CN114944489A - Thin film layer with accordion MXene array and preparation method thereof, current collector, electrode and battery - Google Patents

Thin film layer with accordion MXene array and preparation method thereof, current collector, electrode and battery Download PDF

Info

Publication number
CN114944489A
CN114944489A CN202210680388.9A CN202210680388A CN114944489A CN 114944489 A CN114944489 A CN 114944489A CN 202210680388 A CN202210680388 A CN 202210680388A CN 114944489 A CN114944489 A CN 114944489A
Authority
CN
China
Prior art keywords
mxene
accordion
array
thin film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210680388.9A
Other languages
Chinese (zh)
Other versions
CN114944489B (en
Inventor
杨树斌
曹振江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202210680388.9A priority Critical patent/CN114944489B/en
Publication of CN114944489A publication Critical patent/CN114944489A/en
Application granted granted Critical
Publication of CN114944489B publication Critical patent/CN114944489B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种具有手风琴MXene阵列的薄膜层及其制备方法、集流体、电极和电池。其中该具有手风琴MXene阵列的薄膜层中含有手风琴MXene材料,且该手风琴MXene材料呈阵列状排列。本发明提供了一种简单有效制备有序或垂直排列结构基体的方法,利用手风琴MXene材料本身具有MXene片层定向排列和低曲率的特点,和液‑液两相混合液界面表面张力的作用,使手风琴MXene材料在界面层铺展,得到一种超薄且MXene片层定向排列的具有手风琴MXene阵列结构的薄膜层。由于本发明的手风琴MXene阵列结构制备方法简单,应用于金属电极中的效果显著,为高功率和高容量的锂金属电池中实际应用提供了一种可实现应用的技术路径,具有显著的工业实用价值。

Figure 202210680388

The invention discloses a thin film layer with an accordion MXene array, a preparation method thereof, a current collector, an electrode and a battery. The thin film layer with the accordion MXene array contains accordion MXene materials, and the accordion MXene materials are arranged in an array. The invention provides a simple and effective method for preparing an ordered or vertically arranged structure matrix. The accordion MXene material itself has the characteristics of oriented arrangement and low curvature of the MXene sheet, and the effect of the interfacial surface tension of the liquid-liquid two-phase mixed liquid, The accordion MXene material is spread on the interface layer to obtain an ultra-thin thin film layer with an accordion MXene array structure with oriented MXene sheets. Due to the simple preparation method of the accordion MXene array structure of the present invention, the effect of being applied to metal electrodes is remarkable, and a technical path that can be applied is provided for the practical application of high-power and high-capacity lithium metal batteries, and has significant industrial utility. value.

Figure 202210680388

Description

具有手风琴MXene阵列的薄膜层及其制备方法、集流体、电极 和电池Thin film layers with accordion MXene arrays and methods for their preparation, current collectors, electrodes and batteries

技术领域technical field

本发明是属于新材料和电池技术领域,特别是关于一种具有手风琴MXene阵列的薄膜层及其制备方法、集流体、电极和电池。The invention belongs to the technical field of new materials and batteries, and particularly relates to a thin film layer with accordion MXene arrays and a preparation method thereof, a current collector, an electrode and a battery.

背景技术Background technique

锂金属负极因其最高的理论比容量(3860mAh g-1)和最低的电化学电位(相对于标准氢电极-3.04V),被认为是最有潜力替代石墨负极(372mAh g-1)的材料。近几十年来,为了开发高性能锂金属电池(LMB),锂金属负极用于与多种高容量正极配对,包括层状富镍正极、硫和氧,该些锂金属电池的能量密度通常是锂离子电池(LIB)的2~6倍。然而,锂金属负极中缓慢的离子扩散和较高的电荷转移电阻,尤其是在高倍率充放电条件下,会极大地加剧了锂枝晶的生长和体积变化,锂金属电池电解液迅速消耗,库仑效率降低和容量明显衰减。Lithium metal anode is considered as the most potential material to replace graphite anode (372mAh g -1 ) due to its highest theoretical specific capacity (3860mAh g -1 ) and lowest electrochemical potential (-3.04V relative to standard hydrogen electrode) . In recent decades, in order to develop high-performance lithium metal batteries (LMBs), lithium metal anodes have been used to pair with a variety of high-capacity cathodes, including layered nickel-rich cathodes, sulfur, and oxygen. Lithium-ion battery (LIB) 2 to 6 times. However, the slow ion diffusion and high charge transfer resistance in Li metal anodes, especially under high-rate charge-discharge conditions, greatly exacerbate the growth and volume change of Li dendrites, resulting in rapid consumption of electrolyte in Li metal batteries. Coulombic efficiency decreases and capacity decays significantly.

为了提高锂金属负极中锂离子的扩散和电子转移能力,进而改善锂金属负极的电化学性能,研究者们开发了多种方法,例如:构建三维基体材料、设计人工固体电解质界面(SEI)和改性电解质等;其中,目前已报道的三维基体材料,包括石墨烯气凝胶、三维碳质电极、三维多孔金属结构等,已经得到了广泛的研究。具有多孔结构的三维基体材料可以吸附大量电解液,从而增加其中的局部离子浓度,降低高电流密度下的离子浓度极化。除此之外,三维结构还可以缓冲电极的体积变化,将电极整体体积变化局部化来提高电极稳定性,从而改善锂金属负极的电化学性能。In order to improve the diffusion and electron transfer capabilities of lithium ions in lithium metal anodes, and thus improve the electrochemical performance of lithium metal anodes, researchers have developed various methods, such as: constructing three-dimensional matrix materials, designing artificial solid electrolyte interfaces (SEI) and modified electrolytes; among them, the reported three-dimensional matrix materials, including graphene aerogels, three-dimensional carbonaceous electrodes, three-dimensional porous metal structures, etc., have been widely studied. A three-dimensional matrix material with a porous structure can adsorb a large amount of electrolyte, thereby increasing the local ion concentration therein and reducing the ion concentration polarization at high current densities. In addition, the three-dimensional structure can also buffer the volume change of the electrode, localize the overall volume change of the electrode to improve the electrode stability, thereby improving the electrochemical performance of the lithium metal anode.

然而,已报道的这些三维基体材料通常较厚(超过100μm)以及结构上无序随机排列。根据扩散系数方程Deff=D×ε/τ(其中,Deff为离子有效扩散系数,ε为孔隙率,τ为弯曲度),导电路径由孔隙率和弯曲度之比决定。三维基体材料中的随机排列结构具有很高的弯曲度,导致有效电子扩散率低,离子传输缓慢,并且电极内部电场和锂离子通量分布不均匀。此外,高弯曲度将导致Li+/Li的氧化还原反应仅发生在有限的负极/电解质界面上,导致极低的倍率性能(<1mA cm-2)。基于Sand’time的锂离子电镀时间模型(tSand=πDeff(zcc0F)2/4(Jta)2),较厚的3D负极同时还存在高弯曲度,在高倍率充放电条件下,会加剧锂枝晶的生长,导致电池性能显著下降和安全隐患。可见,弯曲度在三维电极的离子扩散和电荷转移中起着非常重要的作用。However, these three-dimensional matrix materials have been reported to be generally thick (over 100 μm) and structurally disordered and randomly arranged. According to the diffusion coefficient equation D eff =D×ε/τ (where D eff is the effective diffusion coefficient of ions, ε is the porosity, and τ is the tortuosity), the conduction path is determined by the ratio of the porosity to the tortuosity. The randomly arranged structure in the 3D matrix material has high tortuosity, resulting in low effective electron diffusivity, slow ion transport, and non-uniform distribution of electric field and lithium ion flux inside the electrode. In addition, the high tortuosity will cause the redox reaction of Li + /Li to only take place at the limited anode/electrolyte interface, resulting in extremely low rate capability (<1 mA cm −2 ). Based on the Sand'time Li-ion plating time model (t Sand = πD eff (z c c 0 F) 2 /4(Jt a ) 2 ), the thicker 3D negative electrode also has high curvature, and it can be charged and discharged at a high rate. Under these conditions, the growth of lithium dendrites will be aggravated, resulting in a significant decrease in battery performance and safety hazards. It can be seen that tortuosity plays a very important role in ion diffusion and charge transfer in 3D electrodes.

根据Bruggeman关系式,弯曲度(τ)与孔隙度(ε)和Bruggeman指数(α)有关:τ=εα。在这种情况下,弯曲度为1时,对应于具有最快离子传输的电极,可见,理想的电极应该是连续且垂直排列的,具有有序或垂直排列结构的三维基体对于促进离子传输、降低表观电阻、极大地提高锂金属负极的倍率性能和实用性至关重要。The tortuosity (τ) is related to the porosity (ε) and the Bruggeman index (α) according to the Bruggeman relation: τ=ε α . In this case, when the tortuosity is 1, which corresponds to the electrode with the fastest ion transport, it can be seen that the ideal electrode should be continuous and vertically aligned, and a three-dimensional matrix with an ordered or vertically aligned structure is important for promoting ion transport , reducing the apparent resistance, and greatly improving the rate performance and practicality of lithium metal anodes are crucial.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于针对锂金属负极的存在缓慢的离子扩散和较高的电荷转移电阻,尤其是在高倍率充放电条件下,会极大地加剧了锂枝晶的生长和体积变化,锂金属电池电解液迅速消耗,库仑效率降低和容量明显衰减的技术问题。The purpose of the present invention is for the existence of slow ion diffusion and high charge transfer resistance in the lithium metal negative electrode, especially under the condition of high rate charge and discharge, which will greatly intensify the growth and volume change of lithium dendrites, lithium metal batteries The electrolyte is rapidly consumed, the Coulombic efficiency is reduced and the capacity is obviously attenuated.

本发明第一方面提供一种具有手风琴MXene阵列的薄膜层,该薄膜层中含有手风琴MXene材料,且该手风琴MXene材料呈阵列状排列。A first aspect of the present invention provides a thin film layer with an accordion MXene array, the thin film layer contains an accordion MXene material, and the accordion MXene material is arranged in an array.

在一些实施方式中,上述手风琴MXene材料的化学式表示为Mn+1XnTx,其中,M选择过渡金属元素中的一种或多种,X选自碳、氮、硼元素中的一种或多种,Tx代表表面官能团。In some embodiments, the chemical formula of the above accordion MXene material is represented as M n+1 X n T x , wherein M is selected from one or more transition metal elements, and X is selected from one of carbon, nitrogen, and boron elements. one or more, T x represents a surface functional group.

在一些实施方式中,上述手风琴MXene材料中的M选自Ti、Ta、Nb、Cr、V、Mo元素中的一种或多种。In some embodiments, M in the above-mentioned accordion MXene material is selected from one or more elements of Ti, Ta, Nb, Cr, V, and Mo.

在一些实施方式中,上述Tx包括-F、-Cl、-Br、-I、-S、-O、-NH4中的至少一种。In some embodiments, the above - mentioned Tx includes at least one of -F, -Cl, -Br, -I, -S, -O, -NH4 .

在一些实施方式中,上述手风琴MXene材料中的M中含有Nb元素。In some embodiments, M in the above accordion MXene material contains Nb element.

在一些实施方式中,上述手风琴MXene材料中的X为C和/或N元素。In some embodiments, X in the above-described accordion MXene material is a C and/or N element.

在一些实施方式中,上述薄膜层的厚度介于1μm至100μm。In some embodiments, the thickness of the thin film layer is between 1 μm and 100 μm.

本发明第二方面提供一种上述的薄膜层的制备方法,步骤包括:将手风琴MXene材料加入液-液两相体系中,使该手风琴MXene材料分散于液-液两相的界面层形成手风琴阵列膜;将该手风琴阵列膜转移至一介质的表面,得到上述的薄膜层。A second aspect of the present invention provides a method for preparing the above-mentioned thin film layer, the steps comprising: adding an accordion MXene material into a liquid-liquid two-phase system, and dispersing the accordion MXene material in the liquid-liquid two-phase interface layer to form an accordion array film; transfer the accordion array film to the surface of a medium to obtain the above-mentioned thin film layer.

在一些实施方式中,上述的制备方法更具体的实施方式,包括:将上述手风琴MXene材料的分散液加入至水-油两相体系中。In some embodiments, a more specific embodiment of the above-mentioned preparation method includes: adding the above-mentioned dispersion of the accordion MXene material into a water-oil two-phase system.

在一些实施方式中,上述的制备方法更具体的实施方式,包括:将上述界面层设置一介质层,通过拉动该介质层,使上述手风琴阵列膜转移至该介质层的表面,得到上述薄膜层。In some embodiments, a more specific embodiment of the above-mentioned preparation method includes: disposing a dielectric layer on the above-mentioned interface layer, and by pulling the dielectric layer, the above-mentioned accordion array film is transferred to the surface of the dielectric layer to obtain the above-mentioned thin film layer .

在一些实施方式中,上述水-油两相体系中的油相选自二氯甲烷、三氯甲烷、四氯甲烷。In some embodiments, the oil phase in the above water-oil two-phase system is selected from the group consisting of dichloromethane, trichloromethane, and tetrachloromethane.

在一些实施方式中,上述手风琴MXene材料的分散液中的溶剂为水。In some embodiments, the solvent in the dispersion of the above-described accordion MXene material is water.

在一些实施方式中,上述介质层为金属箔。In some embodiments, the above-mentioned dielectric layer is a metal foil.

在一些实施方式中,上述金属箔的材质包括铜、镍、不锈钢中的一种或多种。In some embodiments, the material of the above-mentioned metal foil includes one or more of copper, nickel, and stainless steel.

本发明第三方面提供一种集流体,包括导电层,该导电层的表面上述的具有手风琴MXene阵列的薄膜层;或,如上述的制备方法得到的薄膜层。A third aspect of the present invention provides a current collector, comprising a conductive layer, the surface of the conductive layer is the above-mentioned thin film layer having an accordion MXene array; or, the thin film layer obtained by the above-mentioned preparation method.

在一些实施方式中,上述导电层为金属箔。In some embodiments, the above-mentioned conductive layer is a metal foil.

在一些实施方式中,上述金属箔的材质包括铜、镍、不锈钢。In some embodiments, the material of the metal foil includes copper, nickel, and stainless steel.

本发明第四方面提供一种电极,该电极包括具有电化学活性的金属和上述的集流体;A fourth aspect of the present invention provides an electrode comprising an electrochemically active metal and the above current collector;

在一些实施方式中,上述具有电化学活性的的金属选自金属锂、钠、锌、钙、钾中的至少一种。In some embodiments, the above-mentioned electrochemically active metal is selected from at least one metal lithium, sodium, zinc, calcium, and potassium.

本发明第五方面提供一种上述的电极的制备方法,步骤包括:将所述金属电镀至上述集流体上。A fifth aspect of the present invention provides a method for preparing the above-mentioned electrode, the step comprising: electroplating the metal on the above-mentioned current collector.

本发明第六方面提供另一种上述的电极的制备方法,步骤包括:将所述金属或所述金属的合金加热熔融后,与上述的集流体复合。A sixth aspect of the present invention provides another method for preparing the above-mentioned electrode, the step comprising: after the metal or the alloy of the metal is heated and melted, it is combined with the above-mentioned current collector.

本发明第七方面提供一种电池,该电池含有上述的集流体;或,上述的电极。A seventh aspect of the present invention provides a battery comprising the above-mentioned current collector; or, the above-mentioned electrode.

本发明的有益技术效果在于:The beneficial technical effect of the present invention is:

1、本发明提供了一种简单有效制备有序或垂直排列结构基体的方法,利用手风琴MXene材料本身具有MXene片层定向排列和低曲率的特点,和液-液两相混合液界面表面张力的作用,使手风琴MXene材料在界面层铺展,得到一种超薄且MXene片层定向排列的具有手风琴MXene阵列结构的薄膜层;1. The present invention provides a simple and effective method for preparing an ordered or vertically arranged structure matrix, utilizing the characteristics of the MXene sheet oriented arrangement and low curvature of the accordion MXene material itself, and the interfacial tension of the liquid-liquid two-phase mixed liquid. act to spread the accordion MXene material on the interface layer, and obtain an ultra-thin thin film layer with an accordion MXene array structure in which the MXene sheets are aligned;

2、用于电池电极中时,本发明的手风琴MXene阵列的薄膜层作为金属锂的基体,第一方面由于阵列结构超薄且MXene片层具有低弯曲度,使电解液能够快速浸入,促进锂离子的快速扩散;第二方面,手风琴MXene阵列结构还能够提供均匀化电场,使锂离子分布均匀;第三方面,MXene材料还能够降低锂金属的成核过电位,抑制锂枝晶的生长,得到一种无枝晶新型锂金属电池,提高电池的稳定性和安全性;第四方面,本发明的手风琴MXene阵列结构还具有丰富的空间,能够为锂金属在充放电过程中的体积变化提供缓冲空间,提高整个电极的稳定性。通过实验测试,本发明的手风琴MXene阵列结构应用于电池负极中,有效地提高电池电化学性能,包括循环性能、倍率性能和库伦效率。2. When used in battery electrodes, the thin film layer of the accordion MXene array of the present invention is used as the matrix of metal lithium. First, due to the ultra-thin structure of the array and the low curvature of the MXene sheet, the electrolyte can be quickly immersed, promoting lithium The rapid diffusion of ions; secondly, the accordion MXene array structure can also provide a uniform electric field, so that the distribution of lithium ions is uniform; thirdly, the MXene material can also reduce the nucleation overpotential of lithium metal and inhibit the growth of lithium dendrites. A new type of dendrite-free lithium metal battery is obtained, and the stability and safety of the battery are improved; in the fourth aspect, the accordion MXene array structure of the present invention also has abundant space, which can provide for the volume change of lithium metal during charging and discharging. Buffer space to improve the stability of the entire electrode. Through experimental tests, the accordion MXene array structure of the present invention is applied to the negative electrode of the battery, and the electrochemical performance of the battery is effectively improved, including cycle performance, rate performance and Coulomb efficiency.

3、由于本发明的手风琴MXene阵列结构制备方法简单,应用于金属电极中的效果显著,为高功率和高容量的锂金属电池中提供了一种可实现应用的技术路径,具有显著的工业实用价值。3. Due to the simple preparation method of the accordion MXene array structure of the present invention, the effect of being applied to metal electrodes is remarkable, providing a technical path that can be applied in high-power and high-capacity lithium metal batteries, and has significant industrial utility. value.

附图说明Description of drawings

图1为本发明实施例1中手风琴TiNbC-MXene(a)和二维TiNbC-MXene的SEM照片;Fig. 1 is the SEM photograph of accordion TiNbC-MXene (a) and two-dimensional TiNbC-MXene in Example 1 of the present invention;

图2为本发明实施例1中具有手风琴TiNbC-MXene阵列结构的薄膜层的制备过程示意图(a)和对应照片(b);2 is a schematic diagram (a) and a corresponding photo (b) of the preparation process of the thin film layer with an accordion TiNbC-MXene array structure in Example 1 of the present invention;

图3为本发明实施例1中手风琴TiNbC-MXene分散液在水-油两相界面层快速铺展的示意图(a),制备得到的MXene薄膜层的俯视图(b)和侧视图(c),以及在该薄膜层上滴加电解液的接触角照片(d);3 is a schematic diagram (a) of the rapid spreading of an accordion TiNbC-MXene dispersion in a water-oil two-phase interface layer in Example 1 of the present invention, a top view (b) and a side view (c) of the prepared MXene thin film layer, and The contact angle photograph (d) of dripping electrolyte solution on the thin film layer;

图4为本发明实施例1中制备得到的表面具有手风琴MXene阵列的薄膜层的铜箔复合带;4 is a copper foil composite tape with a thin film layer of accordion MXene arrays on the surface prepared in Example 1 of the present invention;

图5为本发明实施例2中电解液在手风琴TiNbC-MXene阵列结构(a)、手风琴Ti3C2-MXene阵列结构(b)的MXene薄膜层和铜箔表面(c)的接触角测试照片;Fig. 5 is a test photograph of the contact angle of the electrolyte on the MXene thin film layer of the accordion TiNbC-MXene array structure (a), the accordion Ti3C2 - MXene array structure (b) and the copper foil surface (c) in Example 2 of the present invention ;

图6为本发明实施例4中手风琴TiNbC-MXene阵列在1mAcm-2下容量为0.1至5mAhcm-2的电镀锂的电压分布(a);手风琴TiNbC-MXene阵列在不同镀锂容量下的SEM图像:0mAhcm-2(b),0.1mAh cm-2(c),1mAh cm-2(d)和5mAh cm-2(e);通过特定的原位光学显微镜(f)实时监测手风琴TiNbC-MXene阵列上不同镀锂时间下的锂生长照片:0min(g),10min(h),30min(i)和60min(j),电镀电流密度为2mA cm-2Fig. 6 is the voltage distribution (a) of the accordion TiNbC-MXene array under 1 mAcm -2 with a capacity of 0.1 to 5 mAhcm -2 for electroplating lithium in Example 4 of the present invention; SEM images of the accordion TiNbC-MXene array under different lithium plating capacities : 0mAhcm -2 (b), 0.1mAh cm -2 (c), 1mAh cm -2 (d) and 5mAh cm -2 (e); real-time monitoring of accordion TiNbC-MXene arrays by specific in situ optical microscopy (f) The lithium growth photos under different lithium plating times: 0min(g), 10min(h), 30min(i) and 60min(j), and the electroplating current density is 2mA cm -2 ;

图7本发明实施例4中对比例铜箔在不同镀锂容量下的SEM图像:0.1mAh cm-2(a),1mAh cm-2(b)和5mAh cm-2(c);Fig. 7 SEM images of the comparative copper foil in Example 4 of the present invention under different lithium plating capacities: 0.1mAh cm -2 (a), 1mAh cm -2 (b) and 5mAh cm -2 (c);

图8为本发明实施例4中手风琴TiNbC-MXene阵列、手风琴Ti3C2-MXene阵列和Cu箔上锂镀的成核过电位测试结果(a),对称电池的Nyquist曲线(b)和库仑效率对比图(c),以及相应放电电压分布图(d~f);Fig. 8 is the nucleation overpotential test results (a) of the accordion TiNbC-MXene array, the accordion Ti3C2 - MXene array and the lithium plating on the Cu foil in Example 4 of the present invention, the Nyquist curve (b) and the Coulomb of the symmetric cell Efficiency comparison diagram (c), and corresponding discharge voltage distribution diagrams (d~f);

图9为本发明实施例4中TiNbC-MXene-Li、Ti3C2-MXene-Li和Cu-Li电极在1至20mAcm-2的不同电流密度下的倍率性能(a),TiNbC-MXene手风琴阵列锂电极在5(b)和20mA cm-2(c)高电流密度下的循环性能。Figure 9 shows the rate performance (a) of TiNbC-MXene-Li, Ti 3 C 2 -MXene-Li and Cu-Li electrodes at different current densities of 1 to 20 mAcm -2 in Example 4 of the present invention, TiNbC-MXene accordion Cycling performance of arrayed lithium electrodes at high current densities of 5 (b) and 20 mA cm -2 (c).

图10为本发明实施例5中0.2C下TiNbC-MXene-Li//LFP、Ti3C2-MXene-Li//LFP和Cu-Li//LFP全电池的循环性能(a)和0.1C~4C下的倍率性能(b),以及在4C下的循环性能(c)。Figure 10 shows the cycle performance of TiNbC-MXene-Li//LFP, Ti3C2 - MXene -Li//LFP and Cu-Li//LFP full cells at 0.2C in Example 5 of the present invention (a) and 0.1C Rate performance at ~4C (b), and cycling performance at 4C (c).

具体实施方式Detailed ways

以下通过具体实施例说明本发明的技术方案。应该理解,本发明提到的一个或者多个步骤不排斥在组合步骤前后还存在其他方法和步骤,或者这些明确提及的步骤间还可以插入其他方法和步骤。还应理解,这些实例仅用于说明本发明而不用于限制本发明的范围。除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的目的,而非限制每个方法的排列次序或限定本发明的实施范围,其相对关系的改变或调整,在无实质技术内容变更的条件下,亦可视为本发明可实施的范畴。The technical solutions of the present invention are described below through specific embodiments. It should be understood that one or more steps mentioned in the present invention do not exclude the existence of other methods and steps before and after the combination step, or other methods and steps may be inserted between these explicitly mentioned steps. It should also be understood that these examples are intended to illustrate the invention only and not to limit the scope of the invention. Unless otherwise stated, the numbering of each method step is only for the purpose of identifying each method step, rather than limiting the arrangement order of each method or limiting the scope of implementation of the present invention, and the change or adjustment of the relative relationship shall not be changed without substantial technical content. Under the conditions of the present invention, it can also be regarded as the implementable scope of the present invention.

实施例中所采用的原料和仪器,对其来源没有特定限制,在市场购买或者按照本领域内技术人员熟知的常规方法制备即可。The raw materials and instruments used in the examples have no specific restrictions on their sources, and can be purchased in the market or prepared according to conventional methods well known to those skilled in the art.

本申请中的手风琴MXene材料是指将MAX相材料中的A组分刻蚀后得到的保持手风琴形貌的MXene材料,其形貌区别于二维片的MXene材料(请见图1a和b)。The accordion MXene material in this application refers to the MXene material that maintains the accordion morphology obtained by etching the A component in the MAX phase material, and its morphology is different from the MXene material of the two-dimensional sheet (see Figure 1a and b) .

实施例1Example 1

本实施例提供一种具有手风琴状阵列排布的MXene薄膜层及其制备方法,其中,手风琴MXene材料采用TiNbC-MXene,该手风琴TiNbC-MXene的制备方法,包括:将MAX相材料TiNbAlC中的Al刻蚀后得到;更具体的制备方法,包括:将2g MAX相(TiNbAlC)粉末添加到4g氟化锂(LiF)和40mL 12mol mL-1盐酸(HCl)的混合物中。随后,将混合物加热至50℃,保持48小时,然后过滤并数次清洗直到pH值达到约7,将过滤后的产物冷冻干燥后得到手风琴TiNbC-MXene。图1a给出了手风琴TiNbC-MXene的SEM照片,可以清晰地看到TiNbC-MXene呈类似于手风琴的层状形貌,片层阵列有序排列,片层间距(空隙)大约在100nm,其中MXene片层的厚度约在1~3nm,横向尺寸为数微米;图1b给出了典型的二维TiNbC-MXene的SEM照片,可以看到,二维形貌的TiNbC-MXene中二维片层无序排列,通常是在MAX相材料刻蚀A组分的过程中辅以超声,使片层脱落剥离。This embodiment provides an MXene thin film layer with an accordion-like array arrangement and a preparation method thereof, wherein the accordion MXene material adopts TiNbC-MXene, and the preparation method of the accordion TiNbC-MXene includes: mixing Al in the MAX phase material TiNbAlC Obtained after etching; a more specific preparation method includes: adding 2 g of MAX phase (TiNbAlC) powder to a mixture of 4 g of lithium fluoride (LiF) and 40 mL of 12 mol mL -1 hydrochloric acid (HCl). Subsequently, the mixture was heated to 50 °C for 48 hours, then filtered and washed several times until the pH value reached about 7, and the filtered product was freeze-dried to obtain accordion TiNbC-MXene. Figure 1a shows the SEM image of the accordion TiNbC-MXene. It can be clearly seen that TiNbC-MXene has a layered morphology similar to that of an accordion. The lamella array is arranged in an orderly manner, and the lamellar spacing (void) is about 100 nm. The thickness of the lamella is about 1-3 nm, and the lateral dimension is several micrometers; Figure 1b shows a typical SEM image of 2D TiNbC-MXene. It can be seen that the 2D lamellae in the 2D morphology TiNbC-MXene are disordered. The alignment is usually supplemented by ultrasound during the etching of the A component of the MAX phase material, so that the lamellae are peeled off and peeled off.

本实施例中手风琴状阵列排布的MXene薄膜层的制备方法,步骤包括:将手风琴TiNbC-MXene分散至水-油两相体系中,在水-油两相的界面层的表面张力作用下,手风琴TiNbC-MXene在界面上铺展形成TiNbC-MXene手风琴阵列膜,再将该手风琴阵列膜转移至介质表面,就能够得到本发明手风琴状阵列排布的MXene薄膜层。The preparation method of the MXene thin film layer arranged in an accordion-shaped array in this embodiment includes the following steps: dispersing the accordion TiNbC-MXene into a water-oil two-phase system, and under the action of the surface tension of the water-oil two-phase interface layer, The accordion TiNbC-MXene is spread on the interface to form the TiNbC-MXene accordion array film, and then the accordion array film is transferred to the surface of the medium to obtain the MXene thin film layer arranged in the accordion-shaped array of the present invention.

更具体的实施过程,如图2a和b所示,包括:A more specific implementation process, as shown in Figures 2a and b, includes:

1、将上述制备得到的手风琴TiNbC-MXene与去离子水配制成1.2mg ml-1的分散液;1. The above-prepared accordion TiNbC-MXene and deionized water were prepared into a dispersion of 1.2 mg ml -1 ;

2、将上述分散液逐滴加入至水-二氯甲烷两相混合液中,在重力的作用下,手风琴TiNbC-MXene很快向下沉直至在水-二氯甲烷的界面层快速铺展,形成TiNbC-MXene手风琴阵列膜;图3a给出了手风琴TiNbC-MXene分散液在水-油两相界面层快速铺展的示意图,水-油界面存在的表面张力是液-液界面组装过程的关键驱动力,通过实验我们观察到手风琴TiNbC-MXene一旦接触到水-二氯甲烷界面就会迅速铺展到整个界面,以降低了水-油界面的吉布斯自由能(Gγ);2. The above dispersion was added dropwise to the water-dichloromethane two-phase mixed solution. Under the action of gravity, the accordion TiNbC-MXene quickly sank until it spread rapidly at the water-dichloromethane interface layer, forming a TiNbC-MXene accordion array film; Figure 3a shows a schematic diagram of the rapid spreading of the accordion TiNbC-MXene dispersion at the water-oil two-phase interface, and the surface tension at the water-oil interface is the key driving force for the assembly process of the liquid-liquid interface , through experiments we observed that the accordion TiNbC-MXene spreads rapidly to the entire interface once it contacts the water-dichloromethane interface, which reduces the Gibbs free energy (Gγ) of the water-oil interface;

3、在水-二氯甲烷两相界面放置一条铜带,并沿着一个方向缓缓拉动,上述TiNbC-MXene手风琴阵列膜随后在铜带上铺展,干燥后得到铜带上具有手风琴状阵列排布的MXene薄膜层的铜箔复合带。图3b给出了复合带的俯视SEM照片,可以看到复合带表面均匀的手风琴TiNbC-MXene阵列分布,其中有许多垂直方向的纳米级间隙,从侧视图(3c)可以看到阵列的厚度约为15μm。图4a~c给出了制备得到的铜箔复合带的照片,可以看到,MXene薄膜层与金属铜箔接触性良好,在折叠或扭曲的作用下,仍然表现优异的稳定性。3. Place a copper tape on the water-dichloromethane two-phase interface, and slowly pull it along one direction. The above TiNbC-MXene accordion array film is then spread on the copper tape, and after drying, the copper tape has accordion-shaped arrays. Copper foil composite tape of cloth MXene film layer. Figure 3b presents a top-down SEM image of the composite ribbon, which shows a uniform distribution of accordion TiNbC-MXene arrays on the surface of the composite ribbon, with many nanoscale gaps in the vertical direction. From the side view (3c), it can be seen that the thickness of the array is approximately is 15 μm. Figures 4a-c show the photos of the prepared copper foil composite tape. It can be seen that the MXene film layer has good contact with the metal copper foil, and still exhibits excellent stability under the action of folding or twisting.

将电解液滴加在得到的铜箔复合带表面的MXene层表面,可以看到,电解液与MXene层表面之间的接触角几乎为零(图3d),这是因为MXene薄膜层具有的手风琴MXene阵列结构,电解液能够直接快速渗入至基体(铜带)的底部。将该复合带作为锂电池电极的集流体,有益于锂离子在电极中均匀化分布。When the electrolyte is dropped on the surface of the MXene layer on the surface of the obtained copper foil composite tape, it can be seen that the contact angle between the electrolyte and the surface of the MXene layer is almost zero (Fig. 3d), which is because the accordion of the MXene film layer MXene array structure, the electrolyte can directly and quickly penetrate to the bottom of the substrate (copper tape). Using the composite tape as the current collector of the lithium battery electrode is beneficial to the uniform distribution of lithium ions in the electrode.

在本实施例中铜带还可以替换为其他材质的薄膜材料(相当于介质层),包括但不限于金属材料,由于金属材料具有优异的导电性能,电极中集流体通常为金属材料,比如铜带/箔、镍带/箔、不锈钢带/箔、镀镍铜带/箔等。在这些金属带或金属箔表面设置本发明手风琴阵列结构的MXene薄膜层,得到一种本发明新型的表面改性的集流体,本发明集流体可以应用于包括但不限于锂金属电池中。In this embodiment, the copper strip can also be replaced with a thin film material (equivalent to a dielectric layer) of other materials, including but not limited to metal materials. Since metal materials have excellent electrical conductivity, the current collectors in the electrodes are usually metal materials, such as copper Tape/foil, nickel tape/foil, stainless steel tape/foil, nickel plated copper tape/foil, etc. The MXene thin film layer of the accordion array structure of the present invention is arranged on the surface of these metal strips or metal foils to obtain a novel surface-modified current collector of the present invention. The current collector of the present invention can be applied to, including but not limited to, lithium metal batteries.

本发明的液-液两相体系还可以选择其他的液相类型,由于MXene材料具有亲水性,从方便和易实施来考虑,优选水-油两相体系;其中的油相还可以选择其他类型的液体,比如:三氯甲烷、四氯甲烷等有机溶剂,但只要是通过液-液两相或多相界面实现了手风琴MXene材料的阵列排布,均在本发明的技术构思之中。The liquid-liquid two-phase system of the present invention can also choose other liquid phase types. Since the MXene material is hydrophilic, considering the convenience and ease of implementation, the water-oil two-phase system is preferred; the oil phase can also be selected from other types. Types of liquids, such as chloroform, tetrachloromethane and other organic solvents, but as long as the array arrangement of the accordion MXene material is realized through the liquid-liquid two-phase or multi-phase interface, it is all within the technical concept of the present invention.

本发明手风琴MXene阵列的厚度可以通过调控不同的MXene材料的粒径,进一步控制,在一些实施方式中,手风琴MXene阵列的厚度可以在1μm至100μm间调整。The thickness of the accordion MXene array of the present invention can be further controlled by adjusting the particle size of different MXene materials. In some embodiments, the thickness of the accordion MXene array can be adjusted between 1 μm and 100 μm.

实施例2Example 2

本实施例提供另一种具有手风琴MXene阵列的薄膜层,该手风琴MXene材料为Ti3C2-MXene,其制备方法与实施例1中的TiNbC-MXene类似,不同之处为原料MAX相材料为Ti3AlC2This embodiment provides another thin film layer with an accordion MXene array. The accordion MXene material is Ti 3 C 2 -MXene, and its preparation method is similar to that of TiNbC-MXene in Embodiment 1, except that the raw material MAX phase material is Ti 3 AlC 2 .

本实施例的MXene薄膜层的制备方法与实施例1的类似。图5a~c分别给出了电解液在手风琴TiNbC-MXene阵列结构(a)、手风琴Ti3C2-MXene阵列结构(b)的MXene薄膜层和铜箔表面(c)的接触角测试照片,可以看出,MXene薄膜层上的接触角要明显的小于铜箔,这与MXene的阵列结构有关,而TiNbC-MXene阵列结构表面表现最小的接触角(~0°),低于Ti3C2-MXene阵列结构(~22°),这可能与TiNbC-MXene更易于刻蚀,具有更加完美的手风琴阵列结构有关。The preparation method of the MXene thin film layer in this example is similar to that in Example 1. Figures 5a-c show the contact angle test photos of the electrolyte on the MXene thin film layer of the accordion TiNbC-MXene array structure (a), the accordion Ti3C2 - MXene array structure (b), and the copper foil surface (c), respectively. It can be seen that the contact angle on the MXene thin film layer is significantly smaller than that of the copper foil, which is related to the array structure of MXene, while the surface of the TiNbC-MXene array structure exhibits the smallest contact angle (~0°), which is lower than that of Ti 3 C 2 -MXene array structure (~22°), which may be related to the fact that TiNbC-MXene is easier to etch and has a more perfect accordion array structure.

实施例3Example 3

本实施例提供另一种具有手风琴状阵列排布的MXene薄膜层,该手风琴MXene材料为Ti2C-MXene,其制备方法与实施例1中的TiNbC-MXene类似,不同之处为原料MAX相材料为Ti2AlC。MXene薄膜层的制备方法与实施例1的类似。This embodiment provides another MXene thin film layer with an accordion-shaped array. The accordion MXene material is Ti 2 C-MXene. The material is Ti 2 AlC. The preparation method of the MXene thin film layer is similar to that of Example 1.

类似地,在另一些实施方式中,可选地手风琴MXene材料还可以是Ti3CNTx、Ti4N3Tx、TiNbC、TiNbCN、Ta4C3Tx等。Similarly, in other embodiments, the accordion MXene material may alternatively be Ti 3 CNT x , Ti 4 N 3 T x , TiNbC, TiNbCN, Ta 4 C 3 T x and the like.

实施例4Example 4

本实施例提供一种锂金属负极及其制备方法,其中制备方法步骤包括:在本发明的手风琴状阵列的MXene薄膜层表面电镀锂金属得到。在本实施例中,选用实施例1中得到的复合铜带上镀层金属锂。This embodiment provides a lithium metal negative electrode and a preparation method thereof, wherein the preparation method steps include: electroplating lithium metal on the surface of the MXene thin film layer of the accordion-shaped array of the present invention. In this embodiment, the metal lithium is used as the plating layer on the composite copper tape obtained in Embodiment 1.

更具体的实施方法步骤包括:将实施例1中的复合铜带剪切成圆片,组装成CR2032型扣式对称电池,其中电解液为1M LiPF6在EC、EMC、DEC(v:v:v=1:1:1)和1%VC中的溶液。在1.0mAcm-2的恒定电流密度下,测试具有手风琴TiNbC-MXene阵列的对称电池的特定沉积容量,以研究TiNbC-MXene手风琴阵列上金属锂的生长情况。More specific implementation method steps include: cutting the composite copper tape in Example 1 into a disc, and assembling into a CR2032 type button-type symmetrical battery, wherein the electrolyte is 1M LiPF 6 in EC, EMC, DEC (v:v: v=1:1:1) and 1% solution in VC. The specific deposition capacity of symmetric cells with accordion TiNbC- MXene arrays was tested at a constant current density of 1.0 mAcm-2 to study the growth of metallic lithium on TiNbC-MXene accordion arrays.

图6a给出了镀锂容量为0.1至5mAh cm-2的电镀锂的电压分布,通过SEM测试表征这一过程中手风琴TiNbC-MXene阵列上的锂镀层的演变过程(图6b~e),可以看出,在初始成核阶段,在0.1mAh cm-2的低电镀水平下,锂金属均匀地成核生长在手风琴TiNbC-MXene阵列的MXene纳米片上,这应归因于均匀的电场和离子浓度分布(图6c);相比之下,在铜箔上观察到大量锂的异相成核位点(图7a)。随着镀锂容量增加到1mAh cm-2,锂金属进一步在手风琴TiNbC-MXene阵列之间的空隙中生长(图6d)。此时,在铜箔上发现了大量锂枝晶(图7b),在未被手风琴Ti3C2-MXene覆盖的铜箔上也观察到少量锂枝晶。进一步将锂镀层容量增加至5mAh cm-2,可以看出,镀锂填充并覆盖了阵列,呈现出无枝晶且光滑的表面,由致密且均匀分布的锂组成,具有许多晶界(图6e)。在相同条件下,铜箔表面随机镀有大量锂枝晶,呈现出疏松多孔结构的不均匀表面(图7c)。当镀锂完全剥离时,手风琴TiNbC-MXene阵列结构保持完整的阵列形态,没有塌陷。Figure 6a presents the voltage distribution of electroplated Li with a Li plating capacity ranging from 0.1 to 5 mAh cm -2 , and the evolution of Li plating on the accordion TiNbC-MXene array during this process was characterized by SEM tests (Figure 6b–e), which can be It is seen that in the initial nucleation stage, at a low plating level of 0.1 mAh cm −2 , Li metal nucleates uniformly on the MXene nanosheets of the accordion TiNbC-MXene array, which should be attributed to the uniform electric field and ion concentration distribution (Fig. 6c); in contrast, a large number of heterogeneous nucleation sites for lithium were observed on the copper foil (Fig. 7a). As the Li plating capacity increased to 1 mAh cm −2 , Li metal further grew in the voids between the accordion TiNbC-MXene arrays (Fig. 6d). At this time, a large number of Li dendrites were found on the copper foil (Fig. 7b), and a small amount of Li dendrites were also observed on the copper foil not covered by the accordion Ti3C2 - MXene . Further increasing the Li plating capacity to 5 mAh cm −2 , it can be seen that the Li plating fills and covers the array, presenting a dendrite-free and smooth surface composed of dense and uniformly distributed Li with many grain boundaries (Fig. 6e). ). Under the same conditions, the surface of the copper foil was randomly plated with a large number of lithium dendrites, showing an uneven surface with a loose porous structure (Fig. 7c). When the lithium plating is completely stripped, the accordion TiNbC-MXene array structure maintains the intact array morphology without collapse.

使用专门设计的透明石英电池(图6f),在2mA cm-2恒定电镀电流密度和-2.0V截止电位下的计时电位测定法,通过原位光学显微镜进一步实时监测手风琴TiNbC-MXene阵列上的锂生长过程(图6g~j)。在初始阶段,手风琴TiNbC-MXene阵列在光学照片中被框成白色,呈现出具有均匀阵列间距的手风琴结构(图6g)。电镀10分钟后,可以看到镀锂以明亮的颜色生长到手风琴TiNbC-MXene的空隙中,手风琴的边框为白色(图6h)。当电镀30分钟时,在手风琴TiNbC-MXene阵列内观察到明亮且均匀分布的电镀锂,表面没有明显的突起(由紫色形状标记,图6i)。值得注意的是,即使在2mA cm-2的电流密度下电镀60分钟,手风琴TiNbC-MXene阵列仍然保持平坦的表面,没有任何锂枝晶(图6j)。即使在高倍率下,镀锂后无枝晶的现象可归因于阵列的低弯曲度和阵列中的纳米间隙,这有利于超渗透电解质和均匀电场,在高电流密度下促进锂离子/电荷快速传输。Lithium on accordion TiNbC-MXene arrays was further monitored in real time by in situ optical microscopy using chronopotentiometry at a constant plating current density of 2 mA cm -2 and a cut-off potential of -2.0 V using a specially designed transparent quartz cell (Fig. 6f). Growth process (Fig. 6g~j). At the initial stage, the accordion TiNbC-MXene array is framed in white in the optical photograph, showing an accordion structure with uniform array spacing (Fig. 6g). After 10 min of electroplating, the plated Li can be seen to grow into the voids of the accordion TiNbC-MXene with bright color, and the border of the accordion is white (Fig. 6h). When plated for 30 min, bright and uniformly distributed plated lithium was observed within the accordion TiNbC-MXene arrays with no obvious protrusions on the surface (marked by purple shapes, Fig. 6i). Notably, the accordion TiNbC-MXene arrays maintained a flat surface without any Li dendrites even when electroplated at a current density of 2 mA cm -2 for 60 min (Fig. 6j). Even at high rates, the dendrite-free phenomenon after Li plating can be attributed to the low tortuosity of the arrays and the nanogap in the arrays, which favors a super-permeable electrolyte and a uniform electric field that promotes Li-ion/charge at high current densities Fast transfer.

为了深入了解锂金属在手风琴MXene阵列上的成核行为,利用尖端电压(μt)与传质控制过电位之差计算成核过电位(μn),结果如图8a所示,手风琴TiNbC-MXene阵列的输出μn(9.9mV)远低于手风琴Ti3C2-MXene阵列(16.1mV)和铜箔(28.3mV),这表明TiNbC-MXene手风琴阵列上的锂镀层势垒显著降低,这归因于快速离子动力学、低电荷转移电阻和均匀分布的高锂离子导体LiF,保证电子和锂离子快速转移到低弯曲的手风琴TiNbC-MXene阵列中(图8b)。To gain insight into the nucleation behavior of Li metal on accordion MXene arrays, the nucleation overpotential (μn) was calculated using the difference between tip voltage (μt) and mass transfer-controlled overpotential, and the results are shown in Fig. 8a, accordion TiNbC-MXene array The output μn (9.9mV) of the accordion is much lower than that of the accordion Ti3C2 - MXene array (16.1mV) and copper foil (28.3mV), which indicates that the lithium plating barrier on the TiNbC-MXene accordion array is significantly reduced, which is attributed to Fast ion kinetics, low charge transfer resistance, and uniformly distributed high Li-ion conductor LiF ensure fast electron and Li-ion transfer into the low-bending accordion TiNbC-MXene array (Fig. 8b).

基于手风琴TiNbC-MXene阵列中快速离子扩散和电荷转移实现的良好无枝晶镀锂行为,研究了半电池的库仑效率(CE)(图8c)。所有电池在0至1.0V之间循环,镀锂容量为1mAh cm-2,电流密度为1mAh cm-2。在前三个循环中,手风琴TiNbC-MXene阵列的平均CE为98.2%,然后在随后的循环(890个循环)中稳定在99.8%左右,与手风琴Ti3C2-MXene阵列(230个循环)和铜箔(170个循环)相比,锂金属利用率最高,循环寿命增加了300~400%。TiNbC-MXene手风琴MXene阵列上锂电镀/剥离的相应电压分布如图8d所示。与铜箔(48mV的过电位)相比,手风琴TiNbC-MXene阵列即使在800次循环后也显示出18mV的小过电位(图8d~f)。The Coulombic efficiency (CE) of the half-cell was investigated based on the good dendrite-free Li plating behavior achieved by fast ion diffusion and charge transfer in the accordion TiNbC-MXene array (Fig. 8c). All cells were cycled between 0 and 1.0 V with a lithium plating capacity of 1 mAh cm -2 and a current density of 1 mAh cm -2 . The average CE of the accordion TiNbC-MXene array was 98.2% in the first three cycles, and then stabilized at around 99.8% in the subsequent cycles (890 cycles), comparable to the accordion Ti3C2 - MXene array (230 cycles) Compared with copper foil (170 cycles), the utilization rate of lithium metal is the highest, and the cycle life is increased by 300-400%. The corresponding voltage distributions for Li plating/stripping on TiNbC-MXene accordion MXene arrays are shown in Fig. 8d. Compared to the copper foil (overpotential of 48 mV), the accordion TiNbC-MXene array showed a small overpotential of 18 mV even after 800 cycles (Fig. 8d–f).

此外,进一步组装对称电池以评估手风琴TiNbC-MXene阵列的循环稳定性,对称电池中的相应电极通过在手风琴MXene阵列上镀上容量为6mAh cm-2的锂金属电极组装(标记为TiNbC-MXene-Li),相应的手风琴Ti3C2-MXene阵列锂金属电极和铜箔锂金属电极标记为(Ti3C2-MXene-Li和Cu-Li)。测试显示:具有TiNbC-MXene-Li的对称电池在1100h内实现了极好的循环稳定性,低过电位为16mV,优于Ti3C2-MXene-Li(26mV)和Cu-Li(46mV)。相反,Ti3C2-MXene-Li和Cu-Li的对称电池经过了过电位逐渐增加过程后,并分别在近700小时和600小时突然失效。具有TiNbC-MXene-Li的对称电池表现出色的深剥离/电镀行为,在1mAcm-2的电流密度下,在高达20mAh cm-2的高面积容量下稳定运行800多小时。In addition, symmetric cells were further assembled to evaluate the cycling stability of the accordion TiNbC-MXene arrays, and the corresponding electrodes in the symmetric cells were assembled by plating Li metal electrodes with a capacity of 6 mAh cm -2 on the accordion MXene arrays (labeled as TiNbC-MXene- Li), the corresponding accordion Ti3C2 - MXene array lithium metal electrodes and copper foil lithium metal electrodes are labeled (Ti3C2 - MXene -Li and Cu-Li). Tests show that the symmetric cell with TiNbC-MXene-Li achieves excellent cycling stability within 1100h with a low overpotential of 16mV, superior to Ti3C2 - MXene -Li (26mV) and Cu-Li (46mV) . In contrast, the symmetric cells of Ti3C2 - MXene -Li and Cu-Li undergo a gradual increase in overpotential and fail abruptly at nearly 700 hours and 600 hours, respectively. Symmetrical cells with TiNbC-MXene-Li exhibit excellent deep stripping/plating behavior and operate stably for over 800 hours at high areal capacities up to 20 mAh cm -2 at a current density of 1 mAcm-2.

在1至20mA cm-2的电流密度下,进一步研究了TiNbC-MXene-Li的倍率性能。如图9a所示,当电流密度逐渐升高至5mA cm-2时,TiNbC-MXene-Li的过电位保持在35mV,这优于Ti3C2-MXene-Li(46mV)和Cu-Li(78mV)。即使在极高的电流密度为10mA cm-2,甚至高达20mAcm-2的情况下,TiNbC-MXene-Li仍能提供102mV的稳定过电位,而不会发生短路。然而,Ti3C2-MXene-Li(202mV)和Cu-Li电极(560mV)的过电位明显增加(图9a)。我们还进一步研究了TiNbC-MXene-Li电极在高倍率下的循环稳定性。在5mA cm-2时,TiNbC-MXene-Li对称电池能够稳定运行28000分钟。即使在20mA cm-2的高电流密度下运行,TiNbC-MXene-Li也可以保持稳定的过电位(103mV),具有长期循环稳定性(2500次循环),而过电位仅略有增加(115mV),为大功率锂金属电池中的实用锂金属负极铺平道路(图9b~c)。TiNbC-MXene-Li对称电池的这些优异倍率性能应归因于低弯曲阵列中离子和电子的快速传输路径,以及TiNbC-MXene纳米片的亲锂卤族官能团(-F),通过低弯曲的手风琴TiNbC-MXene阵列,能有效调节得到无枝晶的镀锂层并缓冲锂金属的体积变化。The rate capability of TiNbC-MXene-Li was further investigated at current densities ranging from 1 to 20 mA cm -2 . As shown in Figure 9a, when the current density is gradually increased to 5 mA cm -2 , the overpotential of TiNbC-MXene-Li remains at 35 mV, which is better than that of Ti3C2 - MXene -Li (46mV) and Cu-Li ( 78mV). TiNbC-MXene-Li can provide a stable overpotential of 102mV without short-circuiting even at extremely high current densities of 10mA cm -2 and even as high as 20mAcm -2 . However, the overpotentials of the Ti3C2 - MXene -Li (202 mV) and Cu-Li electrodes (560 mV) increased significantly (Fig. 9a). We also further investigated the cycling stability of the TiNbC-MXene-Li electrode at high rates. At 5 mA cm -2 , the TiNbC-MXene-Li symmetric cell can run stably for 28,000 minutes. Even operating at a high current density of 20 mA cm -2 , TiNbC-MXene-Li can maintain a stable overpotential (103mV) with long-term cycling stability (2500 cycles) with only a slight increase in overpotential (115mV) , paving the way for practical lithium metal anodes in high-power lithium metal batteries (Fig. 9b–c). These excellent rate performances of TiNbC-MXene-Li symmetric cells should be attributed to the fast transport paths of ions and electrons in the low-bend arrays, and the lithiophilic halogen functional group (-F) of TiNbC-MXene nanosheets, through the low-bend accordion The TiNbC-MXene array can effectively adjust the dendrite-free Li plating and buffer the volume change of Li metal.

实施例5Example 5

本实施例提供一种锂金属全电池,其中,采用LiFePO4(LFP)作为正极材料组装全电池(负极、正极容量比=2.0);锂金属负极为上述实施例4中的手风琴TiNbC-MXene阵列和手风琴Ti3C2-MXene阵列上镀上容量为6mAh cm-2的锂金属电极,组装的全电池标记为TiNbC-MXene-Li//LFP、Ti3C2-MXene-Li//LFP,对比例为铜箔镀锂电极组装的全电池,标记为Cu-Li//LFP。恒流充电/放电测量在2.0和4.0V的电压范围内进行,与Li/Li+相比,在0.2至4C(1C=172mA g-1)的不同电流密度下进行。This embodiment provides a lithium metal full battery, in which LiFePO 4 (LFP) is used as the positive electrode material to assemble the full battery (negative electrode, positive electrode capacity ratio=2.0); the lithium metal negative electrode is the accordion TiNbC-MXene array in the above-mentioned embodiment 4 and accordion Ti 3 C 2 -MXene arrays were plated with lithium metal electrodes with a capacity of 6 mAh cm -2 , and the assembled full cells were labeled as TiNbC-MXene-Li//LFP, Ti 3 C 2 -MXene-Li//LFP, The comparative example is a full cell assembled with a copper foil plated lithium electrode, marked as Cu-Li//LFP. The galvanostatic charge/discharge measurements were performed in the voltage range of 2.0 and 4.0 V, compared to Li/Li + , at different current densities from 0.2 to 4C (1C=172 mA g −1 ).

测试结果如图10所示,TiNbC-MXene-Li//LFP全电池在0.2C下稳定运行280个循环,容量保持率高达92%。相比之下,50个循环后,Cu-Li//LFP全电池的容量开始明显降低(图10a)。此外,TiNbC-MXene-Li//LFP全电池也具有高倍率性能(图10b)。将放电倍率提高到4C时,TiNbC-MXene-Li//LFP全电池的放电容量仍保持在130mAh g-1,远远高于Cu-Li//LFP(97mAh g-1)和Ti3C2-MXene-Li//LFP(114mAh g-1)全电池的放电容量。不仅如此,TiNbC-MXene-Li//LFP全电池还表现出优异的耐用性,在1000次循环后,库伦效率为99%,,即使在4C的高倍率下,容量保持率仍达86%(图10c)。这种全电池高倍率下的长周期稳定性进一步证实了手风琴MXene阵列结构在金属电池中具有快速离子和电荷转移动力学。The test results are shown in Fig. 10. The TiNbC-MXene-Li//LFP full cell operates stably for 280 cycles at 0.2C with a capacity retention rate as high as 92%. In contrast, the capacity of the Cu-Li//LFP full cell starts to decrease significantly after 50 cycles (Fig. 10a). In addition, the TiNbC-MXene-Li//LFP full cell also exhibits high rate capability (Fig. 10b). When the discharge rate is increased to 4C, the discharge capacity of the TiNbC-MXene-Li//LFP full cell still remains at 130mAh g -1 , which is much higher than that of Cu-Li//LFP (97mAh g -1 ) and Ti 3 C 2 -Discharge capacity of MXene-Li//LFP (114mAh g -1 ) full cell. Not only that, the TiNbC-MXene-Li//LFP full cell also exhibits excellent durability, with a Coulombic efficiency of 99% after 1000 cycles, and a capacity retention rate of 86% even at a high rate of 4C ( Figure 10c). The long-cycle stability at high rates of this full cell further confirms that the accordion MXene array structure has fast ion and charge transfer kinetics in metallic batteries.

实施例6Example 6

本发明的锂金属电池还可以通过其他的制备方法实现手风琴MXene阵列结构与锂金属的复合,本实施例提供另一种锂金属负极及其制备方法,其中制备方法步骤包括:将本发明的手风琴状MXene阵列的薄膜层与熔融锂金属或其合金接触,使熔融锂金属或其合金渗入至手风琴MXene阵列结构之间,冷却后得到含有手风琴MXene阵列的锂金属电极。The lithium metal battery of the present invention can also realize the composite of the accordion MXene array structure and lithium metal through other preparation methods. This embodiment provides another lithium metal negative electrode and a preparation method thereof, wherein the preparation method steps include: combining the accordion MXene array structure of the present invention with lithium metal. The thin film layer of the MXene-like array is contacted with molten lithium metal or its alloy, so that the molten lithium metal or its alloy infiltrates between the accordion MXene array structures, and after cooling, a lithium metal electrode containing the accordion MXene array is obtained.

具体的实施方式步骤包括:The specific implementation steps include:

1、将锂金属或锂金属合金加热至400℃~800℃,熔融为液态;1. Heat the lithium metal or lithium metal alloy to 400℃~800℃, and melt it into a liquid state;

2、将液态的熔融锂或锂合金涂覆于表面具有手风琴MXene阵列薄膜层的铜箔上,待冷却固化后,得到锂金属电极。2. Coating liquid molten lithium or lithium alloy on the copper foil with an accordion MXene array thin film layer on the surface, and after cooling and solidifying, a lithium metal electrode is obtained.

在一具体的实施方式中,步骤包括:将锂金属加热至400℃熔融后,涂覆与本发明实施例1制备得到的手风琴TiNbC-MXene阵列的薄膜层表面,得到锂金属电极。In a specific embodiment, the steps include: after heating lithium metal to 400° C. to melt, coating the surface of the thin film layer of the accordion TiNbC-MXene array prepared in Example 1 of the present invention to obtain a lithium metal electrode.

需要说明的是,由于MXene材料是一类二维材料,用化学式表示为Mn+1XnTx,其中M选自过渡金属元素中的一种或多种;X选自于碳、氮或硼元素中一种或多种;Tx代表官能团,包括-F、-Cl、Br、I、-O、-S、-OH、-NH4中一种或多种;1≤n≤4。在本发明的启示下,选用其他类型的手风琴MXene材料用于与金属复合,以及将该金属复合材料用于电池的电极,这些同样属于本发明的技术构思。It should be noted that, since MXene material is a kind of two-dimensional material, it is represented by the chemical formula M n+1 X n T x , wherein M is selected from one or more transition metal elements; X is selected from carbon, nitrogen Or one or more of boron elements; T x represents a functional group, including one or more of -F, -Cl, Br, I, -O, -S, -OH, -NH 4 ; 1≤n≤4 . Under the inspiration of the present invention, other types of accordion MXene materials are selected for compounding with metals, and the metal compound materials are used for electrodes of batteries, which also belong to the technical concept of the present invention.

在本发明中我们发现,含有Nb元素的二元手风琴MXene材料相比一元手风琴MXene材料应用于锂金属电极中,表现更低的锂金属成核过电位、更优异的循环性能和倍率性能,这可以一方面归因于含Nb的二元手风琴MXene更容易制备得到粒径分布均匀,手风琴结构显著的MXene材料;另一方面还因为Nb元素掺杂能够改变MXene片层的电子分布,显著增强了电子在电极中的迁移,使电场分布均匀化。因此,本发明中更优选含有Nb元素的手风琴MXene材料。In the present invention, it is found that the binary accordion MXene material containing Nb element is applied to the lithium metal electrode compared with the single element accordion MXene material, which shows lower lithium metal nucleation overpotential, better cycle performance and rate performance, which is On the one hand, it can be attributed to the fact that Nb-containing binary accordion MXene is easier to prepare MXene materials with uniform particle size distribution and remarkable accordion structure; The migration of electrons in the electrodes makes the electric field distribution uniform. Therefore, the accordion MXene material containing Nb element is more preferable in the present invention.

还需要说明的是,由于具有电化学活性的金属,包括金属Na、Zn、K、Ca、Mg,用于金属电池的负极材料时,存在与锂金属相同的问题(包括金属枝晶生长等),因此,本发明的手风琴MXene阵列的薄膜层同样可以用于与该些金属复合,得到复合金属电极,并应用于相应的金属电池体系中。It should also be noted that due to electrochemically active metals, including metals Na, Zn, K, Ca, and Mg, when used as negative electrode materials for metal batteries, there are the same problems as lithium metal (including metal dendrite growth, etc.) , therefore, the thin film layer of the accordion MXene array of the present invention can also be used for compounding with these metals to obtain compound metal electrodes, which can be used in corresponding metal battery systems.

前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many changes and modifications are possible in light of the above teachings. The exemplary embodiments were chosen and described for the purpose of explaining certain principles of the invention and their practical applications, to thereby enable one skilled in the art to make and utilize various exemplary embodiments and various different aspects of the invention. Choose and change. The scope of the invention is intended to be defined by the claims and their equivalents.

Claims (10)

1.一种具有手风琴MXene阵列的薄膜层,其特征在于,所述薄膜层中含有手风琴MXene材料,且所述手风琴MXene材料呈阵列状排列。1. A thin film layer with an accordion MXene array, wherein the thin film layer contains an accordion MXene material, and the accordion MXene material is arranged in an array. 2.如权利要求1所述的薄膜层,其特征在于,所述手风琴MXene材料的化学式表示为Mn+ 1XnTx,其中,M选择过渡金属元素中的一种或多种,X选自碳、氮、硼元素中的一种或多种,Tx代表表面官能团;2. The thin film layer according to claim 1, wherein the chemical formula of the accordion MXene material is represented as M n+ 1 X n T x , wherein M selects one or more of transition metal elements, and X selects From one or more of carbon, nitrogen and boron elements, T x represents a surface functional group; 优选地,所述M选自Ti、Ta、Nb、Cr、V、Mo元素中的一种或多种;Preferably, the M is selected from one or more of Ti, Ta, Nb, Cr, V, Mo elements; 优选地,所述Tx包括-F、-Cl、-Br、-I、-S、-O、-NH4中的至少一种。Preferably, the T x includes at least one of -F, -Cl, -Br, -I, -S, -O, -NH 4 . 3.如权利要求2所述的薄膜层,其特征在于,所述M中含有Nb元素;3. The thin film layer according to claim 2, wherein the M contains Nb element; 和/或,所述X为C和/或N元素。And/or, the X is a C and/or N element. 和/或,所述薄膜层的厚度介于1μm至100μm。And/or, the thickness of the thin film layer is between 1 μm and 100 μm. 4.一种如权利要求1至3中任一项所述的薄膜层的制备方法,其特征在于,步骤包括:4. The preparation method of the thin film layer according to any one of claims 1 to 3, wherein the step comprises: 将手风琴MXene材料加入液-液两相体系中,使所述手风琴MXene材料分散于液-液两相的界面层形成手风琴阵列膜;adding the accordion MXene material into the liquid-liquid two-phase system, so that the accordion MXene material is dispersed in the interface layer of the liquid-liquid two-phase to form an accordion array film; 将所述手风琴阵列膜转移至一介质的表面,得到所述薄膜层。The film layer is obtained by transferring the accordion array film to the surface of a medium. 5.如权利要求4所述的制备方法,其特征在于,所述制备方法更具体的实施方式,包括:5. preparation method as claimed in claim 4 is characterized in that, the more specific embodiment of described preparation method comprises: 将所述手风琴MXene材料的分散液加入至水-油两相体系中;adding the dispersion of the accordion MXene material to a water-oil two-phase system; 和/或,将所述界面层设置一介质层,通过拉动所述介质层,使所述手风琴阵列膜转移至所述介质层的表面,得到所述薄膜层。And/or, a dielectric layer is provided on the interface layer, and the thin film layer is obtained by pulling the dielectric layer to transfer the accordion array film to the surface of the dielectric layer. 6.如权利要求5所述的制备方法,其特征在于,所述水-油两相体系中的油相选自二氯甲烷、三氯甲烷、四氯甲烷;6. The preparation method of claim 5, wherein the oil phase in the water-oil two-phase system is selected from dichloromethane, trichloromethane, and tetrachloromethane; 和/或,所述手风琴MXene材料的分散液中的溶剂为水;And/or, the solvent in the dispersion of the accordion MXene material is water; 和/或,所述介质层为金属箔;优选地,所述金属箔的材质包括铜、镍、不锈钢中的一种或多种。And/or, the dielectric layer is a metal foil; preferably, the material of the metal foil includes one or more of copper, nickel, and stainless steel. 7.一种集流体,其特征在于,包括导电层,所述导电层的表面含有如权利要求1至3中任一项所述的薄膜层;或,如权利要求4至6中任一项所述的制备方法得到的薄膜层;7. A current collector, characterized by comprising a conductive layer, the surface of the conductive layer containing the thin film layer as claimed in any one of claims 1 to 3; or, as in any one of claims 4 to 6 The thin film layer obtained by the preparation method; 优选地,所述导电层为金属箔;更优选地,所述金属箔的材质包括铜、镍、不锈钢。Preferably, the conductive layer is a metal foil; more preferably, the material of the metal foil includes copper, nickel, and stainless steel. 8.一种电极,其特征在于,所述电极包括具有电化学活性的金属,和,如权利要求7所述的集流体;8. An electrode comprising an electrochemically active metal, and a current collector as claimed in claim 7; 优选地,所述金属选自金属锂、钠、锌、钙、钾中的至少一种。Preferably, the metal is selected from at least one metal lithium, sodium, zinc, calcium and potassium. 9.一种如权利要求8所述的电极的制备方法,其特征在于,步骤包括:9. A method for preparing an electrode as claimed in claim 8, wherein the step comprises: 将所述金属电镀至所述集流体上;electroplating the metal onto the current collector; 和/或,将所述金属或所述金属的合金加热熔融后,与所述集流体复合。And/or, after heating and melting the metal or the metal alloy, it is combined with the current collector. 10.一种电池,其特征在于,含有如权利要求7所述的集流体;10. A battery, characterized in that it contains the current collector as claimed in claim 7; 或,如权利要求8所述的电极。Or, the electrode of claim 8.
CN202210680388.9A 2022-06-15 2022-06-15 Thin film layer with accordion MXene array and its preparation method, current collector, electrode and battery Active CN114944489B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210680388.9A CN114944489B (en) 2022-06-15 2022-06-15 Thin film layer with accordion MXene array and its preparation method, current collector, electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210680388.9A CN114944489B (en) 2022-06-15 2022-06-15 Thin film layer with accordion MXene array and its preparation method, current collector, electrode and battery

Publications (2)

Publication Number Publication Date
CN114944489A true CN114944489A (en) 2022-08-26
CN114944489B CN114944489B (en) 2023-08-01

Family

ID=82911616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210680388.9A Active CN114944489B (en) 2022-06-15 2022-06-15 Thin film layer with accordion MXene array and its preparation method, current collector, electrode and battery

Country Status (1)

Country Link
CN (1) CN114944489B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180309125A1 (en) * 2017-04-20 2018-10-25 Auburn University Electrochemical systems comprising mxenes and max phase compositions and methods of using the same
US20190267630A1 (en) * 2018-02-26 2019-08-29 Korea Institute Of Science And Technology Anode for lithium metal secondary battery including mxene thin film, method for producing the anode and lithium metal secondary battery including the anode
EP3614463A1 (en) * 2018-08-20 2020-02-26 BGT Materials Limited Electrode structure of electrochemical energy storage device and manufacturing method thereof
CN110890549A (en) * 2019-12-06 2020-03-17 武汉大学 Array type positive current collector for liquid metal battery
CN111293317A (en) * 2020-02-29 2020-06-16 天津国安盟固利新材料科技股份有限公司 Multifunctional composite negative plate for chargeable and dischargeable solid battery, preparation method and secondary battery
CN112047341A (en) * 2020-08-31 2020-12-08 山东大学 A kind of Nb2C MXene material and its preparation method and application
CN112490442A (en) * 2020-11-25 2021-03-12 燕山大学 Lithium ion battery cathode material and preparation method and application thereof
CN112563330A (en) * 2020-12-06 2021-03-26 南开大学 Vertical monomolecular field effect transistor integrated device based on two-dimensional material nano-pores and preparation method
CN112599729A (en) * 2020-11-27 2021-04-02 沛县科鲁新能源技术服务中心 Lithium ion battery with high cycle performance
CN112811906A (en) * 2021-01-08 2021-05-18 北京航空航天大学 Medium-entropy MAX phase material, medium-entropy two-dimensional material and preparation method thereof
CN113937295A (en) * 2021-10-15 2022-01-14 山东大学 A kind of self-assembled MXene/chitosan composite film and its preparation method and application
EP3957601A1 (en) * 2020-08-19 2022-02-23 Technische Universität Dresden Method for the synthesis of mxenes, mxene nanosheets and their use
CN114551811A (en) * 2022-02-22 2022-05-27 北京航空航天大学 A kind of preparation method of vertical MXene array pole piece, vertical MXene array pole piece and application
CN114901470A (en) * 2019-12-25 2022-08-12 株式会社村田制作所 Conductive composite structure and method for producing the same
US20230034579A1 (en) * 2019-12-03 2023-02-02 Drexel University Dispersion and stabilization of mxene materials and mxene materials for energy storage applications

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180309125A1 (en) * 2017-04-20 2018-10-25 Auburn University Electrochemical systems comprising mxenes and max phase compositions and methods of using the same
US20190267630A1 (en) * 2018-02-26 2019-08-29 Korea Institute Of Science And Technology Anode for lithium metal secondary battery including mxene thin film, method for producing the anode and lithium metal secondary battery including the anode
EP3614463A1 (en) * 2018-08-20 2020-02-26 BGT Materials Limited Electrode structure of electrochemical energy storage device and manufacturing method thereof
US20230034579A1 (en) * 2019-12-03 2023-02-02 Drexel University Dispersion and stabilization of mxene materials and mxene materials for energy storage applications
CN110890549A (en) * 2019-12-06 2020-03-17 武汉大学 Array type positive current collector for liquid metal battery
CN114901470A (en) * 2019-12-25 2022-08-12 株式会社村田制作所 Conductive composite structure and method for producing the same
CN111293317A (en) * 2020-02-29 2020-06-16 天津国安盟固利新材料科技股份有限公司 Multifunctional composite negative plate for chargeable and dischargeable solid battery, preparation method and secondary battery
EP3957601A1 (en) * 2020-08-19 2022-02-23 Technische Universität Dresden Method for the synthesis of mxenes, mxene nanosheets and their use
CN112047341A (en) * 2020-08-31 2020-12-08 山东大学 A kind of Nb2C MXene material and its preparation method and application
CN112490442A (en) * 2020-11-25 2021-03-12 燕山大学 Lithium ion battery cathode material and preparation method and application thereof
CN112599729A (en) * 2020-11-27 2021-04-02 沛县科鲁新能源技术服务中心 Lithium ion battery with high cycle performance
CN112563330A (en) * 2020-12-06 2021-03-26 南开大学 Vertical monomolecular field effect transistor integrated device based on two-dimensional material nano-pores and preparation method
CN112811906A (en) * 2021-01-08 2021-05-18 北京航空航天大学 Medium-entropy MAX phase material, medium-entropy two-dimensional material and preparation method thereof
CN113937295A (en) * 2021-10-15 2022-01-14 山东大学 A kind of self-assembled MXene/chitosan composite film and its preparation method and application
CN114551811A (en) * 2022-02-22 2022-05-27 北京航空航天大学 A kind of preparation method of vertical MXene array pole piece, vertical MXene array pole piece and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHANG, DI等: "Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite-Free Metallic Lithium Anodes", ADVANCED MATERIALS *
ZHENJIANG CAO等: "Low-Tortuous MXene (TiNbC) Accordion Arrays Enabled Fast Ion Diffusion and Charge Transfer in Dendrite-Free Lithium Metal Anodes", ADVANCED ENERGY MATERIALS, vol. 12, no. 30 *
刘文燚;栗林坡;桂秋月;邓伯华;李园园: "基于阵列电极的新型混合电容器", 物理化学学报, vol. 36, no. 2 *
武卫明;张长松;侯绍刚;杨树斌;: "MXenes及MXenes复合材料的制备及其在能量存储与转换中的应用(英文)", 应用化学, no. 03 *

Also Published As

Publication number Publication date
CN114944489B (en) 2023-08-01

Similar Documents

Publication Publication Date Title
Zhang et al. Super‐Assembled Hierarchical CoO Nanosheets‐Cu Foam Composites as Multi‐Level Hosts for High‐Performance Lithium Metal Anodes
JP2023059975A (en) Pre-lithiation of electrode material in semisolid electrode
WO2022033065A1 (en) Negative electrode plate and secondary battery
KR101972621B1 (en) Active material for batteries
CN109037626B (en) Alkali metal-based negative electrode and preparation method and application thereof
CN102971889A (en) High energy density electrochemical capacitors
KR20130067914A (en) Lithium metal powder-carbon powder composite anode for lithium rechargeable batteries and lithium metal secondary battery comprising the same
WO2016011196A1 (en) Large energy density batteries
CN109037627B (en) Alkali metal-based composite negative electrode and application thereof
CN112397686A (en) Negative electrode, lithium ion secondary battery and preparation method thereof
CN107431204A (en) Sodium ion and kalium ion battery anode
CN112928238A (en) Ultrathin metal lithium electrode, preparation thereof and application of ultrathin metal lithium electrode as negative electrode of secondary lithium battery
CN109411756A (en) A kind of secondary cell carbon three-dimensional structure electrode and its preparation method and application
CN111799442A (en) Semi-liquid negative electrode of sodium-potassium ion battery without dendrite and its preparation method and application
Chen et al. Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes
Park et al. Fabrication and characterization of Li-coated nickel mesh for anode of lithium-metal batteries
Zhang et al. Semi-liquid anode for dendrite-free K-ion and Na-ion batteries
Wang et al. Ultrathin Li-rich Li-Cu alloy anode capped with lithiophilic LiC6 headspace enabling stable cyclic performance
CN108110235A (en) A kind of hollow nickel-NiO nanoparticle/porous carbon nanoscale twins composite material and preparation method and application
CN1909265B (en) Lithium-ion battery negative electrode made of metal nanowires and preparation method thereof
CA3163766A1 (en) A novel gold-based porous material for a lithium battery
Cheng et al. Integrating N, P, Ni into 3D carbon felt anode for high-performance lithium metal batteries
CN114944489B (en) Thin film layer with accordion MXene array and its preparation method, current collector, electrode and battery
CN114899379B (en) A high-performance tin selenide/tin telluride/porous carbon nanofiber sodium ion battery negative electrode material and preparation method thereof
US20240421320A1 (en) Lithium metal electrode, method of manufacturing a lithium ion electrode and lithium ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant