偏移小于门限,则如果需要的话,可以使用额外的符号级别延迟。门限可以是基于UE的RF返回时间等的值。
在本公开内容的一些方面中,如果UE不支持额外的符号级别延迟,则可以基于PDCCH到PDSCH时间偏移来确定起始NB。例如,如果PDCCH到PDSCH时间偏移小于门限,使得PDCCH到PDSCH时间偏移可能不会针对UE将其RF链重新配置(例如,RF返回)为使用不同的NB提供足够的延迟,则用于PDCCH监测的活动或默认NB可以用作起始NB,而不考虑在DCI中指示的起始NB。然而,如果PDCCH到PDSCH时间偏移不小于门限,则UE可以使用由PDCCH/DCI指示的起始NB。在这种情况下,PDCCH到PDSCH时间偏移针对UE将其RF链重新配置用于新NB提供了足够的时间。
图8是示出用于使用跳频(FH)的PDSCH传输的示例性窄带(NB)和子带对齐的图。在本公开内容的一个方面中,BWP 802包括四个NB(在图8中表示为NB 0、1、2和3)。在一些示例中,BWP的开始或结束可能没有与子频带对齐。结果,边缘NB 804(例如,NB0)的大小可能不同于相同BWP 802中的其它NB(例如,NB1、2和3)。在另一示例中,BWP中的子带总数可能不是窄带中的子带总数的整数倍。图14是示出NB和子带对齐的示例的图。参考图14,宽BWP 1402的开始没有与RBG边界对齐。当将宽BWP 1402划分为多个NB(例如,图14中的NB#0、NB#1、NB#2……NB k)时,第一NB(例如,NB#0)和最后的NB(例如,NB k)的大小可能不同于其它NB(例如,NB#1和NB #2)的大小。在本公开内容的一些方面中,可以通过将相邻RBG分组到一个窄带中,从而实现将BWP划分为NB。
因此,BWP中的第一NB或最后的NB可能具有与其它NB不同的大小。由于NB内的资源分配是基于最大NB大小的,因此边缘NB(例如,NB 0)的边远(outlying)RB 806中的PDSCH传输可以被打孔。边远RB是未被包括在BWP中的RB。
在本公开内容的一些方面中,NB跳频用于UE特定PDSCH,但不用于广播PDSCH。例如,UE特定PDSCH可以是由PDCCH调度的,该PDCCH具有由C-RNTI(小区无线网络临时标识符)、MCS-C-RNTI(调制编码方案小区RNTI)、CS-RNTI(经配置的调度RNTI)加扰的CRC。广播PDSCH不使用跳频。
当在使用NB跳频(FH)的PDSCH与不使用NB跳频的广播PDSCH之间在时域中存在重叠时,可以使用某些优先级规则来处理重叠情况。图9是示出用于处理广播PDSCH与NB-FHPDSCH之间的重叠的示例性方法900的流程图。在一些示例中,方法900可以在图1-3和6中所示的UE中的任何UE处操作。
在框902处,UE确定在使用NB跳频(FH)的PDSCH与不利用FH的广播PDSCH之间是否发生时域重叠。在框904处,如果UE确定不存在重叠,则UE可以不采取关于重叠的动作。在框906处,如果在广播PDSCH与使用FH的PDSCH之间存在重叠,则UE确定广播PDSCH是否携带由UE请求的专用系统信息块(SIB)或按需系统信息中的至少一项。在框908处,如果广播PDSCH携带由UE请求的SIB,则UE可以将广播PDSCH优先于使用NBFH的PDSCH。在框910处,如果广播PDSCH没有携带由UE请求的SIB,则UE可以根据特定UE实现方式,使用规则来处理重叠情况。
图10是示出根据本公开内容的一些方面的用于发送使用跳频的PDSCH的示例性过程1000的流程图。如下所述,在本公开内容的范围内的特定实现方式中可以省略一些或全部示出的特征,以及对于全部实施例的实现方式来说可能不需要一些示出的特征。在一些示例中,过程1000可以由在图11中所示的调度实体1100来执行。在一些示例中,过程1000可以由用于执行下文描述的功能或算法的任何合适的装置或单元来执行。
在框1002处,调度实体(例如,基站或gNB)发送用于PDSCH的跳频(FH)控制信息。PDSCH可以类似于上文关于图4-8描述的跳频PDSCH。在框1004处,调度实体基于FH控制信息来发送在多个NB之间使用跳频的PDSCH。每个NB的带宽不大于由接收PDSCH的UE支持的最大无线通信带宽。
在一些示例中,多个NB可以被包括在宽带宽部分中(例如,在图7中所示的宽BWP),以及BWP具有大于UE的最大无线通信带宽的带宽。在一些示例中,FH控制信息可以包括频域资源分配(FDRA)信息,其包括用于PDSCH的NB索引和资源指派。NB索引指示针对在多个NB之间使用跳频的PDSCH选择的起始窄带,以及资源指派在所选择的窄带内分配频率资源。
在一些示例中,FH控制信息可以包括FDRA字段,该FDRA字段具有基于具有大于UE的最大无线通信带宽的带宽的BWP的大小的第一多个比特。第一多个比特中的最低有效比特可以被配置为指示所选择的窄带内的起始NB和资源指派。
在一些示例中,调度实体可以发送在多个NB当中的第一窄带和第二窄带之间使用跳频的PDSCH。第一窄带和第二窄带在频域中可以彼此不相邻。当在频域中的窄带之间存在一个或多个RB时,两个窄带不相邻。在一些示例中,FH控制信息可以包括跳变时间间隔、跳变频率偏移和最大跳变数量。在一些示例中,调度实体可以基于跳变时间间隔、跳变频率偏移和最大跳变数量来选择窄带。
在一些示例中,调度实体可以在第一窄带中发送用于控制PDSCH的下行链路控制信息(DCI)。然后,调度实体可以发送在基于DCI配置的第二窄带中开始的PDSCH。PDSCH调度延迟可以取决于UE的RF返回能力中的至少一项。
在一些示例中,调度实体可以发送在第一窄带和第二窄带之间使用跳频的PDSCH。第一窄带中的未与子带对齐的一个或多个资源块可以相对于PDSCH被打孔,以及被打孔的资源块位于包括窄带的带宽部分之外(例如,参见图8中的边远RB)。
图11是示出用于采用处理系统1114的调度实体1100的硬件实现方式的示例的框图。例如,调度实体1100可以是如在图1、2、3和/或6中的任何一个或多个图中所示的基站。
调度实体1100可以是利用包括一个或多个处理器1104的处理系统1114来实现的。处理器1104的示例包括微处理器、微控制器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、状态机、门控逻辑、分立硬件电路和被配置为执行遍及本公开内容描述的各种功能的其它适当的硬件。在各个示例中,调度实体1100可以被配置为执行本文所描述的功能中的任何一个或多个功能。也就是说,如在调度实体1100中所利用的处理器1104可以用于实现关于图4-10示出并且描述的过程和进程中的任何一者或多者。
在该示例中,处理系统1114可以是利用总线架构来实现的,该总线架构通常通过总线1102来表示。取决于处理系统1114的具体应用和整体设计约束,总线1102可以包括任何数量的互连总线和桥接。总线1102将包括一个或多个处理器(通常通过处理器1104来表示)、存储器1105、以及计算机可读介质(通常通过计算机可读介质1106来表示)的各种电路通信地耦合在一起。总线1102还可以链接诸如时序源、外围设备、电压调节器和功率管理电路的各种其它电路,这些电路是本领域公知的,以及因此不再进行任何进一步的描述。总线1102可以被实现为串行总线或并行总线。总线接口1108提供总线1102与收发机1110之间的接口。收发机1110提供用于通过传输介质与各种其它装置进行通信的通信接口或单元。根据装置的性质,还可以提供用户接口1112(例如,小键盘、显示器、扬声器、麦克风、操纵杆、触摸屏)。当然,这样的用户接口1112是可选的,以及在一些示例中可以省略(诸如基站)。
在本公开内容的一些方面中,处理器1104可以包括被配置用于各种功能(包括例如使用跳频的下行链路通信(例如,PDSCH))的电路。例如,电路可以被配置为实现关于图4-10所描述的功能中的一个或多个功能。
例如,处理器1104可以包括处理电路1140、上行链路(UL)通信电路1142和下行链路(DL)通信电路1144。处理电路1140可以被配置为与调度实体1100的一个或多个其它组件协作或不协作来执行各种数据处理、通信和逻辑功能。在一个示例中,调度实体1100可以使用处理电路1140来调度和分配用于UL和DL通信的通信资源,例如,使用跳频的PDSCH,如关于图4-10所描述的。调度实体1100可以使用UL通信电路1142来执行与一个或多个其它设备(例如,UE)的各种UL通信功能。调度实体可以使用DL通信电路1144来执行与一个或多个其它设备(例如,UE)的各种DL通信功能。在一个示例中,调度实体可以使用DL通信电路1144,以经由收发机1110发送用于PDSCH的跳频控制信息。在一个示例中,调度实体可以使用DL通信电路1144,以基于跳频控制信息来发送在多个窄带(NB)之间使用跳频的PDSCH。多个NB中的每个NB的带宽不大于UE的最大无线通信带宽。
处理电路1104负责管理总线1102和通用处理,包括执行在计算机可读介质1106上存储的软件。软件在由处理器1104执行时,使得处理系统1114执行下文针对任何特定装置所描述的各种功能。计算机可读介质1106和存储器1105还可以用于存储由处理器1104在执行软件时所操纵的数据。
处理系统中的一个或多个处理器1104可以执行软件。软件应当被广泛地解释为意指指令、指令集、代码、代码段、程序代码、程序、子程序、软件模块、应用、软件应用、软件包、例程、子例程、对象、可执行文件、执行的线程、过程、函数等等,无论其被称为软件、固件、中间件、微代码、硬件描述语言还是其它术语。软件可以驻留在计算机可读介质1106上。计算机可读介质1006可以是非暂时性计算机可读介质。举例而言,非暂时性计算机可读介质包括磁存储设备(例如,硬盘、软盘、磁带)、光盘(例如,压缩光盘(CD)或者数字多功能光盘(DVD))、智能卡、闪存设备(例如,卡、棒或键驱动)、随机存取存储器(RAM)、只读存储器(ROM)、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、寄存器、可移动盘以及用于存储可以由计算机进行存取和读取的软件和/或指令的任何其它适当介质。计算机可读介质1106可以驻留在处理系统1114中、处理系统1114之外、或者跨越包括处理系统1114的多个实体来分布。计算机可读介质1106可以体现在计算机程序产品中。举例而言,计算机程序产品可以包括在封装材料中的计算机可读介质。本领域技术人员将认识到,如何取决于特定的应用和对整个系统所施加的总体设计约束,来最佳地实现遍及本公开内容所给出的所描述的功能。
在一个或多个示例中,计算机可读存储介质1106可以包括被配置用于各种功能(包括例如使用跳频的下行链路通信(例如,PDSCH))的软件。例如,软件可以被配置为实现上文关于图4-10所描述的功能中的一个或多个功能。
例如,软件可以包括处理指令1152、UL通信指令1154和DL通信指令1156。当由处理器1104执行时,处理指令可以与调度实体1100的一个或多个其它组件协作或不协作来执行各种数据处理、通信和逻辑功能。当由处理器1104执行时,UL通信指令1154可以执行与一个或多个其它设备(例如,UE)的各种UL通信功能。当由处理器1104执行时,DL通信指令1156可以执行与一个或多个其它设备(例如,UE)的各种DL通信功能,例如,使用跳频的PDSCH传输。
在一种配置中,用于无线通信的调度实体1100包括:用于向UE发送用于PDSCH的跳频控制信息的单元;以及用于基于跳频控制信息来发送在多个NB之间使用跳频的PDSCH的单元。多个NB中的每个NB的带宽不大于UE的最大无线通信带宽。在一个方面中,前述单元可以是在图11中所示的被配置为执行由前述单元记载的功能的处理器1104。在另一方面中,前述单元可以是被配置为执行由前述单元记载的功能的电路或任何装置。
当然,在以上示例中,被包括在处理器1004中的电路仅是作为示例来提供的,以及用于执行所描述的功能的其它单元可以被包括在本公开内容的各个方面中,包括但不限于被存储在计算机可读存储介质1106中的指令、或在图1、2、3和/或6中的任何一个图中描述的并且利用例如本文中关于图4-10所描述的过程和/或算法的任何其它适当的装置或单元。
图12是示出根据本公开内容的一些方面的用于接收使用跳频的PDSCH的示例性过程1200的流程图。如下所述,在本公开内容范围内的特定实现方式中可以省略一些或全部示出的特征,以及对于全部实施例的实现方式来说可能不需要一些示出的特征。在一些示例中,过程1200可以由在图13中所示的调度实体1300来执行。在一些示例中,过程1200可以由任何合适的装置(例如,UE)或用于执行下面描述的功能或算法的单元来执行。
在框1202处,被调度实体(例如,UE)接收用于PDSCH的跳频(FH)控制信息。PDSCH可以类似于上文关于图4-8所描述的跳频PDSCH。在框1204处,被调度实体基于FH控制信息来接收在多个NB之间使用跳频的PDSCH。多个NB中的每个NB的带宽不大于被调度实体的最大无线通信带宽。
在一些示例中,多个NB可以被包括在宽带宽部分中(例如,在图7中所示的宽BWP),以及宽BWP具有大于被调度实体的最大无线通信带宽的带宽。在一些示例中,FH控制信息可以包括频域资源分配(FDRA)信息,其包括NB索引和资源指派。NB索引指示针对在多个NB中之间使用跳频的PDSCH选择的起始窄带,以及资源指派针对PDSCH分配所选择的窄带内的资源。
在一些示例中,FH控制信息可以包括FDRA字段,FDRA字段具有基于具有大于被调度实体的最大无线通信带宽的带宽的宽BWP的大小的第一多个比特。第一多个比特中的最低有效比特可以被配置为指示在所选择的窄带内针对PDSCH的资源指派。
在一些示例中,被调度实体可以接收在第一窄带和第二窄带之间使用跳频的PDSCH。第一窄带和第二窄带在频域中可以彼此不相邻。在一些示例中,FH控制信息可以包括跳变时间间隔、跳变频率偏移和最大跳变数量。在一些示例中,被调度实体可以基于跳变时间间隔、跳变频率偏移和最大跳变数量来在多个NB之间选择窄带。
在一些示例中,被调度实体可以在第一窄带中接收用于控制PDSCH的下行链路控制信息(DCI)。然后,被调度实体可以接收在第二窄带中开始的PDSCH。在DCI与PDSCH之间的延迟可以取决于被调度实体的RF返回能力或时隙级别PDSCH调度延迟中的至少一项。
在一些示例中,被调度实体可以接收在第一窄带和第二窄带之间使用跳频的PDSCH。第一窄带中的未与子带对齐的一个或多个资源块相对于PDSCH被打孔,以及被打孔的资源块位于包括多个NB的带宽部分之外(例如,参见图8中的边远RB)。
在一些示例中,当广播PDSCH与UE特定PDSCH部分地重叠时,被调度实体可以将广播PDSCH优先于利用跳频的UE特定PDSCH。例如,如果广播PDSCH携带由被调度实体请求的SIB,则被调度实体可以将广播PDSCH优先于UE特定PDSCH。
图13是示出用于采用处理系统1314的示例性被调度实体1300的硬件实现方式的示例的概念图。根据本公开内容的各个方面,可以利用包括一个或多个处理器1304的处理系统1314来实现元素或元素的任何部分或元素的任何组合。例如,被调度实体1300可以是如在图1、2、3和/或6中的任何一个或多个图中所示的用户设备(UE)。
处理系统1314可以基本上与在图11中所示的处理系统1114相同,包括总线接口1308、总线1302、存储器1305、处理器1304和计算机可读介质1306。此外,调度实体1300可以包括用户接口1312和收发机1310,其基本上类似于上文在图11中描述的那些。也就是说,如在被调度实体1300中利用的处理器1304可以用于实现在图4-9和12中所示的过程中的任何一个或多个过程。
在本公开内容的一些方面中,处理器1304可以包括被配置用于各种功能(包括例如使用跳频的下行链路通信(例如,PDSCH))的电路。例如,电路可以被配置为实现下文关于图4-9和图12所描述的功能中的一个或多个功能。
例如,处理器1304可以包括处理电路1340、上行链路(UL)通信电路1342和下行链路(DL)通信电路1344。处理电路1340可以被配置为与被调度实体1300的一个或多个其它组件协作或不协作来执行各种数据处理、通信和逻辑功能。在一个示例中,被调度实体1300可以使用处理电路1340来调度和分配用于UL和DL通信的通信资源,例如,如关于图4-9和12所描述的使用跳频的PDSCH。UL通信电路1342可以被配置为执行与一个或多个其它设备(例如,调度实体)的各种UL通信功能。DL通信电路1344可以被配置为执行与一个或多个其它设备(例如,调度实体)的各种DL通信功能。在一个示例中,被调度实体可以使用DL通信电路1344,以经由收发机1310接收用于PDSCH的跳频(FH)控制信息。在一个示例中,调度实体可以使用DL通信电路1344,以基于跳频控制信息来接收在多个NB之间使用跳频的PDSCH。多个NB中的每个NB的带宽不大于被调度实体的最大无线通信带宽。
在一种配置中,用于无线通信的调度实体1300包括:用于接收用于PDSCH的跳频控制信息的单元;以及用于基于跳频控制信息来接收在多个NB之间使用跳频的PDSCH的单元。多个NB中的每个NB的带宽不大于被调度实体的最大无线通信带宽。在一个方面中,前述单元可以是在图13中所示的被配置为执行由前述单元记载的功能的处理器1304。在另一方面中,前述单元可以是被配置为执行由前述单元记载的功能的电路或任何装置。
当然,在上文的示例中,被包括在处理器1304中的电路仅是作为示例来提供的,以及用于执行所描述的功能的其它单元可以被包括在本公开内容的各个方面中,包括但不限于被存储在计算机可读存储介质1306中的指令、或在图1、2、3和/或6中的任何一个图中描述的并且利用例如本文关于图4-9和12所描述的过程和/或算法的任何其它适当的装置或单元。
参考示例性实现方式来给出了无线通信网络的若干方面。如本领域技术人员将容易认识到的,遍及本公开内容描述的各个方面可以扩展到其它电信系统、网络架构和通信标准。
举例而言,各个方面可以在3GPP所定义的其它系统(诸如长期演进(LTE)、演进分组系统(EPS)、通用移动电信系统(UMTS)和/或全球移动通信系统(GSM))内实现。各个方面还可以扩展到第三代合作伙伴计划2(3GPP2)所定义的系统,诸如CDMA2000和/或演进数据优化(EV-DO)。其它示例可以在采用IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE802.20、超宽带(UWB)、蓝牙的系统和/或其它适当的系统内实现。所采用的实际的电信标准、网络架构和/或通信标准取决于具体的应用和对该系统所施加的总体设计约束。
在本公开内容中,所使用的单词“示例性”意指“用作示例、实例或说明”。本文中被描述为“示例性”的任何实现方式或者方面不应被解释为比本公开内容的其它方面更优选或具有优势。同样,术语“方面”不要求本公开内容的全部方面都包括所论述的特征、优点或者操作模式。本文使用术语“耦合”来指代两个对象之间的直接耦合或者间接耦合。例如,如果对象A物理地接触对象B,并且对象B接触对象C,则对象A和C仍然可以被认为是相互耦合的,即使它们相互并没有直接地物理接触。例如,第一对象可以耦合到第二对象,即使第一对象从未直接地与第二对象物理地接触。广泛地使用术语“电路”和“电子电路”,以及它们旨在包括电子设备和导体的硬件实现方式(其中这些电子设备和导体在被连接和配置时实现对本公开内容中所描述的功能的执行,而关于电子电路的类型没有限制)以及信息和指令的软件实现方式(其中这些信息和指令在由处理器执行时实现对本公开内容中所描述的功能的执行)两者。
可以对图1-14中所示出的组件、步骤、特征和/或功能中的一者或多者进行重新排列和/或将其组合成单个组件、步骤、特征或者功能,或者体现在若干组件、步骤或者功能中。此外,在不背离本文所公开的新颖特征的情况下,还可以增加额外的元素、组件、步骤和/或功能。图1-14中所示出的装置、设备和/或组件可以被配置为执行本文所描述的方法、特征或步骤中的一者或多者。本文所描述的新颖算法还可以在软件中高效地实现,和/或嵌入在硬件之中。
要理解的是,本文所公开的方法中的步骤的特定次序或层次是对示例性过程的说明。要理解的是,基于设计偏好,可以重新排列这些方法中的步骤的特定次序或层次。所附的方法权利要求以示例次序给出了各个步骤的元素,但并不意指其受到所给出的特定次序或层次的限制,除非本文进行了明确地记载。
提供先前描述以使得本领域任何技术人员能够实践本文描述的各个方面。对于本领域技术人员而言,对这些方面的各种修改将是显而易见的,以及可以将本文定义的通用原理应用于其它方面。因此,权利要求不旨在限于本文示出的各方面,而是要符合与权利要求的文字一致的全部范围,其中除非明确地声明如此,否则对单数形式的元素的提及不旨在意指“一个和仅一个”,而是“一个或多个”。除非另外明确地声明,否则术语“一些”是指一个或多个。提及项目列表中的“至少一个”的短语是指那些项目的任何组合,包括单个成员。例如,“a、b或c中的至少一个”旨在涵盖:a;b;c;a和b;a和c;b和c;以及a、b和c。遍及本公开内容描述的各个方面的元素的、对于本领域技术人员来说是已知的或者将知的全部结构和功能等效物通过引用方式被明确地并入本文,以及其旨在由权利要求所包含。此外,本文中没有任何公开内容旨在奉献给公众,不管这样的公开内容是否被明确地记载在权利要求中。

Claims (56)

1.一种用于无线通信的装置,包括:
处理器;
通信地耦合到所述处理器的收发机;以及
通信地耦合到所述处理器的存储器,
其中,所述处理器被配置为:
经由所述收发机,接收用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息;以及
经由所述收发机,基于所述FH控制信息来接收在多个窄带(NB)之间使用跳频的所述PDSCH,
其中,所述多个NB中的每个NB的带宽不大于所述装置的最大无线通信带宽。
2.根据权利要求1所述的装置,其中,所述多个NB被包括在带宽部分中,所述带宽部分具有大于所述装置的所述最大无线通信带宽的带宽。
3.根据权利要求2所述的装置,其中,所述处理器还被配置为:基于无线资源控制(RRC)配置或预先确定的规则中的至少一项来确定所述多个NB的配置。
4.根据权利要求3所述的装置,其中,所述RRC配置或所述预先确定的规则定义被分配给所述多个NB中的每个NB的多个连续子带,其中,所述子带的所述大小是至少基于所述带宽部分的带宽可配置的。
5.根据权利要求3所述的装置,其中,所述RRC配置或所述预先确定的规则定义被分配给所述多个NB中的每个NB的多个连续资源块组,其中,所述资源块组的所述大小是至少基于所述带宽部分的带宽可配置的。
6.根据权利要求1所述的装置,其中,所述FH控制信息包括频域资源分配(FDRA)信息,所述FDRA信息包括:
索引,其被配置为指示被选择用于开始对在所述多个NB之间使用跳频的所述PDSCH的所述接收的窄带;以及
所选择的窄带内的资源指派。
7.根据权利要求6所述的装置,其中,所述FH控制信息包括FDRA字段,所述FDRA字段包括基于所述窄带的大小和带宽部分中的所述多个NB的数量的多个比特。
8.根据权利要求6所述的装置,其中,所述处理器还被配置为:
接收被映射到公共搜索空间的下行链路控制信息(DCI),
其中,所述FH控制信息包括被包括在所述DCI中的FDRA字段,
其中,所述FDRA字段包括基于带宽部分的大小的第一多个比特,所述带宽部分具有大于所述装置的所述最大无线通信带宽的带宽,并且
其中,所述第一多个比特中的最低有效比特被配置为指示被选择用于开始对所述PDSCH的所述接收的所述窄带和所选择的窄带内的所述资源指派。
9.根据权利要求1所述的装置,其中,所述处理器还被配置为:
经由所述收发机,接收在所述多个NB当中的第一窄带和第二窄带之间使用跳频的所述PDSCH,所述第一窄带和所述第二窄带在频域中彼此不相邻。
10.根据权利要求1所述的装置,其中,所述FH控制信息包括跳变时间间隔、跳变频率偏移和最大跳变数量。
11.根据权利要求10所述的装置,其中,所述处理器还被配置为:基于所述跳变时间间隔、所述跳变频率偏移和所述最大跳变数量,来在所述多个NB之间选择窄带。
12.根据权利要求1所述的装置,其中,所述处理器还被配置为:
经由所述收发机,在所述多个NB中的第一窄带中接收下行链路控制信息(DCI),所述DCI被配置为控制所述PDSCH;以及
经由所述收发机,接收在所述多个NB中的第二窄带中开始的所述PDSCH,其中,所述PDSCH的开始时间取决于所述装置的RF返回时间或在所述DCI中指示的PDSCH调度延迟中的至少一项。
13.根据权利要求12所述的装置,其中,在所述DCI中指示的所述PDSCH调度延迟小于所述RF返回时间,所述PDSCH在所述第二窄带中的所述开始被推迟达多个符号的额外延迟。
14.根据权利要求1所述的装置,其中,所述处理器还被配置为:
经由所述收发机,在所述多个NB中的第一窄带中接收下行链路控制信息(DCI),所述DCI被配置为指示PDSCH调度延迟和用于开始对所述PDSCH的所述接收的窄带索引,
当所述PDSCH调度延迟小于所述装置的RF返回时间时,经由所述收发机,接收根据所述PDSCH调度延迟在所述第一窄带中开始并且覆盖所述窄带索引的所述PDSCH。
15.根据权利要求1所述的装置,其中,所述处理器还被配置为:
经由所述收发机,接收在所述多个NB当中的作为边缘窄带的第一窄带与第二窄带之间使用跳频的所述PDSCH,其中,所述第一窄带的未与子带对齐的一个或多个资源块相对于所述PDSCH被打孔,被打孔的资源块位于包括所述多个NB的带宽部分之外。
16.根据权利要求1所述的装置,其中,所述处理器还被配置为:
将对不利用跳频的广播PDSCH的接收优先于使用跳频的所述PDSCH,使用跳频的所述PDSCH具有与对不利用跳频的所述广播PDSCH的所述接收重叠的至少一个符号,其中,所述广播PDSCH包括按需系统信息。
17.一种用于无线通信的装置,包括:
处理器;
通信地耦合到所述处理器的收发机;以及
通信地耦合到所述处理器的存储器,
其中,所述处理器被配置为:
经由所述收发机,向用户设备(UE)发送用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息;以及
经由所述收发机,基于所述FH控制信息来向所述UE发送在多个窄带(NB)之间使用跳频的所述PDSCH,
其中,所述多个NB中的每个NB的带宽不大于所述UE的最大无线通信带宽。
18.根据权利要求17所述的装置,其中,所述多个NB被包括在带宽部分中,所述带宽部分具有大于所述UE的所述最大无线通信带宽的带宽。
19.根据权利要求17所述的装置,其中,所述FH控制信息包括频域资源分配(FDRA)信息,所述FDRA信息包括:
索引,其被配置为指示被选择用于开始对在所述多个NB之间使用跳频的所述PDSCH的所述接收的窄带;以及
所选择的窄带内的资源指派。
20.根据权利要求19所述的装置,其中,所述FH控制信息包括FDRA字段,所述FDRA字段包括基于所述窄带的大小和带宽部分中的所述多个NB的数量的多个比特。
21.根据权利要求19所述的装置,其中,所述处理器还被配置为:
发送被映射到公共搜索空间的下行链路控制信息(DCI),
其中,所述FH控制信息包括被包括在所述DCI中的FDRA字段,
其中,所述FDRA字段包括基于带宽部分的大小的第一多个比特,所述带宽部分具有大于所述UE的所述最大无线通信带宽的带宽,并且
其中,所述第一多个比特中的最低有效比特被配置为指示被选择用于开始对所述PDSCH的所述接收的所述窄带和所选择的窄带内的所述资源指派。
22.根据权利要求17所述的装置,其中,所述处理器还被配置为:
经由所述收发机,发送在所述多个NB当中的第一窄带和第二窄带之间使用跳频的所述PDSCH,所述第一窄带和所述第二窄带在频域中彼此不相邻。
23.根据权利要求17所述的装置,其中,所述FH控制信息包括跳变时间间隔、跳变频率偏移和最大跳变数量。
24.根据权利要求23所述的装置,其中,所述处理器还被配置为基于所述跳变时间间隔、所述跳变频率偏移和所述最大跳变数量来从所述多个NB中选择窄带。
25.根据权利要求17所述的装置,其中,所述处理器还被配置为:
经由所述收发机,在所述多个NB中的第一窄带中发送下行链路控制信息(DCI),所述DCI被配置为控制所述PDSCH;以及
经由所述收发机,发送在所述多个NB中的第二窄带中开始的所述PDSCH,其中,所述PDSCH的开始时间取决于所述UE的RF返回时间或在所述DCI中指示的PDSCH调度延迟中的至少一项。
26.根据权利要求25所述的装置,其中,在所述DCI中指示的所述PDSCH调度延迟小于所述RF返回时间,所述PDSCH在所述第二窄带中的所述开始被推迟达多个符号的额外延迟。
27.根据权利要求17所述的装置,其中,所述处理器还被配置为:
经由所述收发机,在所述多个NB中的第一窄带中发送下行链路控制信息(DCI),所述DCI被配置为指示PDSCH调度延迟和用于开始对所述PDSCH的所述接收的窄带索引,
当所述PDSCH调度延迟小于所述UE的RF返回时间时,经由所述收发机,发送根据所述PDSCH调度延迟在所述第一窄带中开始并且覆盖所述窄带索引的所述PDSCH。
28.根据权利要求17所述的装置,其中,所述处理器还被配置为:
经由所述收发机,发送在所述多个NB当中的作为边缘窄带的第一窄带与第二窄带之间使用跳频的所述PDSCH,其中,所述第一窄带的未与子带对齐的一个或多个资源块相对于所述PDSCH被打孔,被打孔的资源块位于包括所述多个NB的带宽部分之外。
29.一种用于在用户设备(UE)处进行无线通信的方法,包括:
接收用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息;以及
基于所述FH控制信息来接收在多个窄带(NB)之间使用跳频的所述PDSCH,
其中,所述多个NB中的每个NB的带宽不大于所述UE的最大无线通信带宽。
30.根据权利要求29所述的方法,其中,所述多个NB被包括在带宽部分中,所述带宽部分具有大于所述UE的所述最大无线通信带宽的带宽。
31.根据权利要求30所述的方法,还包括:
基于无线资源控制(RRC)配置或预先确定的规则中的至少一项来确定所述多个NB的配置。
32.根据权利要求31所述的方法,其中,所述RRC配置或所述预先确定的规则定义被分配给所述多个NB中的每个NB的多个连续子带和所述带宽部分的带宽。
33.根据权利要求31所述的方法,其中,所述RRC配置或所述预先确定的规则定义被分配给所述多个NB中的每个NB的多个连续资源块组和所述带宽部分的带宽。
34.根据权利要求29所述的方法,所述FH控制信息包括频域资源分配(FDRA)信息,所述FDRA信息包括:
索引,其被配置为指示被选择用于开始对在所述多个NB之间使用跳频的所述PDSCH的所述接收的窄带;以及
所选择的窄带内的资源指派。
35.根据权利要求34所述的方法,其中,所述FH控制信息包括FDRA字段,所述FDRA字段包括基于所述窄带的大小和带宽部分中的所述多个NB的数量的多个比特。
36.根据权利要求34所述的方法,还包括:
接收被映射到公共搜索空间的下行链路控制信息(DCI),
其中,所述FH控制信息包括被包括在所述DCI中的FDRA字段,
其中,所述FDRA字段包括基于带宽部分的大小的第一多个比特,所述带宽部分具有大于所述UE的所述最大无线通信带宽的带宽,并且
其中,所述第一多个比特中的最低有效比特被配置为指示被选择用于开始对所述PDSCH的所述接收的所述窄带和所选择的窄带内的所述资源指派。
37.根据权利要求29所述的方法,还包括:
接收在所述多个NB当中的第一窄带和第二窄带之间使用跳频的所述PDSCH,所述第一窄带和所述第二窄带在频域中彼此不相邻。
38.根据权利要求29所述的方法,其中,所述FH控制信息包括跳变时间间隔、跳变频率偏移和最大跳变数量。
39.根据权利要求38所述的方法,还包括:
基于所述跳变时间间隔、所述跳变频率偏移和所述最大跳变数量,来在所述多个NB之间选择窄带。
40.根据权利要求29所述的方法,还包括:
在所述多个NB中的第一窄带中接收下行链路控制信息(DCI),所述DCI被配置为控制所述PDSCH;以及
接收在所述多个NB中的第二窄带中开始的所述PDSCH,其中,所述PDSCH的开始时间取决于所述UE的RF返回时间或在所述DCI中指示的PDSCH调度延迟中的至少一项。
41.根据权利要求40所述的方法,其中,在所述DCI中指示的所述PDSCH调度延迟小于所述RF返回时间,所述PDSCH在所述第二窄带中的所述开始被推迟达多个符号的额外延迟。
42.根据权利要求29所述的方法,还包括:
在所述多个NB中的第一窄带中接收下行链路控制信息(DCI),所述DCI被配置为指示PDSCH调度延迟和用于开始对所述PDSCH的所述接收的窄带索引,
当所述PDSCH调度延迟小于所述UE的RF返回时间时,接收根据所述PDSCH调度延迟在所述第一窄带中开始并且覆盖所述窄带索引的所述PDSCH。
43.根据权利要求29所述的方法,还包括:
接收在所述多个NB当中的作为边缘窄带的第一窄带与第二窄带之间使用跳频的所述PDSCH,其中,所述第一窄带的未与子带对齐的一个或多个资源块相对于所述PDSCH被打孔,被打孔的资源块位于包括所述多个NB的带宽部分之外。
44.根据权利要求29所述的方法,还包括:
将对不利用跳频的广播PDSCH的接收优先于使用跳频的所述PDSCH,使用跳频的所述PDSCH具有与对不利用跳频的所述广播PDSCH的所述接收重叠的至少一个符号,其中,所述广播PDSCH包括按需系统信息。
45.一种用于在调度实体处的无线通信的方法,包括:
向用户设备(UE)发送用于物理下行链路共享信道(PDSCH)的跳频(FH)控制信息;以及
基于所述FH控制信息来向所述UE发送在多个窄带(NB)之间使用跳频的所述PDSCH,
其中,所述多个NB中的每个NB的带宽不大于所述UE的最大无线通信带宽。
46.根据权利要求45所述的方法,其中,所述多个NB被包括在带宽部分中,所述带宽部分具有大于所述UE的所述最大无线通信带宽的带宽。
47.根据权利要求45所述的方法,其中,所述FH控制信息包括频域资源分配(FDRA)信息,所述FDRA信息包括:
索引,其被配置为指示被选择用于开始对在所述多个NB之间使用跳频的所述PDSCH的所述接收的窄带;以及
所选择的窄带内的资源指派。
48.根据权利要求47所述的方法,其中,所述FH控制信息包括FDRA字段,所述FDRA字段包括基于所述窄带的大小和带宽部分中的所述多个NB的数量的多个比特。
49.根据权利要求47所述的方法,还包括:
发送被映射到公共搜索空间的下行链路控制信息(DCI),
其中,所述FH控制信息包括被包括在所述DCI中的FDRA字段,
其中,所述FDRA字段包括基于带宽部分的大小的第一多个比特,所述带宽部分具有大于所述UE的所述最大无线通信带宽的带宽,并且
其中,所述第一多个比特中的最低有效比特被配置为指示被选择用于开始对所述PDSCH的所述接收的所述窄带和所选择的窄带内的所述资源指派。
50.根据权利要求45所述的方法,还包括:
发送在所述多个NB当中的第一窄带和第二窄带之间使用跳频的所述PDSCH,所述第一窄带和所述第二窄带在频域中彼此不相邻。
51.根据权利要求45所述的方法,其中,所述FH控制信息包括跳变时间间隔、跳变频率偏移和最大跳变数量。
52.根据权利要求51所述的方法,还包括:
基于所述跳变时间间隔、所述跳变频率偏移和所述最大跳变数量,来在所述多个NB之间选择窄带。
53.根据权利要求45所述的方法,还包括:
在所述多个NB中的第一窄带中发送下行链路控制信息(DCI),所述DCI被配置为控制所述PDSCH;以及
发送在所述多个NB中的第二窄带中开始的所述PDSCH,其中,所述PDSCH的开始时间取决于所述UE的RF返回时间或在所述DCI中指示的PDSCH调度延迟中的至少一项。
54.根据权利要求53所述的方法,其中,在所述DCI中指示的所述PDSCH调度延迟小于所述RF返回时间,所述PDSCH在所述第二窄带中的所述开始被推迟达多个符号的额外延迟。
55.根据权利要求45所述的方法,还包括:
在所述多个NB中的第一窄带中发送下行链路控制信息(DCI),所述DCI被配置为指示PDSCH调度延迟和用于开始对所述PDSCH的所述接收的窄带索引,
当所述PDSCH调度延迟小于所述UE的RF返回时间时,发送根据所述PDSCH调度延迟在所述第一窄带中开始并且覆盖所述窄带索引的所述PDSCH。
56.根据权利要求45所述的方法,还包括:
发送在所述多个NB当中的作为边缘窄带的第一窄带与第二窄带之间使用跳频的所述PDSCH,
其中,所述第一窄带的未与子带对齐的一个或多个资源块相对于所述PDSCH被打孔,被打孔的资源块位于包括所述多个NB的带宽部分之外。
CN202080093045.1A 2020-01-22 2020-01-22 用于能力降低的用户设备的下行链路跳频通信 Pending CN114946247A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073824 WO2021147002A1 (en) 2020-01-22 2020-01-22 Downlink frequency hopping communication for reduced capability user equipment

Publications (1)

Publication Number Publication Date
CN114946247A true CN114946247A (zh) 2022-08-26

Family

ID=76991926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080093045.1A Pending CN114946247A (zh) 2020-01-22 2020-01-22 用于能力降低的用户设备的下行链路跳频通信

Country Status (4)

Country Link
US (1) US20230084494A1 (zh)
EP (1) EP4094509A4 (zh)
CN (1) CN114946247A (zh)
WO (1) WO2021147002A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11942983B2 (en) 2021-08-25 2024-03-26 Qualcomm Incorporated Narrow bandwidth part hopping pattern
WO2023205943A1 (en) * 2022-04-24 2023-11-02 Apple Inc. Bandwidth part frequency hopping for enhanced reduced capability ues
EP4351253A1 (en) * 2022-08-11 2024-04-10 Lg Electronics, Inc. Signal transmission and reception method for wireless communication and device therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119446A1 (zh) * 2015-01-27 2016-08-04 中兴通讯股份有限公司 一种实现上行控制信息的传输方法及装置
US11589351B2 (en) * 2016-09-30 2023-02-21 Qualcomm Incorporated Larger bandwidths and higher data rates for eMTC
US10462629B2 (en) * 2017-02-02 2019-10-29 Qualcomm Incorporated Bandwidth selection for enhanced machine-type-communications
US11012112B2 (en) * 2018-02-09 2021-05-18 Qualcomm Incorporated Techniques for flexible resource allocation
US10880950B2 (en) * 2018-02-16 2020-12-29 Intel Corporation Flexible resource allocation for even further enhanced machine type communication (EFEMTC)
US20230034062A1 (en) * 2020-01-21 2023-02-02 Qualcomm Incorporated Frequency hopping within a virtual bandwidth part

Also Published As

Publication number Publication date
EP4094509A4 (en) 2023-10-25
US20230084494A1 (en) 2023-03-16
WO2021147002A1 (en) 2021-07-29
EP4094509A1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
CN115398850B (zh) 频域分配技术
CN110521175B (zh) 支持多种波形的同步信令设计方法和装置
CN109997330B (zh) 具有灵活的符号配置的pdcch设计
CN109937562B (zh) 用于混合参数集载波的信道接入
CN115486177A (zh) 用于全双工通信的频域资源分配技术
CN115023961A (zh) 在4g无线网络和5g无线网络之间的动态频谱共享
US10925041B2 (en) Common indexing for uplink physical resource blocks
EP3744146B1 (en) Multi-bit scheduling request
CN112088515A (zh) 针对重叠资源块集的速率匹配行为
US11637730B2 (en) Controlling a reference signal pattern based on doppler parameters
WO2021147002A1 (en) Downlink frequency hopping communication for reduced capability user equipment
CN115349246A (zh) 用于在正交频分复用期间分布过量循环前缀的数字方案
CN115606133A (zh) 用于通信的复用侧链路数据
CN116158061A (zh) 针对带宽部分和分量载波的组合的dc子载波位置指示
CN115552824A (zh) 用于子带全双工的混合自动重传请求过程
CN112602362A (zh) 网络辅助侧链路调度技术
CN115280884A (zh) 上行链路取消指示
CN115443635A (zh) 带宽部分改变后的通信
CN114616784A (zh) 无线通信中的跨载波调度
US20230104972A1 (en) Physical uplink shared channel (pusch) repetition counting in paired spectrum
US20220103297A1 (en) Communication of a status bit for deferred hybrid automatic repeat request feedback
WO2023056220A1 (en) Physical uplink shared channel (pusch) repetition counting in paired spectrum
CN117999751A (zh) 配对频谱中的物理上行链路共享信道(pusch)重复计数
CN115299136A (zh) 用于无线通信中的半双工(hd)频分双工(fdd)(hd-fdd)的超级时隙格式
CN115462150A (zh) 在半持久性调度时机内的多个通信机会

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination